PERFECTLY HOMOGENEOUS BASES IN BANACH SPACES

BY

P. G. CASAZZA AND BOR-LUH LIN

A bounded basis $\{x_n\}$ of a Banach space X is called perfectly homogeneous if every bounded block basic sequence $\{y_n\}$ of $\{x_n\}$ is equivalent to $\{x_n\}$. By a result of M. Zippin [4], a basis in a Banach space is perfectly homogeneous if and only if it is equivalent to the unit vector basis of c_0 or l_p , $1 \le p < +\infty$. A basis $\{x_n\}$ of a Banach space X is called symmetric, if every permutation $\{x_{\sigma(n)}\}$ of $\{x_n\}$ is a basis of X, equivalent to the basis $\{x_n\}$. It is clear that every perfectly homogeneous basis is symmetric.

DEFINITION. A basis $\{x_n\}$ in a Banach space X is called lower (resp., upper) semi-homogeneous if it is bounded and every bounded block basic sequence $\{y_n\}$ of $\{x_n\}$ dominates (resp., is dominated by) $\{x_n\}$.

So a basis is perfectly homogeneous if and only if it is both lower and upper semi-homogeneous. In this note we shall construct Banach spaces with symmetric lower (resp., upper) semi-homogeneous bases which are not perfectly homogeneous.

We follow the notations and terminology of I. Singer's book [3]. If $\{x_n\}$ and $\{y_n\}$ are bases of Banach spaces X and Y, respectively, we say that $\{y_n\}$ dominates $\{x_n\}$ if for every sequence of scalars $\{\alpha_n\}$, $\sum_{n=1}^{\infty} \alpha_n y_n$ is convergent implies that $\sum_{n=1}^{\infty} \alpha_n x_n$ is convergent. We shall assume that every Banach space with symmetric basis is equipped with the equivalent symmetric norm [see e.g. p. 574; 3]. We shall also let \mathcal{O} be the set of all strictly increasing subsequences of the natural numbers N.

It is easy to see that every lower (resp., upper) semi-homogeneous basis $\{x_n\}$ is unconditional and if $\sum_{n=1}^{\infty} \alpha_n x_n$ is convergent and

$$y_n = \sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i / \left\| \sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i \right\|, n = 1, 2, \dots$$

where $\{p_n\} \in \mathcal{O}$ then $\sum_{n=1}^{\infty} \|\sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i\| y_n = \sum_{n=1}^{\infty} \alpha_n x_n$. Hence, if $\{x_n\}$ is lower semi-homogeneous and $\sum_{n=1}^{\infty} \alpha_n x_n$ converges then $\sum_{n=1}^{\infty} \|\sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i\| y_n$ converges and so $\sum_{n=1}^{\infty} \|\sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i\| x_n$ converges. Conversely, let $\{x_n\}$ be an unconditional basis of X with the property that $\sum_{n=1}^{\infty} \alpha_n x_n$ converges implies

$$\sum_{n=1}^{\infty} \left\| \sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i \right\| x_n$$
137

converges for all $\{p_n\} \in \mathcal{O}$. Then for any normalized block basic sequence $y_n =$ $\sum_{i=p_{n+1}}^{p_{n+1}} \alpha_i x_i, n=1, 2, \dots, \text{ of } \{x_n\}, \sum_{n=1}^{\infty} \beta_n y_n \text{ converges implies}$

$$\sum_{n=1}^{\infty} \|\beta_n y_n\| x_n = \sum_{n=1}^{\infty} |\beta_n| x_n$$

converges. Hence $\{x_n\}$ is lower semi-homogeneous. Using a similar argument for upper semi-homogeneous bases, we have the following proposition:

PROPOSITION 1. Let $\{x_n\}$ be a basis in a Banach space X. Then

- (i) $\{x_n\}$ is lower semi-homogeneous if and only if $\{x_n\}$ is unconditional and $\sum_{n=1}^{\infty} \left\| \sum_{i=p_{n+1}}^{p_{n+1}} \alpha_i x_i \right\| x_n \text{ is convergent in } X \text{ for every } \sum_{n=1}^{\infty} \alpha_n x_n \in X \text{ and all }$ $\{p_n\} \in \mathcal{O}.$
- (ii) $\{x_n\}$ is upper semi-homogeneous if and only if $\{x_n\}$ is unconditional and for any sequence of scalars $\{\alpha_n\}, \sum_{n=1}^{\infty} \|\sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i\|$ converges in X for some $\{p_n\} \in \mathcal{O}$ implies that $\sum_{n=1}^{\infty} \alpha_n x_n$ is convergent in X.

REMARK. If $\{x_n\}$ is symmetric, then Proposition 1 holds when we replace $\sum_{i=p_n+1}^{p_{n+1}} \alpha_i x_i$ by $\sum_{i \in \mu_n} \alpha_i x_i$ where $\{\mu_n\}$ is a sequence of subsets (finite or infinite) of N such that $N = \bigcup_{n=1}^{\infty} \mu_n$ and $\mu_n \wedge \mu_m = \emptyset$ for all $n \neq m$.

