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Abstract. We study a class of maps of the real line into itself which are degree one
liftings of maps of the circle and have discontinuities only of a special type. This
class contains liftings of continuous degree one maps of the circle, lifting of increasing
mod 1 maps and some maps arising from Newton’s method of solving equations.
We generalize some results known for the continuous case.

0. Introduction

We study liftings of maps of a circle into itself which are not necessarily continuous.
If a map of a circle is discontinuous, then its lifting to the map of a real line into
itself is not determined uniquely up to shifts by integers, as in the case of continuous
maps. Therefore some notions used here, as rotation numbers, will actually depend
on the lifting, not only on the map of the circle itself.

If a map of a circle is discontinuous, then it is only a matter of introducing a few
more discontinuities to consider it as a map of an interval into itself; conversely, a
map of an interval into itself can be considered as a map of a circle into itself.

Although throughout most of this paper the maps of the real line are investigated,
this is only a means of understanding the dynamics of underlying maps of a circle
or of an interval.

1. Notation, definitions, statement of results
The points of the real line R will be denoted usually by capital letters X, Y, Z, T
the points of the circle S'={zeC:|z|=1} by small letters x, y, z; the integers
(elements of Z) by small letters i, j, k, , m, n, p, q, r, s, t, u, v and Greek v. If we
write p/q then we always mean that p, g€ Z and ¢ >0; if we write n>0 or n =0,
we mean that additionally ne Z. The largest common divisor of p and g will be
denoted by (p, q). If ¢ is a map and (X, Y) an interval then instead of ¢((X, Y))
we shall write ¢(X, Y).

We denote by e:R— S’ the natural projection e(X)=exp (2#iX) (here excep-
tionally i = J-1 ).

A map F:R-R is called a lifting of a map f:S'> S' if ec F=fo e and there is
keZ such that F(X +1)= F(X)+k for all X eR. This k is called the degree of F.
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Note that since we do not say anything about continuity here, every f has liftings
of all degrees.

A map F:R- R will be called an old map (old stands for ‘degree one lifting’ with
the order of letters changed for mnemonic reasons) if F(X+1)=F(X)+1 for all
X eR. Clearly, F is an old map if and only if there exists f: S’ > S' such that F is
a lifting of f of degree one. It is easy to see that if F is an old map then
F(X+k)=F(X)+k for all XeR and keZ and that iterates of an old map are
old maps.

We shall say that a point X €R is periodic mod 1 of period q and rotation number
p/q for an old map F if FI(X)—X=p and F(X)-XgZfori=1,2,...,q—1.
Clearly, if F is a lifting of f then X is periodic mod 1 for F if and only if e(X) is
periodic for f and their periods are equal.

A map F:R->R will be called heavy if for every X € R the finite limits

F(X+)=}i\tr;{F(Y) and F(X—)=‘1,1/r&F(Y)

exist, and F(X —)= F(X)= F(X +) (a heavy map can fall down but cannot jump

up).

Notice that a heavy map is bounded on bounded sets. Notice also that an iterate
of a heavy map need not be heavy.

For an old map F we set

1
a(F)=inf lim inf— (F"(X) - X),
XeR n-o>co n

b(F)=sup lim sup%(F"(X)—X).

XeR n-o
For a heavy map F we define maps F,, F, by
F(X)=inf{F(Y): Y=X},
F(X)=sup{F(Y): Y= X}
(cf. [1]).

We prove the following theorems.

THEOREM A. Let F:R->R be an old heavy map. Then
(a) if F has a periodic mod 1 point of rotation number p/q then a(F)=p/q=<b(F);
(b) ifa(F)<p/q<b(F) then F has a periodic mod 1 point of period q and rotation
number p/ q.

THEOREM B. Let t— F, be a map from an interval into the space of old heavy maps
such that the maps t— (F,), and t— (F,), are continuous, ((F,); and (F,), are regarded
as elements of the space of maps of R into itself with the topology of uniform convergence).
Then the maps t—> a(F,) and t— b(F,) are also continuous.

THEOREM C. Let F:R - R be an old heavy map. If a(F) (b(F)) is irrational then for
all 8 >0 we have a(F + 0) > a(F) (respectively b(F + 8) > b(F)), where the map F+
is defined by (F+6)(X)=F(X)+4.
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THEOREM D. Let F:R~>R be an old heavy map, and let a(F)< a < B < b(F). Then
there exists T € R such that

1
lim inf—r;(F"(T)— T)=a,

lim sup % (F{(TH)-T)=8.
All the above theorems show that the situation for old heavy maps is similar to the
one for continuous maps of degree one of a circle. The interval [a(F), b(F)] may
be called the rotation interval of F. Then theorem A gives a result analogous (although
weaker) to the theorem of Sarkovskii type for continuous maps of degree one [6].
It must also be related to the results of Hofbauer [3] for monotone mod 1 maps.
Theorem B is a generalization of the result of Newhouse, Palis and Takens [8].
Theorem C is a generalization of the result of Ito [§]. Theorem D shows that in our
case the rotation set is closed (as in the continuous case, see [4]), even in a strong
sense (see [7, corollary 1.5]). It also generalizes the result of Bamon, Malta, Pacifico
and Takens [2].

