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A DUAL CHARACTERIZATION OF BANACH SPACES WITH 
THE CONVEX POINT-OF-CONTINUITY PROPERTY 

BY 

D. E. G. HARE 

ABSTRACT. We introduce a new type of differentiability, called cofi-
nite Fréchet differentiability. We show that the convex point-of-continuity 
property of Banach spaces is dual to the cofinite Fréchet differentiability 
of all equivalent norms. A corresponding result for dual spaces with the 
weak* convex point-of-continuity property is also established. 

All Banach spaces considered in this note are over the real field, and are infinite 
dimensional unless otherwise specified. For unexplained terms and notation, see [5]. 

The following theorem, which was the culmination of several years of effort by 
many mathematicians, is the starting point of the work presented here: 

THEOREM 1. Let X be a Banach space. Then: (a) X* has the Radon-Nikodym Prop
erty (RNP; every closed, bounded subset is dentable) if and only if X is an Asplund 
space (every continuous, convex tp : X —> R is densely Fréchet differentiable). (b)X 
has RNP if and only if X* is a weak*-Asplund space (every continuous, convex, dual 
function if : X*~—+ R is densely Fréchet differentiate). 

In [2], Bourgain introduced a variation of the RNP, which he called Property 
(*), but which is now known as the Convex Point-of-Continuity Property (CPCP): X 
has CPCP if every closed, bounded, convex subset of X has relatively weakly open 
subsets of arbitrarily small (norm) diameter. More recently, the dualized version, called 
C*PCP, was introduced in [61: X* has C*PCP if every weak*-compact, convex subset 
of X* has relatively weak*-open subsets of arbitrarily small diameter. These properties 
are coming to be viewed as important tools in the study of the geometry of Banach 
spaces. 

Building on the theme of Theorem 1, Deville et al. proved the following result in 
[4]: 

THEOREM 2. Let X be a separable Banach space. Then: (a) X* has C*PCP if and 
only if X is a Phelps space (every continuous, convex, Gâteaux differentiable if : 
X —> R is densely Fréchet differ entiable). (b) If X* is also separable, then X has 
CPCP if and only ifX* is a weak*-Phelps space (every continuous, convex, Gâteaux 
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differentiable, dual function <p : X* —-> R is densely Fréchet differentiable). 

The proof of Theorem 2, as presented in [4], depends heavily on the separability 
assumptions, and thus Theorem 2 falls short of providing a complete dual characteri
zation of Banach spaces which have CPCP or whose duals have CPCP. The purpose 
of this note is to establish such a complete characterization. 

The idea for our result comes from an observation made by Namioka and Phelps 
in [9]: A Banach space X is an Asplund space if and only if every equivalent norm on 
X is densely Fréchet differentiable. (A similar observation concerning Phelps spaces 
is made in [4]). This suggests that a dual characterization of CPCP/C*PCP spaces 
might be obtained through properties of norms rather than arbitrary continuous, convex 
functions. To this end, we introduce the following notion of differentiability: 

DEFINITION 3. Let X be a Banach space. A norm, || • ||, on X will be called e-Fréchet 
differentiable at a point i G l , where e > 0, if 

\\x + h\\ + \\X - h \ \ - 2 | | * H 

'T-^P \\h\\ < 

(Recall that the norm is Fréchet differentiable at x if and only if it is e-Fréchet 
differentiable at x for every e > 0.) 

The norm, || • ||, will be called cofinitely Fréchet differentiable at x € X if for every 
e > 0 there is a finite dimensional F S X such that the quotient norm, || • \\X/F> is 
e—Fréchet differentiable at x, where x denotes the equivalence class of x in X/F. 
Observe that necessarily x 0 F. 

As examples, it is straightforward to show that the usual norm of the space Co 
is cofinitely Fréchet differentiable everywhere (it is not Fréchet differentiable every
where) and that the usual norm on l\ is cofinitely Fréchet differentiable nowhere. Also, 
it is immediate that a Fréchet differentiable norm is cofinitely Fréchet differentiable. 

With this definition of differentiability, we can state our main result: 

THEOREM 4. Let X be a Banach space. Then', (a) X* has C*PCP if and only if 
every equivalent norm on X is cofinitely Fréchet differentiable everywhere, if and 
only if every equivalent norm on X is cofinitely Fréchet differentiable somewhere, (b) 
X has CPCP if and only if every equivalent dual norm on X* is cofinitely Fréchet 
differentiable everywhere, if and only if every equivalent dual norm on X* is cofinitely 
Fréchet differentiable somewhere. 

