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ABSTRACT. A method of light curve analysis is described which allows the 
study of an eccentric partially-eclipsing system containing one component 
possessing an extended atmosphere. The effects of transparency as well as 
limb-darkening are taken into account. Preliminary results obtained for 
the Wolf-Rayet eclipsing binary HD 5980 in the SMC are presented. 

1. INTRODUCTION 

HD 5 9 8 0 E S M C / A B 5 (Azzopardi and Breysacher, 1 9 7 9 ) is located in NGC 3 4 6 , 

the largest H II region of the Small Magellanic Cloud. The eclipsing 
nature of the star was recognized by Hoffmann et al. ( 1 9 7 8 ) but the 
correct orbital period, Ρ = 1 9 . 2 6 6 ± 0 . 0 0 3 days, was found by Breysacher 
and Perrier ( 1 9 8 0 ) . The obtained light curve revealed a strongly 
eccentric orbit: e = 0 . 4 7 for i = 8 0 ° , however, the shape of this light curve 
was not defined well enough to allow a detailed quantitative analysis. 

The relatively long period together with the large eccentricity making 
HD 598Ο a potentially interesting object in which to study the structure 
of a W-R envelope, numerous new photometric observations in the Strömgren 
system were carried out in order to significantly improve the light 
curve. What has been achieved in this respect is presented in Figure 1 . 

Figure 1 . Light curve in the Strömgren ν band of SMC/AB 5 (705 
observations) normalized to 1=1 around apastron, i.e. for 0.5 < Φ < 0.7 . 
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Concerning the interpretation of the data, as none of the existing 
"tools" turned out to be really suited to our purpose, i.e. the decoding 
of the light changes of a partially-eclipsing system characterized by a 
strong eccentric orbit and containing one component with an extended 
atmosphere, a non-classical approach aiming at the solution of light 
curves in the frequency-domain (cf. Kopal, 1979; Smith and Theokas, 1980) 
was attempted. 

2. ANALYSIS OF THE LIGHT CHANGES IN THE FREQUENCY-DOMAIN 

2.1. The basic equations 

Reference being made to Kopal's fundamental work (cf. Kopal, 1979), 
let us first consider an eclipsing system which consists of two spherical 
stars revolving around the common centre of gravity in circular orbits, 
and appearing in projection on the sky as uniformly bright discs. When 
star 1 of luminosity Li and radius r L is partly eclipsed by star 2 of 
luminosity L 2 and radius r 2, then the brightness 1 of the system (maximum 
light between minima taken as unit) is given by 

L(r l fr 2 , 6,J) = 1 - J J(r) da (1) 
A 

where δ is the apparent separation of the centres of the two discs and J 
represents the distribution of brightness over the apparent disc of the 
star undergoing eclipse, of surface element da. The assumption that star 
1 is uniformly bright gives 

J(r) = j (2) 
* r1 

Combining equations (1) and (2) we obtain for the "loss of light" 
suffered by the system when an area A(r,,r2,S) of star 1 is eclipsed 

1 - L(r l fr 2 f 6,J) = ? J da (3) 
π rl A 

As proposed by Kopal, let us focus, our attention on the area subtended by 
the light curve in the 1 - sin me coordinates (m=1,2,3,. .. ), where θ 
denotes the phase-angle. The areas A2 m between the lines 1=1 and the 
actual ligr̂ t curve 1, from the eclipse minimum sin m6 = 0 to the first 
contact sin m 0 ι , are given by the integrals 

Θ 1 2 

A. = J* ( 1 - 1 ) d(sin m6) (4) 
2m J Q 

hereafter referred to as moments of the eclipse, of index m. 