2. Heavy maps
We prove several lemmas on heavy maps.

LEMMA 2.1. Let F be a heavy map. Then for every X € R
(a) lim, o (sup {F(Y):|X - Y|=e})=F(X~);
(b) lim,,o (inf {F(Y): | X - Y|=¢e})= F(X +).
Proof. Fix an arbitrary 8 > 0. Then there exists £ > 0 such that if Y e[ X —¢, X) then
F(X-)-8=<F(Y)<F(X-)+5,
and if Ye (X, X +¢] then
F(X+)-8=F(Y)=F(X+)+4.
Since F(X-)=F(X)=F(X+), |X-Y|<e impliess F(X+)-8=<F(Y)=<
F(-)+ 6. Therefore
leiil(l) (sup {F(Y): | X -Y|=e})=F(X-)

and
lillg (inf {F(Y): | X -Y|=e})=F(X+)

The reverse inequalities are obvious. O
LeMMA 2.2. Let F be a heavy map. Then the maps F, and F, are continuous and
non-decreasing.

Proof. We prove the statement for F,; the proof for F; is analogous.

If X;=X,then{Y: Y= X,}c{Y: Y = X} and therefore F,(X,) = F.(X,). Hence,
F, is non-decreasing.

If XeR and £ >0 then

F.(X+e)=max (F(X —¢),sup{F(Y): | X - Y|=¢}).
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By lemma 2.1 we obtain

lirrg F.(X +¢&)=max (ling F.(X-¢), F(X-)).

For every Y eR we have F(Y)=F,(Y) and therefore F(X —)=<lim,,, F,(X ~¢).
Hence,

lirr(l) F(X+¢)= liné F.(X —¢).
Thus, F, is continuous. |

For a map G:R->R we denote by Const (G) the union of all open intervals on
which G is constant.

LEMMA 2.3. Let F be a heavy map. Then

(a) if X eR\ Const (F;) then F;(X)=F(X +);

(b) if X R\ Const (F,) then F.(X)=F(X -).
Proof. We prove (b); the proof of (a) is analogous.

Suppose that F.(X) # F(X —). Since for every YR we have F(Y)= F,(Y), we
obtain F(X —)< F,(X). Therefore, by lemma 2.1(a), if ¢ is sufficiently small and
|X ~ Y|=eg, then F(Y)<F,(X). Hence, if | X~ Y|<e then F(Y)=F,(X), and
consequently X € Const (F,). 0

LEMMA 2.4. Let F be a heavy map. Let X; <Y, F(X;+)=X..,, F(Y.—-)=Y,,, for
i=0,1,2,.... Then there exist increasing maps yr': (X, Y)) > (X, Y;) for all i, j with
0=<i=<j, such that

() loyr=y¢f if0=<isj=k;

(i) FFogl=idx,yy if0=<i=j;

(i) $i(Z)=yl(Z+) f0=isj, Ze(X,Y));

(iv) if 0=si=<lI<jand F(X,+)< X, then

inf (X, Y;) <inf y4(X, Y));
(v) f 0=si=<l<jand F(Y,—)> Y4, then
sup Yo( X, Y:) > sup ¢i(X;, ;).

Proof. Fix i=0. We shall prove first that there exists an increasing map
@i (Xi+1, Yie1) = (X, Y;) such that

(it') Feoi=idx,, v}

(iii') @i(Z)=@,(Z+) if Ze(Xii, Yinn);

(iv') if F(X;+)< X, then inf ¢,(Xiyy, Y1) > X5

(V') if F(Y;—)> Y., then sup ¢,(Xi4y, Yin) < Y.
It is easy to see that a map G, defined by

F(X;+) ifZ=X,
G(Z)=<F(Z) ifX.<Z<Y,
F(Y,-) ifZ=Y,

is a heavy map. By lemma 2.2, G, is non-decreasing and continuous, and hence
G, (R)>[F(X +), F(Y—)]. Since (X;1,, Yiz1) < (F(X +), F(Y—)), we can define
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®; by
¢i(Z) =sup{T: G(T)=Z2}
and we have ¢;(Z) e (X, Y;) for all Z€ (X4, Yis1)-

By definition, if Ze (X, Yi11), then ¢;(Z) e (X, Y;)\Const (G,). By lemma
2.3, we have then

G (¢:i(Z))=G(e(Z)-).
If G(¢;(Z)—)> G(¢:(Z)) then also G(¢;(Z)—)> G(¢;(Z)+), and consequently
if £ is sufficiently small then G,(¢;(Z)+ €)= G,(¢;(Z)). This contradicts the defini-
tion of ¢;(Z). Hence, G(¢;(Z)~ )= G(¢;(Z)). Thus, we obtain
Z =G (9i(2))=G(o(Z)-)=G(p:i(2)) = F(e(2)).
This proves (ii").

