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Abstract. In an attempt to improve our understanding of the factors that affect human 
twinning, we further developed the models given by Hellin (1895) and Peller (1946). The 
connection between these models and our own model (" Fellman's law ") were studied. 
These attempts have resulted in a more general model, which was then applied to data 
from Aland Islands (1750-1939), Nimes (1790-1875), Stuttgart (about 1790-1900) and 
Utah (1850-1900). The product of the mean sibship size and the total twinning rate can 
be considered as a crude estimate of the expected number of sets of twins in a sibship. 
The same can be said about the twinning parameter in our model. These estimates are 
in good agreement. If we consider twinning data only, we obtain the geometric distribu­
tion, and log (Nk), where Nk is the number of mothers with k twin maternities, is a 
linear function of the number of recurrences. Graphically, this property can easily be 
checked. For sibships containing three or more sets of twins, all four populations show 
higher values than expected, particularly the populations from Stuttgart and Utah, 
which data also show poor agreement according to a x2-test. A more exact model 
would demand more detailed demographic information, such as distribution of sibship 
sizes, age-specific twinning rates and temporal variations in twinning. 

The osberved number of mothers in Aland with several recurrences of multiple mater­
nities shows a considerable excess over the expected number as predicted by Peller's rule. 
The parameters in our model can be estimated by the maximum likelihood method and 
the obtained model fits the data better then Peller's model. 

Key words: Mathematical models, Hellin's law, Peller's law, Fellman's law, Recur­
rence of multiple maternities, Twinning, Aland Islands 

INTRODUCTION 

The frequency of recurrent twinning is the repeat frequency of twinning among women 
who have already had one set of twins and it can be used to estimate the variability of 
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twinning proneness in the population, regardless of the cause (genetic or nongenetic) of 
this variability [1]. In the majority of populations, 4-5% (extreme values 3-7%) of fertile 
women have been mothers of twins. In the period 1750-1949, about 8.5% of the mothers 
on the Aland Islands in the Northern Baltic Sea had twin or triplet maternities and 8.2% 
of the mothers with multiple maternities had a recurrent twinning. The fecundity in 
mothers in Aland with recurrent twin maternities was high, 7.7 maternities, that is, 
almost 10 children per mother, and a high proportion (about 50%) of unlike-sexed 
twins. This indicates that poly ovulation is the chief cause of recurrent twinning. Previ­
ously, we presented and analysed data on recurrent twinning in Aland and a mathemati­
cal model was applied to the data in order to describe them in a simple way [3,4]. 

In this paper we will discuss a generalization of this model and relate it to Hellin's 
and Peller's laws. Furthermore, we relate it to fertility measurements in the correspond­
ing populations. In this connection the total twinning rate and the mean size of the sib-
ships are of special interest. 

MATERIAL AND METHODS 

Our data [3] and the data presented by Carmelli et al [2] are included in Table 1. Of 
course, the data do not include sibships without twin sets. Carmelli applied the same 
mathematical model as we did, but her parameter estimate differs from the maximum 
likelihood estimate we obtain in this study. 

The data (Table 1) are from the Aland archipelago in southwestern Finland [3,4], 
from Nfmes in southern France [7], from Stuttgart in Baden-Wurttemberg in southern 
West-Germany [8], and from the Utah Mormon genealogical data base in Salt Lake 
City, USA [2]. 

Our generalization of the model used by Eriksson [3] and Carmelli et al [2] is: 

(1) Pst = w s r ' ( l~w)( l - r ) s, t = 0, 

where Pst is the probability that an average sibship contains s twin sets and t triplet 
sets, w is the probability of a twin set, and r is the probability of a triplet set. 

However, the available data set is usually truncated. We have no information about 
sibships without twin sets and triplet sets for which the probability is (1-w) (1-r). 
Therefore, we have to cope with the conditional probability: 

(2) P ' = P (s,t | s or t > 0) = W$r' ( 1 " W ) ( 1 ~ r ) 

r + w-rw 

The truncation complicates the model and we can only obtain approximate numerical 
maximum likelihood solutions. These can be obtained from the following formulas (cf 
Appendix): 

S-N N 1-w 
(3a) w = —— + r S S r + w-rw 
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Table 1 - Comparison of recurrent twinning (observed and expected) in Aland Islands (Finland), 
Nfmes (France), Stuttgart (W. Germany) and Utah (USA) 

Number 
of twin 

sets 

Mean 
sibship 

size 

Total 
twinning 

X|i) 

