
ENTROPIES OF SETS OF FUNCTIONS OF 
BOUNDED VARIATION 

G. F. C L E M E N T S 

1. Introduction. In this paper the entropies of several sets of functions 
of bounded variation are calculated. The entropy of a metric set, a notion 
first introduced by Kolmogorov in (2), is a measure of its size in terms of the 
minimal number of sets of diameter not exceeding 2e necessary to cover it. 
Using this notion, Kolmogorov (4; p. 357) and Vituskin (7) have shown that 
not all functions of n variables can be represented by functions of fewer 
variables if only functions satisfying certain smoothness conditions are allowed. 
For an exposition of this application and other results concerning entropy the 
reader is referred to the paper of G. G. Lorentz (5). Before stating our results, 
we first collect the basic facts and definitions (4, p. 279). Let A be a non-void 
subset of a metric space W. 

DEFINITION 1. A system y of sets U Ç W is called an e-cover of A if for each 
U in 7, the diameter of U, d(U)j does not exceed 2e, and 

Uey 

DEFINITION 2. A set U C W is an e-net for A if each point of A has distance 
not exceeding e from at least one point of U. 

DEFINITION 3. A set U Q W is said to be ^-distinguishable if the distance 
between any two points of U is greater than e. 

In what follows we shall deal exclusively with totally bounded sets; that is, 
sets having a finite e-cover for each e > 0, or, equivalently, sets having a 
finite e-net for each e > 0, or sets for which each e-distinguishable subset is 
finite. In particular, compact sets are totally bounded. We are interested in 
the following functions: 

Ne
w(A), the minimal number of points in W which form an e-net for A ; 

N€(A), the minimal number of sets in an e-cover of A ; 
M€(A), the maximal number of points in an e-distinguishable subset of A. 

The dyadic logarithms of Ne(A) and M€(A) are called the entropy and the 
capacity of A and are denoted by He(A) and C€(A) respectively: 

He(A) = log N.(A), CM) = log M€(A). 
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FUNCTIONS OF BOUNDED VARIATION 423 

It is unusual to be able to determine these functions exactly and one is 
usually content with finding their order. We write/(e) < g (e) for/(e) = 0(g(e)) 
and /(e) = g(e) if both /(e) = 0(g(e)) and g(e) = 0(/(e)). Thus for various 
sets A we seek a function h(e) for which Ht(A) ~ h(e) holds. The basic tool 
to this end is the following theorem (4, p. 282). 

THEOREM. For each totally bounded set A of a metric space W, the inequalities 

(1) M2M) < NM) < Nt
w(A) < MM) 

hold, and therefore 

C*M) < HM) < CM)-

In Section 2 we consider continuous functions /(x) defined on [0, 1] with 
|/(x)| < M and total variation over [0, 1] not exceeding some positive con
stant B not depending on / . Under the uniform metric p, defined by 

p(f>g) = ™ax \f(x) - g(x)\, 
X€[0,1] 

this set is not totally bounded: the functions y — nx truncated at y = 1, 
n = 1 , 2 , . . . contain a non-finite ^-distinguishable set. To get a totally 
bounded set so that the entropy will exist, we further require that / satisfy 
a Lipschitz condition of order a, 0 < a < 1 : 

(2) \f(x') - f(x")\ < \xf - x"\« for x', x" Ç [0, 1]]. 

Calling this set Va, we shall show that He(Va) ~ (1/e) log (1/e). For the 
sake of comparison, the set of all functions defined on [0, 1] with |/(x)| < M 
which satisfy (2), with 0 < a < 1, has entropy of order ( l /e)1 / a (4, p. 308). 