Since G, is non-decreasing, ¢; is also non-decreasing. By the definition, it is
one-to-one. Hence, it is increasing.

Since ¢; is increasing, ¢;(Z +)= ¢;(Z) for Z € (X;;,, Yi+1)- By the continuity of
G, and the definition of ¢; we obtain equality. This proves (iii’).

Assume that F(X;+) < X,,. Then G(X;) < X;,,, and since G, is continuous, we
obtain (iv'). The proof of (v') is analogous.

Now, if 0=<i=j then we set ¢=idx,yv,); if 0=i<j then we set ¢ =
©i°@ir°° o @,_;. The map ¢/ is increasing because all ¢; are increasing (the
identity map is also increasing).

The property (i) is satisfied by the definition of the maps . The property (ii)
follows from (ii"); the property (iii} from (iii') and the fact that all ¢, are increasing.

We prove (iv). Write for 0=r=s,

a; =inf ¢3(X,, Y).
If0=m=r=s=<tand a}<a;(a}=a}) then, since ¥}, is increasing and by (i), we
have a}, < a}, (respectively a;, =< a},). In particular, since for 0=r=s=1t always
alsea;(clearly, af = X,), we obtainthen o= a!. Thus,if0=i=I<jand F(X;+)<
X;+1 then by (iv'), ai< a'*!. Hence,

ap=ap<ag’'=ai,

which proves (iv). The proof of (v) is analogous O

3. Old maps
We shall use the following three very simple lemmas (see e.g. [6], [7], [1]).

LemMA 3.1, Let F, G: R~ R be maps such that F < G. If either F or G is non-decreasing
then F" <= G" for all n=0.

LeMMma 3.2, Let G be an old continuous non-decreasing map. Then for every X e R
the limit

lim%(G"(X)—X)

exists and is independent of X.
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The above limit is called the rotation number of G and is denoted by p(G).

LEMMA 3.3. Let G be an old continuous non-decreasing map, let p, g€ Z, ¢=> 0. Then
p(G)>p/q implies GY(X)—X>p for every XeR, and p(G)<p/q implies
G (X))~ X <p for every X €R.

We shall call a non-empty closed set B<R minimal for an old continuous map G
if

(i) G(B)< B;

(ii) if Xe B and ke Z then X +ke B;

(iii) every non-empty closed set satisfying (i) and (ii) and contained in B is equal
to B.

If G is an old continuous non-decreasing map then it is a lifting of a continuous
map g:S'> S' of degree one. It is easy to see that B is a minimal set for G if and
only if e(B) is a mat set for g (see [7]) and B=e"'(e(B)).

LEMMA 3.4. Let G be an old continuous non-decreasing map. Then there exists a set
B, minimal for G and disjoint from Const (G). If Const (G) is non-empty then such
B is nowhere dense.

Proof. Let G be a lifting of g. By theorem A of [7] (note that if G is non-decreasing
then the proof of this theorem is very easy) there exists a mat set A< S'. We consider
two cases.

Case 1. p(G) is irrational. We take B= e '(A). Clearly, B is a minimal set for G.
Suppose that B I # J for some open interval I < Const (G). Take xe Ane(I).
By the minimality of A, there exists n> 0 such that g"(x) € e(I). Since g is constant
on e(I), we have g"(g"(x))=g"(x) t.e. g"(x) is a periodic point for g. This
contradicts the assumption that p(g) is irrational. Hence, B Const (g) = .

By proposition 2.6 (a) of [7], A is either equal to S' or is nowhere dense.
Hence, if Const (G) is non-empty, then A is nowhere dense. Consequently, B is
also nowhere dense.

Case 2. p(G) is rational. By proposition 3.1 of [7], A is a periodic orbit of g. If
Ane(Const (G)) =, we can take as B the set e '(A) and it satisfies the required
conditions. Assume that A e(Const (G))# . Let p(G)=p/q, (p, q)=1. Since
Const (G) is non-empty, G?—p is not the identity map. Therefore there exist Y,
ZeR such that Y<Z GUY)=Y+p, GY(Z)=2Z+p and for all Xe(Y, Z),
G%(X)# X +p. Clearly, both orbits of y=e(Y) and ze e(Z) are mat sets. If at
least one of them is disjoint from e(Const { G)), we can take its inverse image under
e as B and it satisfies all required conditions. Suppose that they both intersect
e(Const (G)). Then there exists an open interval I <R such that g“(»ee(l) for
some k=0 and g is constant on e(I). Since g?(y) = y, we may assume that 0=k < gq.
The set g "*(e(I)) is an open neighbourhood of Y, and g is constant on it. Therefore,
if £ is sufficiently small, then
(Y—¢e)+p<Y+p=GUY)=G (Y —¢)

and
(Y+e)+p>Y+p=G(Y)=G (Y +e).
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Analogously, we obtain for ¢ sufficiently small
(Z-e)+p< G Z-¢)
and
(Z+e)+p>Gi(Z+e).
Hence, if additionally ¢ <3(Z —Y), we obtain Y+&<Z—¢ and
G (Y+e)—(Y+e)-p<0,
GHZ—-¢e)—(Z+e)—p=>0.
Therefore there exists xe (Y + ¢, Z — ¢) such that G9(X)— X — p =0, which contra-
dicts the definition of Y and Z. O