X(2| 

k 

1 
2 

3 
4 

Aland 
1750-1939 

O 

1515 
121 

13 
2 

4.6 

19.6 

1.21 

1.81 

E 

1511.0 

128.1 

10.9 
1.0 

Nimes 
1790-1875 

O 

1156 
48 

2 

1 

4.7 

10.1 

0.26 

3.32 

E 

1154.3 

50.3 

2.2 
0.2 

Stuttgart 
c. 1788-1900 

O 

1493 
81 

10 

2 

6.5 

10.9 

6.96 

11.06 

E 

1485.8 

93.9 

5.9 
0.4 

Utah 
1850-1900 

O 

7982 

649 

76 
11 

8.1 

12.0 

9.39 

11.39 

E 

7956.9 

694.6 

60.6 

5.9 

Note: x2 pertains to the goodness of fit. In the upper line, x,2,, mothers with 3 and 4 maternities have 
been pooled. 

(3b) 
Tw 

N-T + 2Tw + Tr-Trw 

where S = the total number of twin sets, T = the total number of triplet sets, N = the total 
number of sibships. 

However, equations 3a and 3b do not give the explicit solutions of w and r, but they 
can be used for obtaining numerical solutions after an iterative process. 

If the data contain no sibships with triplet sets, then T = 0, r = 0 and w = (S-N)/S. 
This formula is exact and it is the same as the one that was used by Eriksson [3]. 

RESULTS 

Tabel 2 considers only twinning data and gives the estimate and its standard error. The 
estimator of w is given above and the standard error can be obtained as a special case 
of the Appendix, and is 

w ( l - w ) 2 / N 

We may expect that in populations with a high total twinning rate and/or with high aver­
age sibship size, the parameter w shows high values. In Table 2 we give data for such 
a comparison. The product, mean sibship size times total twinning rate, is a crude esti-
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mate of the expected number of twin sets in a sibship. The same interpretation may be 
given to the parameter w in our model. If the average sibship size is c and the total twin­
ning rate is tw, we obtain the approximate equation: 

(4) w = tw . c 

We observe in Table 2 that there is a good agreement between our parameter estimates 
and the products. A similar connection can be assumed to hold for the parameter r and 
the total triplet rate. For Aland, 1750-1939, we observe r = 0.001628, tr = 0.000354, and 
c = 4.6. Hence, c .tr = 0.001628. 

Table 2 - Estimates according to the model (5) of recurrence of twinning in series from Aland, 
Nimes, Stuttgart and Utah (see fext) 

Population 

Aland 
NTmes 

Stuttgart 
Utah 

w 

(1) 

0.0848 
0.0436 

0.0632 

0.0873 

S w 

(2) 

0.00656 
0.00575 

0.00591 
0.00302 

Mean 
sibship 

size 
(3) 

4.6 
4.7 

6.5 
8.12 

Total 
twinning 

rate 
(4) 

0.0196 
0.0101 

0.0109 
0.0120° 

(3) X (4) 

0.0902 

0.0475 

0.0708 
0.0974 

" Crude estimates. 

If we consider only twinning data we have the simple model: 

(5) Ns = N w s ( l - w ) 

where Ns is the number of sibships with s twin sets. 
A quick graphical check of the model may be obtained in the following way. We take 

the logarithms of both sides in formula 5. Now we get: 

(6) log (N) = s log w + log [N (1-w)]. 

Hence, log (Ns) is a linear function of the number of recurrences. The Figure shows the 
goodness of fit. We observe that, for s>3 , all data sets show higher values than expect­
ed. The Stuttgart data and the Utah data show the most marked discrepancies. This 
finding is in good agreement with the x2-tests in Table 1. 

If we assume that our model and Hellin's law hold, then we obtain Peller's law in 
the following way. For triplets, we obtain an analogous formula to equation 4. Hence, 

(7) r = c t r 

where tr is the total triplet rate. According to Hellin's law, 

(8) tr = (tw)2 
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Figure. Comparison of recurrent twinning in series from Utah (1800-1950), Aland (1750-1939), ST., 
Stuttgart (c. 1790-1900) and Nimes (1790-1875). The expected values are calculated according to formula 
(5) [3, p. 52]. 

If we combine equations 4, 7 and 8, we obtain: 

- = tr = (tw)2 '(f)'- and 

(9) 

However, Peller uses m = w ' instead of w. If this variable is introduced, then: 

(10) r = -V~ 
mzc 

which is Peller's formula for the probability of a triplet set. 