An application of this theorem to RNP spaces is the following result: 

COROLLARY 5. Let X be a Banach space, (a) IfX* has RNP then every equivalent 
norm on X is I-cofinitely Fréchet differentiable everywhere (meaning that for every 
x G X\{0} there is a l-dimensional subspace F ^ X such that the quotient norm 
|| • \\X/F is Fréchet differentiable at x).(b) IfX has RNP then every equivalent dual 
norm on X* is I-cofinitely Fréchet differentiable everywhere. 
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Thus, suppose X is a Banach space such that X* has RNP, and let || • || be an 
equivalent norm on X. By Theorem 1, || • || is densely Fréchet differentiable. Corollary 
5 then characterizes those points where || • || fails to be Fréchet differentiable as points 
of 1-cofinite Fréchet differentiability. 

Theorem 4 and Corollary 5 will be proven after we fix our notation and terminology. 
The author wishes to thank Professors V. Zizler and R. Deville for many valuable 

discussions concerning the material presented herein. 
As a norm can never be differentiable, at the origin, in any sense, the expression 

"differentiable everywhere," when applied to a norm, means everywhere except at 0, 
which is equivalent to everywhere on 5x, the unit sphere of X. 

The open and closed unit balls of X are denoted by llx and #x, respectively. 
The action of / E X* on x E X will be denoted by (f,x). For purposes of clarity, 

the dual on X* to a norm, || • ||, on X will often by indicated by || • ||*. 
The notation F ^ X means that F is a closed, linear subspace of X. The annihilator 

of F is the set 
F± = {feX*:(f,F)=0}. 

A slice of a non-empty set C C X is a set of the form 

S/(C,/,or) = {x E C : </,*) > sup(/,C) - a} , 

where/ E X* and a > 0. Recall that C is dentable if it has slices of arbitrarily small 
diameter. Note that a slice is always non-empty. 

When discussing dual spaces, the modifier weak* indicates that the corresponding 
functional(s) are to be taken from the predual, and not from the second dual. For 
example, the weak*-annihilator of a subspace F ^ X* is the set 

F± = {xeX:(x,F)=0}. 

In preparation for the proof of Theorem 4, we collect here some necessary basic 
results. The first two, Lemmas 6 and 7, are due to Bourgain [2]: 

LEMMA 6. Let X be a Banach space with norm || • ||. Then: (a) X has CPCP if 
and only if for every closed, bounded, convex C C X the identity map id: (C,wk) 
—> (C, || • ||) has a point of continuity. (Such a point is called a point of weak-to-norm 
continuity ofC.) (b) X* has C*PCP if and only if for every weak*-compact, convex 
C C X* the identity map id: (C,w*) —> (C, || • ||*) has a point of continuity. (Such a 
point is called a point of weak*-to-norm continuity of C. ) 

LEMMA 7. Let X be a Banach space, (a) If X does not have CPCP, then there is 
an equivalent norm, \\ • ||, on X and an e > 0 such that if \\x\\ < 1,F ^ X is finite 
codimensional, and V is a weak-open neighbourhood of x, then diam % H (x + F)n 
V ^ e, where U<BX" and "diameter" both refer to the norm || • ||. (b) If X* does 
not have C*PCP, then there is an equivalent dual norm, || • ||*, on X* and an e > 0 
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such that if \\f\\* < 1,F ^= X* is finite codimensional and weak*-closed, and V is a 
weak*-open neighbourhood off, then diam#x* H ( / + F)HV ^ e, where "fix*" and 
"diameter" both refer to the norm || • ||*. 

Our next preliminary result was proven in [4]. We sketch a proof here, suggested to 
us by V. Zizler, which yields an improvement on the quantitative estimates (namely, 
there is no growth in the diameter control, e). 

LEMMA 8. Let X be a Banach space, {a) Let C CX be closed, bounded and convex, 
letf G X*, and letaeR such that inf(/,C) < a < sup(/,C). Then x G Cnf~l(a) 
is a point of weak-to-norm continuity of C H f~l(ot) if and only if x is a point of 
weak-to-norm continuity of C. (b) Let C C X* be weak*-compact and convex, let 
x G X, and let a G R such that inf(jt,C) < a < sup(jt,C). Then f G C C\x~l(a) 
is a point of weak*-to-norm continuity of C Hx~l(a) if and only iff is a point of 
weak*-to-norm continuity of C. 