4. Old heavy maps
Now we prove two lemmas on old heavy maps.

LEmMA 4.1. Let F be an old heavy map. Then F, and F, are old maps.
Proof. We have
F(X+1)=sup{F(Y): Y=X+1}=sup{F(Z+1): Z= X}
=sup{F(Z)+1: Z=X}=F.(X)+1,

and hence F, is an old map. The proof for F, is analogous. Od

Notice that although we have not used in the proof the assumption that F is heavy,
we need this assumption to define F; and F,.

LEMMA 4.2, Let Fbe an old heavy map, letp, qe Z,q>0. Let X; < Y;fori=0,1,..., g,
X,=Xo+p, Y,=Yo+p, and F(X;+)= Xy, F(Y,=)= Y, fori=0,1,...,9—1.
Then either F(X;+)=X;,, for all ic{0,1,...,q9q—1} or F(Y;—)=Y;,, forall ie
{0,1,...,q—1}, or there exists Te(X,, Y,) such that F(T)e(X, Y;) for all ie
{0,1,...,q—1} and F¥(T)=T+p.
Proof. We define inductively X,,.,=X,+p, Y, y=Y,+pforn=1,2,3,.... Then
the hypotheses of lemma 2.4 are satisfied, and hence there exist increasing maps ¢/’
satisfying the conditions (i)-(v) of lemma 2.4,

Assume that F(X,+) < X,,, and F(Y,,—)> Y,,,,forsomel me{0,1,...,q9—1}.
Set ¢ = ¢§. Then, by (iv), inf ¢(X,, Y,)> X,, and by (v), sup ¢(X,, Y,) < Y,.

Therefore the set {Z e (X,, Yo): ¢(Z+p)=2Z} is non-empty and the point T =
sup {Z € (X, Yo): ¢(Z+p)=Z} belongs to (X,, Yy). We claim that ¢(T+p)=T.
If ¢(T+p)<T then for each Ze(¢(T+p), T), we have o(Z+p)<o(T+p)<Z,
a contradiction. If (T + p)> T, then for each Z € (T, ¢(T+ p)) we have ¢(Z+p)>
¢(T+p)> Z, also a contradiction. Hence, indeed, ¢(T+p)=T.

From this and from (ii) it follows that

FY(T)=F¥e(T+p))=T+p.
Since for i=0,1,...,9~1 we have F'¢ ¢y =idx,v,,, We obtain
F{(T)=F'(e(T+p))=(F o yoo¢?)(T+p)=y{(T+p).
But T+pe(X,, Y,) and hence F'(T)e ¢¥(X,, Y,) = (X, Y)). a
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5. Periodic mod 1 points
In this section we prove theorem A and derive a corollary to it. The essential part
of theorem A can be stated as the following proposition.

ProrosiTION 5.1. Let F be an old heavy map and let p(F)<p/q<p(F,). Then F
has a periodic mod 1 point of period q and rotation number p/q.
Proof. Take k=p/(p, q) and n=q/{(p, q). Then k/n=p/q and (k,n)=1.

Since F; and F, are old continuous non-decreasing maps (lemmas 2.2 and 4.1),

we obtain by lemma 3.3,

F(X)-X<k and F(X)-X>k forall XeR.
Since p(F;) < p(F,), we have F, # F,, and therefore F is not non-decreasing. Hence,
Const (F;) and Const (F,) are non-empty. Thus, by lemma 3.4, there exist nowhere
dense sets B; and B,, minimal for F; and F, respectively, such that B;~» Const (F;) =&
and B, nConst (F,)=.

We choose the points Z;, Z, € R in the following way. If B, B, # (J then we take
Z,=2,€ B,n B. If B, B, = then, since B; and B, are nowhere dense, closed and
unbounded from both sides, we can take Z; € B, and Z, € B, such that Z, < Z, and
(Z, Z)(BiuB,)=0.

We have F}(Z,)—k>Z_.1f Z,=Z, then F}(Z,)—k>Z.1If Z,< Z; then(Z,, Z;) n
B, = and since F;(Z,)— ke B, (because Z,€ B,), we obtain F(Z,)~k= Z,. But
in this case B, N B,=(J, and since Z, € B, we have F(Z,)—k # Z,. Hence, in both
cases F;(Z,)—k> Z. In an analogous way we obtain F[(Z,)—k < Z_ Thus,

F(Z)-k<Z,=Z<FXZ)-k (5.1
Let m be a non-negative integer. We shall show that
Fr(F1(Z)—k) < Fr"(z,),}

(5.2)
FM(F(Z)—-k)>F;(Z,),

and

F(F}(Z)-k) < Fi"(Zr)’} (5.3)

FNFXZ,)-k)>Fi(Z).