In Section 3, we again consider sets of functions of bounded variation, but 
take for the distance between two functions the Hausdorff distance between 
their graphs (1, p. 166). This gives a smaller metric than p and the sets we 
consider are totally bounded even without the assumption (2). For the set 
VL which consists of functions / defined on [0, 1] which satisfy |/(x)| < M 
and 

Var / < L, 
[0,1] 

and for the set LXn* which consists of continuous curves of length not exceeding 
L contained in a ^-dimensional cube, we find that H€ ~ (1A). We also show, 
for the set CB of functions / defined on [0, 1] for which / ( x + ) and /(x — ) 
exist and |/(x)| < B for all x 6 [0, 1], that H€(CB) « (1/e) log (1/e). 

2. The entropy of V«. With Va as defined in the introduction, we now 
prove the following theorem. 

THEOREM 1. He(Va) - Ce(Va) - (1/e) log (1/e). 
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Proof. By constructing a 3e-net for Va we shall first show tha t 

Hu(Va) < (1/e) log (1/e), 

or equivalently, H€(Va) < (1/e) log (1/e) . T o this end, let e > 0 be given. 
Take 

n = ne = [e~l/a] + 1 = e~1/a, and ô = (1/n) ~ e1/a. 

Here and below [x] denotes the largest integer not exceeding x. Pu t xt = i5, 
i = 0, 1, . . . , n, and / = log (1/e) . Denote by G the smallest integer for 
which Gl > n, and let qt = xu-i)h i = 1, . . . , G. Let It — [qu qi+i), 
i = 1, . . . , G — 1, and J G = [gG, 1]. In this way [0, 1] is divided into 
G < {niI) + 1 < 2n/l intervals It all of which, except IGf consist of / con
secutive subintervals of the form [xr_i, xr). Corresponding to a given / G Va, 
we shall call 11 a good or bad interval according as the variat ion of / on 11 

does not exceed da = e0 or does exceed eo-

For / G Va, we define a function c(x) = cf(x) on [0, 1] in such a way t h a t 
p(/> £/) ^ 3e0 < 3e; {^/}/eFa will therefore be a 3e-net for F a . As we define cf, 
we also explain how to label it with a matr ix Mf having G rows. T h e first i 
rows of this matr ix will determine cf(x) over Ilf I2, . . . , It and conversely. 
These labels, in a 1-1 correspondence with the functions cf, f G Va, will be 
helpful in est imating the number of functions in our 3e-net. 

T h e matr ix Mf and the function c(x) = cf(x) are defined in the following 
way. On the interval Ii, define c(x) by 

c(x) = [f(Xi-i)/eo]e0l x G [xt-lt xt), i = 1, 2, . . . , / 

and take the first row of Mf to be |jf(xo)AoL [f(xi)/e0], . . . , [ /(xj-i)Ao]. If 
c(x) is defined on J i , I2, . . . , i&-i and the first (& — 1) rows of i f f are defined, 
define c(#) on Ik = [qk, qk+1) and the feth row of Af/according to the following 
rules : 

1. If Ik is a bad interval, define 

c(x) = Lf(Xi_i)/eo]co for x G [ x ^ i , x7), i = (& — 1)/ + 1, . . . , kl, 

and take the &th row of Mf to be 

(3) [/(*<*-i)i)Ao], [/(^U-D?+i)/eo], • • • , |/(tf*i--i)/€o]. 

2. If 7A;_I is a bad interval and Ik is a good interval, define 

c(x) = [/(qt)/e0]eo for x G 7fc, 

and take the &th row of Mf to be b ; [/(CAOAO]. 

3. If Ik-i and 7^ are good intervals, and there exists a point x* G Ik such 
t h a t \c(qk-i) — f(x*)\ > 3e0, define 

c{oc) = \f(qk)/e0}e0 for x G /*, 

and take the &th row of Mf to be g ; [/(#*) A o]. 
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4. If Ik-i and Ik are good intervals, and |c(<7*-i) — f(x)\ < 3e0 for x Ç Ik, 
define 

c(x) = c(qk-i) for x G Ik, 

and take the &th row of Mf to be 0. 
T h u s corresponding to / £ F«, we have defined c(x) = cf(x) on [0, 1], We 

now show tha t \f(x) — cf(x)\ < 3e0 for x G [0, 1], from which it follows tha t 
P (/>£/) < 3e0 < 3e. Let x G [0, 1] be given, and take k and r such tha t 
x G [xr_i, xr) C i*. We shall speak of Ik as being of type i if rule i was used 
to define c(x) over /*, i = 1, 2, 3, 4, and shall consider 7i to be of type 1. 