DISCUSSION 

The most doubtful part of the deductions above is the use of Hellin's law. In our opin­
ion, this is the most approximate of the laws discussed in this paper. It has to be taken 
into consideration that there is no biological justification for Hellin's law, but it serves 
as an approximate rule of thumb. From the 1750s, and until the last part of the 19th 
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century, there is a fairly good agreement in Sweden between the actual frequencies of 
the different multiple maternities and the values estimated according to Hellin's law. 
However, all through the 20th century, there has been a deficiency in the frequency of 
triplet maternities both in Sweden and Finland. In the majority of populations there 
seems to be a much steeper downward secular trend of triplet than twin maternities. In 
spite of its high twinning rate, the Aland archipelago is the only known region in the 
North which, when Hellin's law is applied, has displayed an excess of triplets [3]. 

The data are too aggregated for more exact models. Such models should demand at 
least: 
— information about the distribution of the sibship sizes; 
— the effect of maternal age on the twinning rate (the age specific twinning rates). For 
a specific mother the chance of a twin maternity varies during her life; 
— the temporal changes in the incidence of twinning. A useful set of data must cover 
a long period of time. 

It must be taken into consideration that our model implies a long (infinite) fertile 
period. But in reality, the fertile period is limited and child bearing is confined to a short 
period (in our sample of mothers in Aland with at least two multiple maternities, about 
15 years). Thus, the model is chiefly applicable to one or two multiple maternities. The 
main merit of our model is that it takes into account in a simple way the recurrence of 
twin sets and triplet sets when the probability of a multiple maternity in a sibship is esti­
mated. 

This mathematical model demonstrates that twinning is a reiteration (repetition) 
without memory. It can be assumed that there is a relation between the parameter w (and 
r) in our model and the general incidences for twin sets and triplet sets in the population 
and the size of the sibships. The parameter w can be considered as the probability of 
recurrence. When Peller's rule is applied, the observed number of mothers with several 
recurrences of multiple maternities in the Aland Islands exceeds the expected number 
(Table 3). Peller suggested that mc is close to Hellin's law unit n (our formula 4). For 
our data from Aland, mc = 68.3, but the observed n = 51 (twinning rate 19.6/1000 for 
the period 1750-1939). According to Eriksson [3] an average 8.5% of the Aland mothers 
should have multiple (twin or triplet) maternities once or several times. From this, we 
arrive at the value m= 11.8. The mean sibship size in Aland is c = 4.6, thus mc = 54.3, 
which better confirms the observed value of Hellin's law, n = 51. This is mainly due to 
the fact that all recurrences of twin maternities were taken into consideration when the 
model was used. 

If we use our general model, we obtain the estimate: 

(11) w = 0.08376 ±0.02053 

r =0.001628 ±0.000494 

If we transform these estimates to estimates of Peller's parameters, m and c, we obtain: 

m =11.94 

c =4.31 (compare mean sibship size 4.6) 

mc = 51.45 (c.f. (tw) i = 51). 
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Table 3 - Occurrence of multiple maternities in Aland, 1740-1939, according to Peller's and to 
our rules 

Maternities 

Twins once 

Twins twice 

Triplets once 

Twins three times 

Twins and triplets 
Twins four times 

Twins twice and 
triplets once 

Twins three times 
and triplets once 

Peller's 
formulae 

l:m 
l:m2 

l:m2c 
l:m3 

l:m3c 

l:m4 

l:m4c 

l:m5c 

Frequencies 

O Ea 

1515 

113 
22 

12 

8 

1 
1 

1 

1515.0 

113.0 

22.0 
8.4 

1.6 

0.6 
0.12 

0.01 

Our 
formulae b 

w 

w2 

r 

w3 

wr 

w4 

w2r 

w3r 

Frequencies 
Ec,d 

1503.6 

125.9 

29.2 

10.5 

2.45 

0.88 
0.20 

0.02 

" The values in the first three rows have been used to estimate m and c; m= 1515:113 = 13.4; 
c= 113:22 = 5.1. 

* The formula is complete after multiplication by [(1-w) (l-r)]/(w + r-r«w) 
c w = 0.08376± 0.000494; r = 0.001628 ±0.000494. 
d x2= 18.49 with 4 df. The last three rows are pooled together with all combinations of multiple 

maternities not observed. 