PROPOSITION 2. Let $\{x_n\}$ be a symmetric basis in a Banach space X and let $\{f_n\}$ be the sequence of biorthogonal functionals of $\{x_n\}$ in X^* . Then $\{x_n\}$ is upper semihomogeneous if and only if $\{f_n\}$ is a lower semi-homogeneous basis of the closed linear subspace $[f_n]$ spanned by $\{f_n\}$.

Proof. Suppose $\{x_n\}$ is upper semi-homogeneous. Let $g_n = \sum_{i=p_n+1}^{p_{n+1}} a_i f_i$, $||g_n||=1, n=1, 2, ...$ be a block basic sequence of $\{f_n\}$. Since $\{x_n\}$ is symmetric, there exist $y_n = \sum_{i=n+1}^{p_{n+1}} b_i x_i$, $||y_n|| = 1$ such that $g_n(y_n) = 1, n = 1, 2, ...$ Suppose that $\sum_{n=1}^{\infty} \alpha_n g_n$ is convergent, then $\sum_{n=1}^{\infty} \alpha_n f_n$ is convergent if $(\sum_{n=1}^{\infty} \alpha_n f_n)(x)$ is convergent for all $x = \sum_{n=1}^{\infty} \beta_n x_n \in X$. Since $\{x_n\}$ is upper semi-homogeneous, we know that $\sum_{n=1}^{\infty} \beta_n y_n$ converges in X. Thus

$$\left(\sum_{n=1}^{\infty} \alpha_n g_n\right) \left(\sum_{n=1}^{\infty} \beta_n y_n\right) = \left(\sum_{n=1}^{\infty} \alpha_n f_n\right) (x)$$

is convergent. This completes the proof that $\{f_n\}$ is lower semi-homogeneous.

The proof of the converse is analogous. Q.E.D.

For any $a=(a_1, a_2, \ldots) \in c_0 \setminus l_1$, $a_1 \ge a_2 \ge \cdots \ge 0$ and $1 \le p \le +\infty$ let d(a, p) = $\{x = (\alpha_1, \alpha_2, \ldots) \in c_0: \sup_{\sigma \in \pi} \sum_{n=1}^{\infty} |\alpha_{\sigma(n)}|^p a_n < +\infty\}$ where π is the set of all permutations of N. Then d(a, p) with the norm $||x|| = \sup_{\sigma \in \pi} (\sum_{n=1}^{\infty} |\alpha_{\sigma(n)}|^p a_n)^{1/p}$ for $x \in d(a, p)$ is a Banach space and the sequence $\{x_n\}$ of the unit vectors is a symmetric basis of the Lorentz sequence space d(a, p). For $x = \sum_{n=1}^{\infty} \alpha_n x_n \in d(a, p)$, it is easy to see that $||x|| = (\sum_{n=1}^{\infty} \hat{\alpha}_n^p a_n)^{1/p}$ where $\{\hat{\alpha}_n\}$ is a rearrangement of $\{|\alpha_n|\}$ in decreasing order. It is known [Theorem 4; 2] that $[f_n]$ has exactly two nonequivalent symmetric basic sequences if $\sup_{1 < n < +\infty} \sum_{i=1}^{n} d_i / \sum_{i=1}^{n} a_i < +\infty$ where $\{d_n\}$ is the rearrangement of the sequence $\{a_i a_j\}_{i,j=1,2...}$ in decreasing order. For example, if $a_1=a_2=1$, $a_n=1/\log n$, n=3, 4, ... then it can be proved that $\sup_{1\leq n<+\infty} \sum_{i=1}^n d_i / \sum_{i=1}^n a_i < +\infty$ [Corollary 8; 2]. It is also known that every Lorentz sequence space has a unique symmetric basis up to equivalence and no d(a, p) is isomorphic to c_0 or l_p , $1\leq p<+\infty$. For the properties concerning Lorentz sequence spaces, we refer the reader to [1] and [2].

THEOREM. Let $\{x_n, f_n\}$ be the unit vector basis of d(a, p). Then $\{x_n\}$ is lower semi-homogeneous if and only if $\sup_{1 \le n < +\infty} \sum_{i=1}^n d_i / \sum_{i=1}^n a_i < +\infty$ where $\{d_n\}$ is the rearrangement of $\{a_i a_j\}_{i,j=1,2,...}$ in decreasing order.