If Ik is of type 1, then c(x) = |jf(xr_i)/eo]eo for x G [xr_i, x r ) , and so 

(4) |/(x) - c(x)\ < | /(x) - / ( x ^ O l + | / (x r _0 - c(x)| 

< |x - xr-i\
a + eo < ôa + eo = 2e0. 

If /A; is of type 2 or 3, then, since the variation of / on Ik does not exceed 
eo, we have for x G Ik 

(5) |/(x) -c{x)\ = \f(x) - U(gk)/eoU 

< \f(x) -f(q*)\ + eo\f(qk)/e0 - \f(q*)/*o]\ < e0 + e0 = 2e0. 

I t follows from (5) t ha t \f(x) — c(qk)\ < 2e0. In particular, for each interval 
Ik of type 3, 

(6) c(qk-i) J* c(qk). 

Finally, if Ik is of type 4, the very criterion for applying rule 4 shows tha t 

\c(x) ~~ f(x)\ < 3e0 for x G Ik-
T h u s {Cf{x)}reVa is a 3e-net for Va. To count how many distinct functions 

there are in this net, it suffices to count how many distinct matrices Mf 

there are, since the matrices Mf and the functions cf(x) for / Ç Va corre
spond in a 1-1 way. We shall refer to the &th row of Mf as being of type i 
if Ik is of type i, i = 1, 2, 3, 4. Let P i , P2, P3 denote the numbers of different 
ways in which rows of type 1, 2, 3, correspondingly, can occur in Mf. T h e 
knowledge of all rows of these three types of Mf determines the matr ix Mf 

completely; hence there are a t most P1P2P3 different matrices Mf. 
We shall est imate the numbers Pt from above. We begin by remarking 

t ha t the Lipschitz condition (2) gives 

\f(Xi)/e0 - [/(x*_i)/e0]| < 1 + \f(Xi)/e0 -/(tf,_i)/e<>| 
< 1 + ( l /e 0 ) |x i - xt-il" < 2. 

I t follows t ha t [f(Xi)/eo] is one of the three integers 

l / fo -OAo] - 1, [ /(x^O/eo], Lf(*f-i)/€0] + 1. 

T h e first term of a type 1 row (3) can take a t most 2[P/e0] + 1 values, since 
all values of | / (x) | do not exceed B. For each following term, there are a t 
most three possibilities. Hence there exist a t most 
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(2[B/e0] + 1 )3 l 

type 1 rows. 
Since the variat ion of / on a type 1 interval Ik o ther t han I± exceeds e0, 

and its to ta l variat ion is a t most B, there are a t most [23 A o] + 1 type 1 rows. 
In a matr ix of G rows, there are 

[B/eol + l / V A 

J= Z r ) < ( [ 5 / e o ] + l)G[B/'»,+1 

z=0 \ ^ / 

different selections of a subset of a t most [-B/eo] + 1 rows. Hence the number 
of ways in which rows of type 1 can occur in Mf does not exceed 

(7) P1< J{(2B/e0+ l ) 3 , } 2 , / e o + 1 . 

Similarly, since there is a bad interval preceding each type 2 interval , 
there are not more than B/eo type 2 rows, and not more than / orders of 
type 2 rows. Then , since [f(qk)/eo] takes a t most 2[B/eo] + 1 values, we get 

(8) P 2 < J(2B/e0 + l)B/€°. 