Kopal (1979) has shown that it is possible: 

a) to invert this relationship to determine the elements of the system in 
terms of the moments A2 m that can be empirically obtained from the data. 

b) to extend this treatment to the case of a partial eclipse of a limb-
darkened star by a star surrounded by an extended atmosphere. 
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A convenient mathematical solution of the problem of atmospheric 
eclipses is due to Smith and Theokas ( 1 9 8 0 ) . To take into account the 
transparency effects a function F(s) is introduced in equation ( 1 ) , so 
that the total amount of light emitted to the observer is now 

K r p r 2 , 6 , J , F ) = 1 - J J(r) F(s) do ( 5 ) 
A 

Considering that when a star with an extended atmosphere eclipses an 
ordinary one it may be advantageous to weigh the data nearer mid-minima, 
Smith and Theokas ( 1 9 8 0 ) also introduce the moments B 2 m defined as 

Θ 1 2 
B 9 f n = - J ( 1 - 1 ) d(cos m 6 ) ( 6 ) 

2m J

0 

The expressions for the A 2 m and moments have been derived by Smith 

and Theokas ( 1 9 8 0 ) for m=1-»-4 and m = U 5 , respectively. We only give here, 
as an example, the final forms obtained for Ap, Ah and Bp, Bh 

2 . 2 . T h e t r a n s p a r e n c y a n d l i m b - d a r k e n i n g f u n c t i o n s 

While for the transparency function F(s) of the eclipsing W-R star, of 
radius r 0, Smith and Theokas ( 1 9 8 0 ) simply adopt 

F(s) = F (r0,u) = y [ 1 - u ( f ) 2 ] for s < r 0 ( 1 1 ) 
y 1 ο 

where υ is the coefficient of transparency, we have adopted a law of the 
form (see Figure 2 ) 

F(s) = F 1_ y(r 3 , 0 ) + Fy(r2,i>) ( 1 2 ) 

where the radius of the opaque core of the W-R star is r 3 and that of the 
extended eclipsing envelope, r 2. 

For the brightness distribution J(r) over the W-R disc, a law very 
similar to that of the transparency function was taken 

J(r) = J (0 ) [J1 (r',0) + Jy(r»,u)] ( 1 3 ) 

( 7 ) 

( 8 ) 

( 9 ) 

( 1 0 ) 

where i is the orbit inclination. The general expressions for the coef-

ficients 

and λ can be found in the paper by Smith and Theokas ( 1 9 8 0 ) . 
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where J(0) is the central surface brightness and u the coefficient of 
limb-darkening. J y is defined as 

2,2 

( 1 4 ) J (r0,u) = y [1 - u (J ) ] 

When the W-R star is eclipsed the radius of the core, assumed to be of 
uniform brightness, is now r̂  and that of the limb-darkened envelope r%

2 . 

Using these laws of transparency and limb-darkening, we have then 
derived the corresponding expressions for I m, r ^ , Q, Ρ and ΨΠ1 and hence 

the final equations for the moments and 1^. 

Fis) 

ι 

i-y 

_F,. y (opaque W-R core) 

Fv (transparent W-R atmosphere) 

Figure 2 . Opacity distribution across the disc of the W-R component. 

2.3. The o r b i t a l e c c e n t r i c i t y 

In the case of an elliptical orbit the problem still consists of a 
determination of the elements of the eclipse from the moments A 2 m (f^m^ 
derived from the light curve, but taking into account the eccentricity e 
and the longitude ω of periastron. 

In the definition of the Ap^'s areas, the phase-angle θ is no longer 
identical with the mean anomaly M but rather a linear function of the 
true anomaly ν 

θ = ν + ω - I (15) 

the element d(sin2 me) of integration in the equation defining the moments 
A2m D e c o m e s 

d(sin2 me) = d[cos2m(v+u>) ] (16) 

As a consequence, the empirical values of A2 m cannot be ascertained from 
the observed data until a proper conversion into the true anomalies has 
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been done. This can be accomplished by a resort to the expansion of 
elliptic motion (cf. Danjon, 1959) 

ν = ω + M + (2e-çe3)sinM + ( f e 2 - - ^ )sin2M + ̂ |e3sin3M + ...(17) 

The empirical "elliptic" moments of the light curve then furnish the 
elements of the eclipse exactly as in the "circular" case, care being 
taken only that the resulting values of the radii have to be reduced to 
the same unit of length. 

For a given value of the inclination i, ΔΦ being the phase 
displacement of the minima, e and ω can be derived by means of the 
following equations 

r 2 e 2 8 2 ι 
ΔΦ = π + 2e [ 1 + esc i - £ (̂ cos ω - 2 ) J C 0 S u ) C o ) 

esinu, = hrih^ t1 - °h Vh Γ (19) 

d 1 + d 2 2 d 1 + d 2

 J 

4sin(— J sin [— J 
where di and d 2 are the respective durations of the primary and secondary 
stellar core eclipses, determined from the light curve. 