PROOF. Sufficiency in both (a) and (b) is immediate. We prove necessity for part 
(a). The proof for part (b) is similar. 

By translating C, if necessary, we may assume a = 0. Let e > 0 and let V be an 
elementary (hence, convex) neighbourhood of x such that diam V PlC Pif~l(0) < e. 
For /? > 0, let 

Let xi,x2 G V r\C such that .(/,*i) = —(/,JC2) > 0. For / = 1,2, let Kt be the 
positive cone generated by X[ and V P\C nf~l(0), i.e., 

Kt = {xi + t(y-Xi) : t^0,ye VnCnf-\0)}. 

Then, by convexity, V D C C Kx UK2, so for /? > 0, 

UpHC C(KiUK2)nf-l(-l3,l3). 

It is now a straightforward homothety argument to show that a (3 > 0 can be chosen 
sufficiently small so that 

diamtfT! UK2)nf-l(-f3,f3)< 6, 

from which the result clearly follows. • 

Note that Lemma 7 follows easily from Lemma 8 (this proof is substantially dif
ferent from Bourgain's own proof in [2]). 

Next we have a result which is essentially due to John and Zizler [8]: 

PROPOSITION 9. Let X be a Banach space with norm || • ||, e > 0,JC € X andf G X*. 
Then: (a) || • || is e-Fréchet differentiable at x if and only if there exists a > 0 such 
that diam Sl(*Bx*, x, a) < e. (b) || • ||* is e-Fréchet differ entiable at f if and only if 
there exists a > 0 such that diamS/($k,/, a) < e. 
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COROLLARY 10. Let X be a Banach space with norm || • ||,x G X, andf G X*. (a) The 
norm, \\-\\, is cofinitely Fréchet differ entiable at x if and only if for every e > 0 there 
is a finite dimensional F ^ X and an a > 0 such that diam S7(#/7i,x, a) < e. (b) The 
dual norm, || • ||*, is cofinitely Fréchet differ entiable at f if and only if for every e > 0 
there is a finite dimensional F ^ X* and an a > 0 such that dia.mSlCBFl,f, a) < e. 

PROOF. The proof of (a) follows from Proposition 9(a), using the fact that F x , the 
annihilator of F in X*, is isometrically isomorphic to the dual of the quotient space, 
X/F. 

The proof of (b) is similar. • 

PROOF OF THOREM 4. (a) Suppose X* does not have C*PCP. By Lemma 7(b), there 
is an e > 0 and an equivalent norm, || • ||, on X such that if ||/||* < 1, 
F ^ X is finite dimensional, and V is a weak*-open neighbourhood of / in X*, 
then diam'Bx* H ( / + F 1 ) H V ^ e. 

We will show that this norm is nowhere cofinitely Fréchet differentiable. 
Let xo G X,F ^ X with dimF < oo and xo ^ F. Without loss of generality, 

H*O||X/F = L Let 0 < a < 1, and choose/ G ZLF± such that (/,*o) = 1 — a/2. 
Let {ek}™ be a basis for F, and let ** = xo + e*,£ = 1 , . . . ,m. Let V = {g G 
^* : |(g ~~/?x*)| < or/2,/: = 0 , . . . , m}. Then, by the choice of the norm, we have 
diam#x*n(/ +F±)HV ^ c. Now/ G F 1 , so f + F1^ = F x . If g G F \ then (g,**) = 
(s,x0> = <S,*o>, thus ^ n a + F ^ n V = {£ G 0F± : |(g - / , * o > | < a /2} . But 
| ( g - / , *o ) | < a /2 if and only if l - a = (f,x0)-a/2< (g,x0) < (f,x0) + a/2= 1. 
Since ||Jc0|| = 1, the first inequality says that ^ f l ^ + F ^ n V C S/($F±,x0, a), and 
so diam 5 / ( ^ 1 , Jo? °0 = e- Since 0 < a < 1 was arbitrary, it follows from Corollary 
10(a) that this norm cannot be cofinitely Fréchet differentiable at xo. 

Now let || • || be an equivalent norm on X, and assume that X* has C*PCP. Let 
XQ G 5x,e > 0, and 0 < a < 1. Then *Bx* C\XQ1(O) is weak*-compact and convex, 
so by Lemma 8, there is an / G *Bx* r\XQl(a) which is a point of weak*-to-norm 
continuity of %*. 