Finally, we show t h a t the number of type 3 rows in Mf does not exceed 
[B/eo], T o prove this, we associate with each type 3 interval Ik a chain 

(9) Ik-m, Ik-m+l, • • • i h O > 1) 

such t h a t the variat ion of / on the union 

U = Ik-m+i *U Ik-m+2 {J . . . {J Ik 

exceeds eo and such t ha t Ik is the only type 3 interval in U. We take m to be 
the largest integer with the proper ty t ha t all intervals in the chain (9) are 
good and t h a t 

(10) c(qk^m) = c(gk-m+1) = . . . = c(qk-!). 

T h e chain is unextendable either because Ik-m~i is bad or because Ik-m is 
of type 3. In both cases (see (4), (5)) we have for each point x G Ik-m, 

\f(x) - c(qk-m)\ < 2é0. 

On the other hand, for some x* Ç Ik} \f(x*) — c(qk-±)\ > 3e0. From this and 
(10) it follows t h a t \f(x) — f(x*)\ > e0, for x Ç Ik-m, and making x —> g^_w+1, 

\f(qk-m+i) - / ( * * ) ! > e0, 

so t h a t the variat ion of / on U is a t least e0. I t is also clear, in view of (6) 
and (10), t ha t Ik is the only type 3 interval in U. Hence we again obta in 

(11) Pa < / ( 2 5 / c o + l )* / € ° . 

Tak ing logarithms in the relation Nze(Va) < P\PiPz and using (7), (8), 
and (11) we obtain 
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HUVa) = log N,t(Va) <\ogJ+ (B/eo) log (2J5/€o) 
< (1/eo) log (1/eo) + (l/6o) log G, 

and since G < 2n/^ = 2e~~1/a [log (1/e)], we obtain 

(12) HUVa) < (1/e) log (1 A ) . 

T o est imate H€(Va) from below, part i t ion [0, 1] by points xt = iô, 
i = 0, 1, . . . , w, where « = [e~1/a] - 1 < e"17" and ô = 1/n > e1/a. Wi th 
G = [B/2ô«] and / = [n/G] - e 1 " ^ , let It = [ * « - D „ xtl), i = 1, 2, . . . , 

G — 1, and IG = [x(£_i)7, 1]. We have thus separated [0, 1] into G intervals 
Iu i = 1, 2, . . . , G, each interval consisting of I subintervals of the form 
[xr-i, xr] except for IG which may contain more than I subintervals. Now 
consider all functions / w h i c h are 0 on [0, 1] except for two consecutive sub-
intervals in each interval J* over which the graph of / along with the x axis 
forms an isosceles triangle of al t i tude 8a > e. The variation of / over [0, 1] 
is exactly 2G8a < B, f satisfies the Lipschitz condition of order a, and / is 
therefore in Va. Distinct functions of this type differ by ba > e a t some xu so 
this set of functions is e-distinguishable. If the number of these functions is 
K(e), we have 

M<(Va) >K(e) > (l/2)° > («i/o-yaflW 

and therefore 

He/2(Va) > \ogMe(Va) > (1/e) log (1/e), or H€(Va) > (1/e) log (1/e), 

which proves the theorem. 

3. Entrop ies of s e t s of f u n c t i o n s of b o u n d e d var ia t ion i n t h e H a u s -
dorff m e t r i c . Let (X, 77) be a totally bounded metric space with metric 77. 
Let X* be the set of all non-void closed subsets of (X, 77). For A, B in X*, we 
define (1 , p . 166) 

<r(A,B) = inf [e \Se(A) 3 ^ and St(B) DA}, 

where 

SM) = U{y\v(y,a) < e}. 
aeA 

Then a is a metric on X* (the Hausdorff metric). 
I t is straightforward to check tha t if F : a maximal e-dis

tinguishable set in (X, 77), then the 2n — 1 non-void subsets of F are e-dis
tinguishable in (X*, or) and form a 2e-net in (X*, a). From this and (1), it 
follows tha t 

i 2 * 1 € (x , , ) < 2N2e(x>v) _ 1 < 2M2e(x,v) _ 1 < M2e(X*f a) 