Since F}(Z;)— k< Z, and F, is non-decreasing, we have
FI(F{(Z)-k)=F['(Z).
If equality holds, then
F(Z)=F['"(F}(Z)-k)=F[(F"(Z)) -k,

and F;'(Z;) is a periodic mod 1 point of F, with the rotation number k/n. This
contradicts the assumption p(F;)<k/n. Hence, F"(Fj(Z,)—k)<F['(Z). The
second inequality of (5.2) follows analogously.

Since Fi(Z))-k<Z, F,<F, and F, F, are non-decreasing, we obtain by Lemma
31,

FI(Fi(Z)-k)=F(Z).
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Suppose that the equality holds. Since its left-hand side belongs to B, and its
right-hand side to B,, we have B, B, # (7, and consequently Z, = Z_. By (5.2), we
obtain then

F(Z)=F7(Z)=FI'(F{(Z)-k)<F[(Z),
which contradicts lemma 3.1. Hence, F;'(F7(Z)—k)<F!(Z,). The second
inequality of (5.3) follows analogously.

We set:
F|(F[(Z))—k) if0=<i<n,
X;={F""(Z,~ sk) ifsn=i<(s+l)m1=s<(p,q),
Fi(Z)—-k—-p ifi=gq,
F(Z) ifo<i<n,
Y, ={ F,*"(F}(Z,)— k+sk) ifsn=i<(s+1)n1=s<(p,q),
Z,+p ifi=gq

We check that the assumptions of lemma 4.2 are satisfied.

Clearly, X, =X,+p and Y, = Y,+p. By (5.3), X; <Y, for all i We have X;e B,
and Y;€ B, for all i Since B;nConst(F;})= and B,nConst (F,)=(, and by
lemma 2.3, we have Fi(X,)=F(X;+) and F,(Y;)=F(Y;—) for i=0,1,...,9q—1.
Hence, if n does not divide i +1, then F(X;+)= X,,, and F(Y;—)= Y;,,. By (5.1)
and (5.2) we obtain:

ifi=n—1and (p, q)>1 then

F(Xi+)=F{(Fi(Z)-k)<F(Z)<Zi+ k=X
and
F(Y;—)=F}(Z)= Y,
ifi=jn—1and 1<j<(p, q) then
F(Xi+)=F(Zi+(-1)k) < Z+jk = X1,
and
F(Y,—)=F}FXZ)+(j-2)k)> F{(Z,)+(~ 1)k =Yy,
ifi=qg—1and (p, q)>1 then
F(X;+)=F(Z;+p—k)= X1,
and
F(Y,—)=F}F/(Z)+p-2k)>F(Z)+p-k>Z -p=Y,
if i=g—1 and (p, q) =1 then
F(Xi+)=F{(F{(Z)-k)<F{(Z)= X
and
F(Y,—)=FXZ)>Z+k=Y,
Therefore the assumptions of lemma 4.2 are satisfied and the two first possibilities

of its statement do not hold. Therefore the third one holds, namely there exists
T e (X,, Y,) such that F(T)e (X, Y;)fori=0,1,...,qand F/(T)= T+ p. Hence,
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T is a periodic mod 1 point of F with rotation number p/q and its period divides
g- Denote this period by m. We have j/m = k/n for some jeZ. Since (k,n)=1, n
divides m. Suppose that m < g. Then m = sn for some s with 1=s<(p, q). We have
then X,,=2Z,+sk and Y,, = F}(Z,) — k+ sk. Since

k ksn

f=—+ :———:k
J nm n Sk,

we have F™(T)=T+sk Hence, from F™(T)e(X,, Y,) it follows that Te
(Z, F}(Z,)—k). But Te(X,, Y,)=(F}(Z,)—k, Z,). This contradicts (5.1). Hence,
m=gq. 0
THEOREM A. Let F:R—> R be an old heavy map. Then
(a) if F has a periodic mod 1 point of rotation number p/ q then a(F)=<p/q= b(F):
(b) ifa(F)<p/q<b(F) then F has a periodic mod 1 point of period q and rotation
number p/q.
Proof. If F has a periodic mod 1 point X of rotation number p/q then clearly
lim, .« (1/n)(F"(X)—~ X)=p/q, and hence a(F) = p/q = b(F). This proves (a).
Since F=F, and F, is non-decreasing, we have by Lemma 3.1, F" < F’ for all
n>0. Hence, b(F)= p(F,). Analogously, p(F;) < a(F). Therefore if a(F)<p/gq<
b(F) then p(F;) < p/q < p(F,) and by proposition 5.1, F has a periodic mod 1 point
of period g and rotation number p/q. g