It is important to note that, although each separate half-eclipse 
provides a self-reliant solution for the elements, due to the present 
composite model adopted for the W-R star (Figure 2), with in particular 
different radii introduced when this component is seen either as an 
eclipsing or an eclipsed disc, the complete determination of the elements 
necessarily requires a combination of the solutions furnished by the 
descending and ascending branches of both minima. 

3. APPLICATION TO SMC/AB 5 

Using this method we have analysed the light curve of SMC/AB 5 obtained 
with the Strömgren ν filter (Figure 1). The elements for the primary 
eclipse (0 star in front) and the secondary eclipse (W-R star in front) 
are derived from the moments A 2 m and B 2 l n, respectively. The empirical 
values of the "elliptic" moments are determined from smooth curves 
resulting from a spline fit on the observed points. The solutions are 
obtained by inversion of Equations (7) to (10) with a Newton-Raphson 
method for non-linear equations. The ill-defined ascending branch of the 
primary minimum is, however, not included in the calculation. 

No solution is found for i < 86°; the results obtained for i = 86° are 
summarized in Table 1. All radii are reduced to the semi-major axis of 
the relative orbit. For the radius vx and the luminosity L-! of the 0 star 
as well as for the radius r 3 of the eclipsing W-R core, mean values have 
been taken as this did not imply any "a priori" assumption concerning 
these particular elements. SMC/AB 5 being classified WN3+07: (Breysacher 
et al., 1982), we have adopted u=0.3 for the limb-darkening coefficient 
of the 0 star (cf. Klinglesmith and Sobieski, 1970). 
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PRIMARY SECONDARY SECONDARY 
(descending branch) (descending branch) (ascending branch) 

<. P l = 0.163 ± 0.007 
0 
star <- Li = 0.410 ± 0.034 —• 

r 
^3 = 0 .120 + 0.009 r 3 = 0.112 ± 0.007 --• 

WR 
t 
= 0 .227 + 0.012 r 2 = 0.245 ± 0.018 r 2 = 0 .332 + 0.016 

star L 2 = 0 .257 + 0.011 

y = 0 .18 + 0.06 y = 0.06 ± 0.04 y = ο .16 ± 0.03 
u = 0 .5 ± 0.3 υ = 0.37 ± 0.15 υ = 0 .28 ± 0.15 

The results presented here, which relate to the ν filter data only, 
are obviously too preliminary to allow a thorough discussion of the 
geometry of the system, nevertheless, some interesting conclusions can 
already be drawn regarding SMC/AB 5. 

1. The size of the W-R core does not change significantly between the 
primary and secondary eclipses, i.e. when the star is seen as an eclipsed 
or as an eclipsing disc. 

2. The W-R envelope appears highly asymmetrical when occulting the 0 
star. Very different values for r 2 and y are indeed furnished by the 
descending and ascending branches of the secondary minimum. 

3. The fact that L x+L 2 is far from unity indicates that there exists 
very likely a third unresolved component in the line of sight, a 
conclusion which seems to be also supported observationally (Massey et 
al., 1989). 

Absolute radii may be estimated by assuming that the mass-luminosity 
relation for W-R stars given by Maeder and Meynet (1987) applies to 
SMC/AB 5. With M = -7.3 (Breysacher, 1988) the sum of the masses derived 
for the 0 and W-R components, 76.4 M Q, leads to a semi-major axis of 
0.597 AU for this binary. The resulting values for the radii are: 20.9 R@ 
for the 0 star, about 15 R @ for the W-R core and 30 to 40 R 0 for the W-R 
envelope. 

Although of fundamental importance, an error analysis is beyond the 
scope of this short communication. The subject will be treated 
exhaustively in a forthcoming article. 

TABLE 1. Elements of the eclipse for i = 86° (e = 0.324, ω = 133°) 
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DISCUSSION 

Moffat: Maybe you have seen the poster outside by myself, Niemela and others that the 
polarization curve, one of the first with an elliptical orbit solution, gives an eccentricity 
a little bit different than yours, 0.22 ± 0.03-4. It is in the right direction, it is a smaller 
value. 
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