< iV€(X*, a) < Mx* ,< r )(X*, 0-) < 2N*/*(X'V) - 1 < 2Are/2(x' ,?), 

and, taking logarithms, 

(13) X 2 6 (X, 77) - 1 < C2e(X*, a) < # C ( X * , cr) < X e / 2 ( X , 77). 
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If Xn is the cube {(xi, x2, . . . , xn) | 0 < xt < M, i = 1, 2, . . . , n\ in the 
^-dimensional Euclidean space with the usual metric, then Ne(Xn) ~ ( l / e ) w 

(4, p . 300). Hence from (13) follows: 

T H E O R E M 2. Ht(Xn*,*) = C€(Xn*t a) = ( l / e ) n . 

We now consider subsets of Xn*. By the * 'curve C given parametr ical ly 
by the co-ordinate functions Xi(t), x2(/) , . . . , xn(f), a < / < 6," we mean the 
set 

C = {(xi, x2, . . . , xw) | Xt = Xi(t), t £ [a, b], i = 1,2, . . . , » ) . 

Let t ing CXW* (w > 2) be the set of all such curves which are contained in Xn 

and have continuous co-ordinate functions, we have : 

T H E O R E M 3. H€(cXn*) « C 6 ( f X / ) - ( l / € ) \ 

Proof. Since cXn* is a subset of Xn*, the est imate from above follows from 

the preceding theorem. T o get the est imate from below, we exhibit a set 

of 2[M/e]n — 1 curves in cXn* which are e/2-distinguishable. From this it will 

follow tha t 

(14) 2 I " / ' ] " - 1 < 2t" '«in - 1 < Mt/2(cXn*) < N^ieX,*), 

and hence 

(l/e)n < C2t(cXn*) < H € ( C X / ) , 

proving the theorem. 

T o get the set of e/2-distinguishable curves, take / = M/([M/e] — 1) > e, 
and consider the set D consisting of the [M/e]n points x having co-ordinates 
(kj, k2l, . . . , knl), where ki is an integer, 0 < kt < [M/e] — 1, i = 1, 2, . . . , n. 
Distinct subsets of D are a t least / apar t (in the Hausdorff metr ic) . So by 
associating with each subset Xi, x2, . . . , xs of D a continuous curve passing 

through «^ 1 , "v 2 ? • • • y "V s 
and not approaching other points of D nearer than / / 2 , 

we get 2[M/e]n — 1 curves mutual ly a t least 1/2 apar t . Since / > e, these 
curves are e/2-distinguishable, which proves the theorem. 

Now let LXn* {n > 2) be the set of all curves C contained in Xn which can 
be represented parametrical ly in the form 

(*) C = {(xi, x2, . . . , xn) | xt = Xi(s), s £ [0, L] , i = 1, 2, . . . , w}, 

where the co-ordinate functions xz(s) are continuous and the parameter 5 is 
arc length. Any curve of length not exceeding L can be parametr ized in 
this way. For instance, if 

C = {(xi, x2, . . . , xn) | xt = xt(s), s G [0, L/2], i = 1 , 2 , . . . , » } , 

we also have 

C = {(xi, x2, . . . , xn) | xt = xt(s), s G [0, L] , i = 1, 2, . . . , «}, 
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where xt(s) = xt(s) for s Ç [0, L/2] and xt(s) = xt(L — s) for 5 Ç (L /2 , Z,]. 
The entropy of z,Xw* can be estimated from above as follows: 

LEMMA 1. H€(LXn*) < 1/e. 

Proof. Each co-ordinate function xt(s) of a curve C of LXn* satisfies a 
Lipschitz condition of order 1: 

\xt(s') - xt(s") \<\s' - s"\. 