COROLLARY 5.2. Let F be an old heavy map. Then a(F)=p(F,) and b(F)=p(F,).
Proof. If p(F;) = p(F,) then from

p(F)=a(F)=b(F)=p(F)
it follows that

p(F)=a(F)=b(F)=p(F,).
If p(F;)<p(F,), then, by proposition 5.1, for every rational number a € (p(F),
p(F,)), F has a periodic mod 1 point of rotation number a. By theorem A(a),
a €[a(F), b(F)]. Hence, (p(F), p(F,)) < [a(F), b(F)]. But p(F)<a(F)<b(F)=
p(F,), and hence p(F)=a(F) and p(F,) = b(F). a

6. Dependence of a(F) and b(F) on F
In this section, we prove theorems B and C.

THEOREM B. Let t+— F, be a map from an interval into the space of old heavy maps,
such that the maps t—(F,),; and t— (F,), are continuous ((F,), and (F,), are regarded
as elements of the space of maps of R into itself with the topology of uniform
convergence). Then the maps t— a(F,) and t~> b(F,) are also continuous.

Proof. By corollary 5.2, a(F,) = p((F,),) and b(F,)= p((F,),). Since (F,); and (F,),
are continuous old maps and p((F,);) = a((F,),), p((F,),) = a((F,),), we obtain (see
[8], [6]) that the maps t+—> p((F,);) and t— p((F,),) are continuous. O

It is clear that if F is an old heavy map and # € R then F + 6 (defined by (F+ 8)(X) =
F(X)+ 6) is also an old heavy map.
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THEOREM C. Let F:R >R be an old heavy map. If a(F) (b(F)) is irrational then for
all 6> 0 we have a(F+ 0)> a(F) (respectively b(F+ 8)> b(F)).

Proof. Clearly, we have (F+0),= F;+6 and (F+ ), = F,+ 6. Hence, by corollary
5.2 and theorem 2 of [5], we obtain a(F+ 6)> a(F) for 6 >0 if a(F) is irrational
and b(F+ 8)> b(F) if b(F) is irrational. d
Remark. In the above proof, instead of using theorem 2 of {5], we can use the
following simple lemma.

LemMa 6.1. Let G be a continuous non-decreasing old map with p(G) irrational, and
let 6>0. Then p(G+ 6)> p(G).

Proof. By lemma 3.4, there exists a minimal set B for G. Since p(G) is irrational,
the set B {0, 1] is infinite, and therefore there exist points X, Y, Z € B such that
X <Z <Y <X+ 0. By the minimality of B, there exist n, k€ Z such that n>0 and
X+k<G"(Y)< Y+k Therefore, by lemma 3.3, p(G)<k/n. But
(G+0)"()=(G+0)((G+6)" (Y)=G{(G+8)""(Y))+6
=2G"(Y)+0>X+k+6>Y+Kk,

and therefore, again by lemma 3.3, p(G+ 0) > k/n. Hence, p(G+8) > p(G).
O

7. Behaviour of the sequences (1/n)(F"(X)—X))n_;
In this section, we prove theorem D and derive a corollary to it.

THEOREM D. Let F:R >R be an old heavy map and let a(F)=<a < B <b(F). Then
there exists T €R such that

1
lim inf;(F"(T)— T)=a,

1
lim sup; (F(T)-T)=8.
Proof. Assume first that a(F) = b(F). Then, by corollary 5.2, a = 8 = p(F;) = p(F,).
Since for all n=0 and all 1R we have

F{(T)-T<FT)-T=FYT)-T,
we obtain

1
lim — (F"(T)~T)=a=p forall TeR.

Assume now for the rest of the proof that a(F) < b(F). We fix no> 1/(b(F) — a(F)).
Then there exist two sequences of integers, (p,)n-n,, and (r,)5-,, such that p,/n,
r./ne(a(F), b(F)) for all n= ny, lim, .. p,/n=a and lim,, r,/n=B.

We define inductively positive integers i,, j,, m,, v, and integers k,, u, (n=n,
ne+1,...):

Iy =1, Koy =Pny  Mny= ng;

Jn is such that
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where
Uy =kntjaln, Va=m,+j.n;
i,+1 1S such that
1
n+1

kn+1 _ pn+1
m,,, n+1

where

Kov1 = U+ iniy Povr, Mur =0, i (n+1).

By lemma 3.4, there exist sets B, and B,, minimal for F; and F, respectively and
such that B, ~ Const (F;) =& and B, n Const (F,) = . We choose Z;€ B;and Z, € B,
in such a way that Z,< Z, and if B;n B, # J then Z;e Bin B, Z,= Z,+ 1. We set:

X, =Fi(Z), Y,=FXZ) fort=0,1,...,n—1;

Xy rjnte = Fi(Z+ k, +jr,), Yo, tjnte = FUZ, +k,+jr,),
forj=0,1,...,j,—1and r=0,1,...,n—1;

Xy +itnt )4t = FiZi+ u,+ipasi), Y, titninyee= FAZ.+u,+ip,.,),
fori=0,1,...,i,.,—1and t=0,1,...,n

Clearly, all points X, belong to B, and all points Y, belong to B, From the
definition it follows that if g is not of the form m,+jn~1 or v,+i(n+1)—1 then
F(X;)=X,:, and F,(Y,)=Y,.,. By lemma 2.3, we then have F(X,+)=F(X,)=
X, and F(Y,—)=F(Y,})=Y,...