Let V be an elementary weak*-open neighbourhood of/ with d\amlBx*nV < e/2, 
say V = {g G X* : \{g -f,xk)\ < S,k = 1 , . . . ,m}, where {jt*}™ C X and 6 > 0. 
Let F = span{(/,x0)^ — (f,xk)xo : £ = l , . . . , m } . Note that / G F^and ||J0|| = 
(/,*o) = (/,*o) = <*. 

Let M = maxo^^m | ( / Î ^ ) | > a - We claim that diamS/((BF±,XQ, OC3M~X) < e, 
where 8 is as in the definition of V. By Corollary 10(a), this implies that this norm is 
cofinitely Fréchet differentiable at JCO, completing the proof of part (a). 

To see this, consider the sets 

Wx ={geBF, :(glx0)>a-aèM~1} 

W2 = {geWl:(g,x0)£a} 

Note that since ||xo|| ^ a,S/(#F_L,JCO? a6M~l) C W\, so it suffices to show that 
diamWi < e. Note further that diamWi < 2 diamW^. For suppose g\ G W\\W2. 
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Choose 0 < /? < 1 so that (3g\ EW2. Let K be the positive cone generated by g\ and 
the set 

W3 = {geW2:(g,xo) = (0guxo}}. 

Then, by homothety and the convexity of #F±, 

II -R H < h\ - f e l l ! diamW3 ^ diamW2 
m P g l " " kill diam(*nV(0))~ 2 ' 

and so diamWi ^ \ diamW^ < 2 diamW^. 
Thus we must show that diamW^ < e/2. Suppose g G W -̂ By the definition of F, 

we have that for k = 1 , . . . , m, 

\(f ~ 8,Xk)\ = \(f,xk) - (g,xo)(f,xk)/(f,x0)\ 

= \(f,xk)\(l-(glx0)/a) 

<M(èM~l) 

and so g G %* H V, and we are done. 
(b) The proof of part (b) is essentially the same as that for part (a), using Corollary 

10(b), where necessary. • 

REMARK. Observe that in the second part of the proof of Theorem 4(a), the a 
chosen can be arbitrarily close to 1. This means that if || • || is cofinitely Fréchet 
differentiable at x G Sx, then for every e > 0 and S > 0 there is a finite dimensional 
F ^ X such that || • \\X/F is e-Fréchet differentiable at x and ||J|| > 1 — 8 = \\x\\ — 6. 
This latter condition implies that the translate x+F of the subspace F is nearly tangent 
to <BX at x. 

Indeed, if there is an / G *Bx* such that (/ ,JC) = 1 and / is a point of weak*-
to-norm continuity of fix*, then we can choose F in Theorem 4(a) so that x + F is 
tangent to (Bx at x, and so ||jc|| = ||JC||. This requires/ to be in both the set of points 
of weak*-to-norm continuity of *Bx* and the set of functionals which attain their norm 
in X. The former set is a weak*- dense Çs subset of Sx* (see, e.g., [2]), while the 
latter set is norm dense, by the Bishop-Phelps Theorem. It is unknown if these two 
sets have non-trivial intersection. 

COROLLARY 11. Every equivalent norm on the James Tree space (JT) is cofinitely 
Fréchet differentiable everywhere. 

PROOF. It is shown in [6] that the dual space, JT*, has C*PCP. Now apply Theorem 
4. • 

PROOF OF COROLLARY 5. (a) Suppose X* has RNP, and let || • || be an equivalent norm 
on X. Let XQ G X and let 0 < a < 1. Then the set $** r\XQl(a) is weak*-compact 

https://doi.org/10.4153/CMB-1989-040-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-040-0


280 D. E. G. HARE 

and convex, hence has a weak*-strongly exposed point, say / [10]. Let x\ be the 
corresponding strongly exposing functional, so that 

lim diamS7(#x* r\XQ](a),x\,8) — 0. 
h—>o 

Then the proof of Lemma 8 shows that 

lim diam{g G £x* : \(g -f,xk)\<6,k = 0,1} = 0. 

That i s , / is a point of weak*-to-norm continuity of *Bx* of a very special form, namely, 
/ has arbitrarily small relative weak*- neighbourhoods in #x* determined by just the 
functionals xo and x\. 

The proof of Theorem 4(a) then shows that the quotient norm, || • \\X/F, for the 
space F — span{(/,xo)xi — (f,x\)xo} is Fréchet differentiable at Jo-

The proof of part (b) is similar. D 
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