Since the curves in LXn* are contained in Xn, we also have 0 < Xi(s) < M. 
I t is known (4, p . 308), t ha t the set A of all functions x(s) on [0, L] which 
satisfy these two conditions has under the uniform metric p the ent ropy 
H€(A) ~ 1/e. If Ai; = A, i = 1, 2, . . . , n, then the product 

-P= ITU* 

is a metric space with distance 
n 

0(x, x') = ^2 pi***/) 
i=i 

between the points x = (xi, . . . , xn) and x ' = ( # / , . . . , x / ) . Then (see 8, 
p . 27, Lemma 1) He(P) < nHe/n(A). Now if a representation (*) is selected 
for each curve C in L J „ * , then z,Xn* is mapped into P , and if x, x' correspond 
to C, C", it is clear t ha t o-(C, C) < <f>(x;xr). Then 

J / e ( L X / ) < H e ( P ) < (1/e), 

which proves the lemma. 

T o est imate He(LXn*) from below, we consider a subset of LXn*. Let .M^ 
consist of curves C which can be given parametrically in the form (*), where 
Xi(s) = 0, 3 < i < n, and Xi(s), x2(s) are continuous monotonically increasing 
functions such tha t Xi(Q) = x2(0) = 0, xx(L) = 1, and x2(L) = L — 1. Afc 
is a subset of LXn* if we assume Af > L — 1. The capacity of ML may be 
estimated from below as follows: 

L E M M A 2. Ce(ML) > 1/e. 

Proof. I t suffices to consider the case L = 2. We construct a set of e-dis-
tinguishable functions in M2 in the following way. P u t 

n = ne = [1/e] — 1 < 1/e, 5 = 1/w > e, and x* = iô, i = 0, 1, . . . , w. 

Consider all "s tep curves" 5 = Smlim2,...,mn which consist of points (x, y) 
which satisfy for some k, k = 1, . . . , n, the condition 

x G fe-i, **)> ? = w*ô; or x = xk1 mkb < y < ra*+i<5, 

where w 0 is 0, w w + i is n, and Wi, w2 , . . . , mn is an increasing sequence of 
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non-negative integers with mn — n. These curves are in M2. For convenience 
in counting, we label 5 by the sequence 

(15) sk = mk - mk-ly k = 1, 2, . . . , n, 

of non-negative integers which add to n. The curves 5 correspond to their 
labels in a 1-1 way. Since 8 > e, it is easy to see that these step curves are 
e-distinguishable (in the Hausdorff metric). To count them, consider the 
terms sk in (15) which are strictly positive. If these terms are skj, j = 1,2, . . . , i, 
we have 

s*i r Sk2 ~r • • • + S]a = n. 

Such an ordered collection of integers is called a composition of n of i parts. 
For each composition, the n — i zeros in Si, S2, . . . , st can be arranged in 

( .1 ways, and there are f . __ J compositions of n having i parts 

(6, p. 124), so in all there are 

step curves. Using Stirling's formula, it is seen that 

l ogU/2]) >• n' 

so log F(n) > n. Since n = nt ~ 1/e, we have log F(n) > 1/e, and 

Ce(M2) > \ogF(n) > 1/e, 

which proves the lemma. 

Since ML is a subset of LXn* (if M > L + 1), Lemmas 1 and 2 give: 

THEOREM 4. / / R is LXn*, ML, or any subset of LXn* which contains ML, 
then 

H€(R) - C€(R) - (1/e). 

We now explain how the result He(ML) ~ 1/e can be interpreted as an 
entropy statement about a function space. If Q is any set of functions defined 
and bounded on [0, 1] for which /(#+)> f(x~) exist for each x G [0, 1] and 

(16) / (* )=*( / (*+)+ / (* - ) ) , 
then Q may be metrized by defining for / , g, in Q 

(17) <r(f,g) = °(Gf,G,), 

where Gr is a generalized graph of / : 

Gf = {(x,y) \x € [0, l l ; / ( * - ) < y < / ( * + ) o r / ( * + ) < y < f(x- )}. 
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It is not difficult to check that Gf is a closed set; so the definition (17) is 
justified. Also, for each x the set Gf determines uniquely the values / ( # + ) , 
f(x — )1 and therefore, in view of (16),/(x). Thus the correspondence between 
functions/ in Q and their graphs is 1-1, and (17) defines a metric on Q. 