Letg=m,+jn—-1,je{1,2,...,j.}. Then

FI(Xq) = F;'(Xm,,-f—(j‘l)n)'
Since p(F)=a(F)<r,/n, we have (by lemma 3.3) F(X)< X +r, for all XeR.
Hence
F} (X +G-vyn) =F1(Zi+ k,+(j—1)r,)
<Zi+k,tjr.=X, +n=X,

Therefore Fi(X,)<X,:+;, and by lemma 2.3, F(X,+)<X_,,. Analogously,
F(Y,—)> Y,.,. Inthe same way one can prove that F(X,+) < X,,,and F(Y,—)>
Yifg=v,+i(n+1)-1,ie{l,2,..., i}

If q is of the form m,+jn or v, +i(n+1), then clearly X, <Y, To prove that
this inequality holds also for other g, it is enough to show that if =0 then
Fi(Z)) < Fi(Z,). Since F, < F, and both are non-decreasing, we have by lemma 3.1,
Fi=< F; and therefore Fi{(Z,)=< Fi(Z,). If equality holds, then B;n B, # & and by
the definition of Z; and Z, we have Z, = Z,+1. Then

F(Z,)=F(Z+1)=F(Z)+1=F|(Z)+1> F(Z),

so equality cannot hold. Hence, Fi(Z) < Fi(Z,).

Thus, the hypotheses of lemma 2.4 are satisfied and F(X,+)<X,,,, F(Y,~-)>
Y, for infinitely many q. Therefore there exist increasing maps ¢’: (X, Y))~
(X, Y;) for all i, j with 0=i=j, such that the conditions (i)-(iii) of lemma 2.4 are
satisfied and there exists an increasing sequence (l,);-; of non-negative integers
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such that for all n
(V") ay, <an,,.,
") B> B,

where a, =inf A, B, =sup A, A, =¢{(X,, Y,) for ¢g=0,1,2,....
Clearly, A, A, 2 A,>..., and therefore

By (iv") and (v"}, a,< B, for all q.

We set T'=1im,,« B, We claim that T e ﬂ‘::o A, By (v"), for each n there exists
T.€ A, suchthat 8, <T,<pB;.Hence, T)>T,>T;>---,and lim, . T,=T. For
a fixed g, there exists n, such that if n=1 then l,=>gq, and consequently T, A,.
Since ¢ is increasing, the sequence ((yg )"(T,,))‘,’,‘L,.l is decreasing. Since
(¢d) (T e(X,, Y,), it converges to some Ze[X,, Y,) as n>c0. If Z=X,, then
@y =lim,.o T, = T, which contradicts (iv"). Hence, Z € (X,, Y,). By (iii), we have

0(Z)=lim, o T, = T, and therefore T A, Hence, indeed TE{T::O A,

Thus, by (ii}, we get F/(T)e(X,, Y,) for g=0,1,2,.... Write

P={m,+jn:n=ng,np+1,....;j=0,1,...,j.—1}
u{v,ti(n+1):n=ng,ny+1,...;i=0,1,...,40,,,—~1}

If ¢ =m,+ jn then both T and F%(T)~—(k,+jr.) are in (X,, Y,) and conseguently
their distance is at most Z,—Z. If g=v,+i(n+1) then both T and F(T)-
(up+ip,+y) are in (X, Y;) and also their distance is at most Z, — Z, Therefore for
g of one of the above forms, (1/g)(F4(T) - T) differs from (k, +jr,)/(m,+jn) or
(ttn+ iPu1)/ (v, + i(n+ 1)) respectively by at most (1/¢)(Z, — Z;). The number (k, +
jra)/(m,+jn) lies between k,/m, and r,/n and the number (u,+ip,.,)/(v,+
i(n+1)} lies between u,/v, and p,.,/(n+1). Therefore, in view of the fact that
limy. . (1/9)(Z, — Z;) =0, we obtain

. . kn ”n n ”n . >
lim mf(mm (——-, E—, IL, L)) <lim mf-l- (FI(T)-T),
n>c0 m, v,  n’n <o g

ge<

7.1
lim su (max(—’flﬂ'-'&ﬁ))>lims l(F"(T) T) 7
m sup m 5 n ) =M sup .
ge P
Since
n n 1 kn n
S DS O N 3 S
Un n m, n n
we have
. . . pn Iy . . . kn Uy
liminf{ min{=,—] ) =liminf { min{ —, —} ),
n-oc nn n->oo m, b,
(7.2)

-

. pn n . kn uﬂ
limsup { max{=,— ]} =limsup | max {—=,—) ).
o n’'n 00 m, v,
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For g = m, we have