Proof. Suppose that $\{x_n\}$ is lower semi-homogeneous. Then there exists a constant K>0 such that $\|\sum_{n=1}^{\infty} \alpha_n x_n\| \le K \|\sum_{n=1}^{\infty} \alpha_n y_n\|$ for all normalized block basic sequences $\{y_n\}$ of $\{x_n\}$ and all scalars $\{\alpha_n\}$ such that $\sum_{n=1}^{\infty} \alpha_n y_n$ is convergent [see e.g. Proposition 24.2; 3]. Let $\{d_n\}$ be the rearrangement of $\{a_i a_j\}$ in decreasing order. For a fixed $n \in N$, let $n_1 \ge n_2 \cdots \ge n_k$ be such that $n=n_1+n_2+\cdots+n_k$ and $\sum_{i=1}^{n} d_i = \sum_{i=1}^{k} a_i s_{n_i}$ where $s_m = \sum_{i=1}^{m} a_i, m=1, 2, \ldots$ Let

$$y_{i} = \frac{1}{S_{n_{i}}^{1/p}} \sum_{j=n_{1}+\dots+n_{i-1}+1}^{n_{1}+\dots+n_{i}} x_{j}$$

and $\alpha_i = s_{n_i}^{1/p} / s_n^{1/p}$, i = 1, 2, ..., k. Then for each i = 1, 2, ..., k, $||y_i|| = 1$, $||\sum_{i=1}^k \alpha_i y_i|| = 1$ and $||\sum_{i=1}^k \alpha_i x_i||^p = \sum_{i=1}^n d_i / \sum_{i=1}^n a_i$. Hence

$$\sup_{1 \le n < +\infty} \sum_{i=1}^n d_i \Big/ \sum_{i=1}^n a_i \le K^p < +\infty$$

Conversely, let K>0 be a constant such that $\sum_{i=1}^{n} d_i \leq K \sum_{i=1}^{n} a_i$, $n=1, 2, \ldots$. Then $\sum_{n=1}^{\infty} \alpha_n^p d_n \leq K \sum_{n=1}^{\infty} \alpha_n^p a_n$ for all $\alpha_1 \geq \alpha_2 \geq \cdots \geq 0$. To show that $\{x_n\}$ is lower semi-homogeneous, by Proposition 1, it suffices to show that if $\sum_{n=1}^{\infty} \alpha_n x_n \in d(a, p)$ then $\sum_{n=1}^{\infty} \|\sum_{i \in \mu_n} \alpha_i x_i\| \|x_n$ is convergent for all $\{\mu_n\}$ such that $N = \bigcup_{n=1}^{\infty} \mu_n$, $\mu_n \wedge \mu_m = \emptyset$ if $n \neq m$. Let $\mu_n = \{(n, i)\}_{i=1, 2, \ldots}$ and let $c_n = \|\sum_{i \in \mu_n} \alpha_i x_i\|$, $n=1, 2, \ldots$. Since $\{x_n\}$ is symmetric, to show that $\sum_{n=1}^{\infty} c_n x_n$ is convergent we may assume that $c_1 \geq c_2 \geq \cdots \geq 0$. Now

$$\left\|\sum_{n=1}^{\infty}c_nx_n\right\|^p = \sum_{n=1}^{\infty}c_n^p a_n = \sum_{n=1}^{\infty}\sum_{i=1}^{\infty}\hat{\alpha}_{(n,i)}^p a_i a_n \le \sum_{n=1}^{\infty}\hat{\alpha}_n^p d_n \le K\sum_{n=1}^{\infty}\hat{\alpha}_n^p a_n = K\left\|\sum_{n=1}^{\infty}\alpha_nx_n\right\|^p$$

where $\{\hat{\alpha}_{(n,i)}\}\ (\text{resp.}, \{\hat{\alpha}_n\})$ is the rearrangement of $\{|\alpha_{(n,i)}|\}_{i=1,2,\ldots}$ (resp., $\{|\alpha_n|\}\)$ in decreasing order. Thus $\sum_{n=1}^{\infty} \|\sum_{i \in \mu_n} \alpha_i x_i\| x_n$ is convergent. This completes the proof that $\{x_n\}$ is lower semi-homogeneous. Q.E.D.

COROLLARY. Let $\{x_n, f_n\}$ be the unit vector basis of d(a, p). If

$$\sup_{1 \le n < +\infty} \sum_{i=1}^n d_i \Big/ \sum_{i=1}^n a_i < +\infty$$

where $\{d_n\}$ is the rearrangement of $\{a_i a_j\}_{i,j=1,2,...}$ in decreasing order then $\{f_n\}$ is a symmetric upper semi-homogeneous basis of $[f_n]$ which is not perfectly homogeneous.

REMARK. Using the theorem, it is also easy to construct symmetric bases which are not lower (resp., upper) semi-homogeneous.

References

1. Z. Altshuler, P. G. Casazza and Bor-Luh Lin, On symmetric sequences in Lorentz sequence spaces. Israel J. Math. (to appear).

2. P. G. Casazza and Bor-Luh Lin, On symmetric basic sequences in Lorentz sequence spaces II. (Submitted).

3. I. Singer, Bases in Banach spaces I. Springer-Verlag 1970.

4. M. Zippin, On perfectly homogeneous bases in Banach spaces. Israel J. Math. 4 (1966), 265-272.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF ALABAMA AT HUNTSVILLE HUNTSVILLE, ALABAMA 35807

DEPARTMENT OF MATHEMATICS 101 MACLEAN HALL THE UNIVERSITY OF IOWA IOWA CITY, IOWA 52242

140