If for Q we now take the set FL of monotonically increasing functions 
defined on [0, 1] which satisfy /(0) = 0 and / ( l ) = L — 1, and metrize FL 

by (17), then associating / in FL with its graph Gf gives an isometry between 
ML and FL, so from Theorem 4 we obtain: 

COROLLARY 1. H€(FL) ~ 1/e. 

In a similar way, if VL is the set of functions / defined on [0, 1] with 
\f(x)\ < M and 

Var / < L - 1, 
[0,1] 

we obtain: 

COROLLARY 2. H€(VL) = 1/e. 

Proof. For / £ ^L , Gy can be represented parametrically as a curve with 
length not exceeding L, so associating / with Gf defines an isometry between 
VL and a set which contains ML and is contained in LJ2*. The conclusion 
then follows from Theorem 4. 

As a final example, let QB be the set of functions defined on [0, 1] for which 
/ ( x + ) , f(x — ) exist, |/(x)| < JB, and (16) is satisfied for x £ [0,1]. Let QB be 
metrized by (17). Then: 

THEOREM 5. H€(QB) « C c(&) « (1/e) log (1/e). 

Proof. To estimate N€(QB) from above, we construct an e-net for QB in 
the following way: Take n = n* = [2/e] + 1 > 2/e, and x* = £<5, i — 0, 
1, . . . , n, where <S = 1/n < e/2. Let f £ QB be given, and mk1 mk, fe = 1, 2, 
. . . , n be respectively the largest and smallest integers which satisfy 

(18) mkh < inf f(x) < sup f(x) < mkh. 
xe[xk-l,xk] xe[xk-i,xk] 

Let C/ consist of all points (x, y) which satisfy for some k, k = 1, 2, . . . , n, 
the relation 

xk-i < x < xk, mkh < ;y < m / 5. 

We now show that 

(19) *(G„ Cf) < e. 

Since Cf even contains Gf1 S€(Cf) D G> To show that S€(Gf) D Cf, one 
checks that 

(201 i i f ^ : V l ^ ^ 2 ' ^ ^ G / ' X l "̂  X2' a n d ^i < ^ < ^2 or 3f2 < c < 3̂ 1, then 
\ there exists x3 such that Xi < x3 < x2 and (x3, c) G Gf. 
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From (20) it is seen that the \/2 ô-neighbourhood of the part of Gf between 
the lines x = xt-i and x = xt contains all of the part of Cr between these 
lines, so S€(Gf) D Cf, and (19) follows. Thus the collection {Cf\feQB is an 
e-net for QB. Each Cf is determined by the sequence mk, mkf k = 1, 2, . . . , w. 
Since \f(x)\ < B, 0 < x < 1, each tnk, mk is one of 2[B/8] + 3 integers m, 
-[B/Ô] - 1 < m < [5/5] + 1. Thus there are not more than (2[B/6] + 3)2n 

distinct sets in our net. Hence 

Nt(QB) < (2[B/ô] + 3)2*, 
Ht{QB) < 2n log (2[B/5] + 3) < (1/e) log (1/e). 

We obtain the estimate Ce(QB) > (1/e) log (1/e) by exhibiting a large number 
of e-distinguishable functions. Take n — nt = [1/e] — 1 and ô = l/n > e. For 
sequences of integers mk, k = 1, 2, . . . , n, —[B/d] < m^ < [5/5], the corre
sponding step functions 

s(0) = 0, s (a) = mk8, x G (xA_i, xk], k = 1, 2, . . . , n, 

are in QB, and are e-distinguishable (in the Hausdorff metric). Since there 
are (2[B/6] + l)n of these functions, we have 

C.(QB) > log (2[B/5] + 1)» > (1/e) log (1/e), 

which proves the theorem. 

The author thanks his teacher, Professor G. G. Lorentz of Syracuse Uni
versity, for suggesting these problems and for many helpful conversations 
concerning them. 
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