1 k, 1
._(Fq(T)_T)_ <_(Zr_Zl),
q n q
and for g =v,,
1 - 1
‘—(F‘*(T)—T)—“— <=(z,-2).
q : vl q
Therefore,
- . 1 . . . k’l u'l
lim inf— (F4(T)— T)=<lim inf { min ,—
g+ q n—>00 n Un
qe P
(7.3)
. 1 . kn u,
lim sup — (F¥(T)— T)=lim sup | max ,— ).
q—>o0 n-oo m, v,
gepP
Since lim,, .o p,/n=a, lim,_ . r,/n =B and a < B, we obtain from (7.1), (7.2) and
(7.3),
R |
liminf— (FI(T)-T)=a,
q—>x© q
geP
(7.4)

limsupl(F"(T)—T)=B.
wr
Now we have to see what happens if g& P. Then g=s+1 for some se Pand t=n
(where s=m, +jn or s=v,+i(n+1)). Since all i, and j, are positive for v = n,,
ny,t+1,...,n—1 we have
q>s=2(ne+(ng+1)+---+(n—-1))=(n—ny)(ny+n-—1).
There exists an integer y such that |[p(F))| <y and |p(F,)| <. Then for every Z<R
we have
Z-y<F(Z)=sF(Z)sF.(Z)<Z+v,
and consequently
Z-vy<F'(Z)<Z+vy forv=1,2,....
Hence |F¥(T)— F*(T)|< ty=<ny and |[(1/s)(F*(T)— T)| < v. Therefore

Lpn-n-LFn- T)l
q A

+

< ’%F‘?(T)— n-2Em-n|+ 2 Em-n-2Em-n
q q q s

=§IF"(T>—FS<T>|+"T_S %(Ff(n—r)l

2ny ' 0
(n—ny)(n+ng—1) n-oco
In view of (7.4), this ends the proof of the theorem. O
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CoROLLARY 7.1. Let F be an old heavy map, and let a(F)< a < b(F). Then there
exists T eR such that lim, o (1/n)(F(T)-T)=a.

The above corollary means that in a case of old heavy maps the rotation set is closed.

8. Examples of old heavy maps

Clearly, all continuous maps are heavy. Hence, if f: S' > S' is a continuous map of
degree one, then its lifting (in a usual sense) is an old heavy map. Therefore all
results of this paper are generalizations of the corresponding results for maps of
degree one of the circle into itself.

Another important class of old heavy maps arises by taking liftings of some
monotone mod 1 maps. A map f:[0, 1) > [0, 1) is called monotone mod 1 if there is
a monotone, continuous bounded map g:[0, 1) > R such that f(X)=g(X) (mod 1)
forall X €[0, 1). Such maps were studied e.g. by Hofbauer [3]. If g is non-decreasing
and g(1—)—g(0)>1 then the map F defined by

F(X+k)=g(X)+k for X e€[0,1),keZ,

is an old heavy map, and is a lifting of f (regarded as a map of a circle into itself).
In particular, we may take as f a so called B-transformation (defined for 8> 1 by
g(X) =X or g(X)=BX+a).

Other examples can be obtained when studying the Newton’s method of determin-
ing zeros of certain functions If ¢:R—R is a differentiable function then we define
amap N by

N(x)=x —m.
¢'(x)

Since the one point compactification of R is homeomorphic to a circle, we may
regard N as a map of a circle into itself. To avoid complications caused by the fact
that N is not defined at o and at the zeros of ¢’, we assume that ¢’ has finitely
many zeros and the limits N(—o0)=lim,, , N(x) and N(+0)=1lim, o N(x)
(finite or infinite) exist. Notice that in our notation N(c0o—) = N(4+o0) and N(co+) =
N(—0c0). If ¢'(x)=0 then N(x—)= N(x+)=00 (on the circle, therefore + and
—o0 are identified) and we set N (x) =o0; we set also N(c0) = N(+0). If both N(—)
and N(+0) are infinite or N(—o)= N(+c0) then N as a map of the circle is
continuous. This case was studied in [9].

The case of finite N(—00) and N(+00) takes place usually if ¢ has asymptotes.
Assume that a<b<c<d, ¢'(x)<0forx<c, ¢'(¢)=0, ¢'(x)>0for x> ¢, ¢(c) <0, '
N(d)=c¢, N(x)# ¢ for x #d, N(—)=b, N(+00)=a and N(b) < N(a). Figure 1
shows the graph of such ¢, figure 2 the graph of the corresponding N. The map N
(as a map of the circle) has no old heavy lifting, but its second iterate, N>, has. To
show the last statement notice that

1° N?is discontinuous only at o and ¢ and we have N*(co—) = N*(+0) = N(a) >
N(b)= N?*(—0) = N*(c0+), N*(¢c=)=b>a= N>*(c+);

2° at d we have N’(d—)=+o0, N*(d+) = —o0, which gives degree one.
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