In Table 3 we give the observed values from Aland, the estimates given by Eriksson 
[3] and our new estimates. The obtained x2= 18.49 with 4 df indicates a bad fit be­
tween the model and the data. Eriksson's estimates cannot be tested, since the expected 
numbers do not add to the observed total (= 1673). 

The fecundity of mothers in Aland with repeated twinning was high, about 10 chil­
dren per mother. It is noteworthy that, of the 32 sets of triplets born in Aland during 
1750-1939, no less than 10 (almost 1/3) of the triplet sets were born to mothers with 
repeated multiple maternities ([3] and Table 3). In the series of 1586 mothers of twins 
from Stuttgart with 107 recurrent maternities, there were only two triplet maternities [8]. 

The 279 pairs of twins in Aland showed a high frequency of unlike-sexed twins 
(male + female is 50.0 ±3%). This high rate of unlike-sexed twin maternities (definite 
DZ twin maternities) among mothers with recurrences in Aland indicates that polyovula-
tion was the chief cause of repetition [3]. 

CONCLUSION 

The tendency for repetition of multiple maternities (recurrence of twinning) is in rather 
good agreement with our general model which assumes that the chance of one further 
multiple maternity is approximately constant and independent of the number of previ­
ous multiple maternities. The model is in good agreement with the values observed in 
Aland and NTmes, but in Weinberg's series from Stuttgart and in the Utah Mormon 

https://doi.org/10.1017/S0001566000005213 Published online by Cambridge University Press

https://doi.org/10.1017/S0001566000005213


314 J . O . Fel lman, A . W . Eriksson 

genealogy it shows a deficit of mothers with two multiple maternities and a surplus of 
mothers with three or more multiple maternities. 

For all population, the model parameter w is in good agreement with the product 
of the total twinning rate and the average sibship size, formula 4. This agreement can 
be explained theoretically. 

A more exact model would demand more demographic information, such as the dis­
tribution of sibship sizes, the age specific twinning rates and the temporal variations in 
twinning rates. 
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Appendix 

Deduction of the Maximum Likelihood Estimates 

Consider the probability Pst that an average sibship contains s twin sets an t triplet sets. 
Then 

(Al) Pst = wsr' (1-w) (1-r); s, t > 0 

where w is the probability of a twin set in a sibship of average size and r is the probability 
of a triplet set. 

However, the available data set is usually truncated. We have no information about sib-
ships without twin sets and triplet sets. The probability of this is s = 0, t = 0, P0o = 
(1-w) (1-r). Therefore, we have to cope with the conditional probability 

(A2) P'st = P(s,t at least s or t>0) 
wsr' (1-w) (1-r) 

r + w - r • w 

The truncation complicates the model and we can only obtain approximate numerical maxi­
mum likelihood solutions. 

If we assume that we observe nst sibships with s twin sets and t triplet sets then the likeli­
hood function is 

(A3) L(w,r) = IT 
wsr< (1-w) (1-r) 

(r + w - r • w) 

nst ( l - w ) N ( 1 - r f 

(r + w - r • w)N 

where N = E E, nst, T = E E, t . nst, S = EsEt s-nr t . 

In order to simplify the calculations we study and maximize the log likelihood function 

(A4) l(w,r) = S In w + T In r + N In (1 -w) + 
+ N In (1 - r ) - N In (r + w- r • w) 

We obtain the partial derivatives 

51 S N 
(A5a) 

(A5b) 

N ( l - r ) 

5w w 1-w (r + w- r -w) 

8\_ _ T _N[_ N ( l - w ) 

5r r 1 - r (r + w- r -w) 
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Maximum is obtained if these derivatives are zero. Hence, after some calculations we get 
the equations 

S-N N 1-w 
(Aba) w = hr- — 

(A6b) 

S r + w - r . w 

Tw 
N - T + 2Tw + Tr-Trw 

The equations (A6a) and (A6b) do not give explicite solutions of w and r. We observe that 
on the right hand side are the unknown parameters w and r still. The numerical solution can 
be obtained, so that we start from initial values of w and r (say w0 and r0). After some itera­
tions, our estimates converge. If the data contain no triplet sets, then T = 0, r = 0 and 
w = (S-N)/S. This formula for w is the same used by Eriksson [3]. 

In order to estimate the standard error of the estimates we derive once more 

621 
Sw7 " 

<521 

"sT2" ~ 

S21 

S N N ( l - r ) 2 

w2 (1-w)2 (r + w-rw)2 

T N L N(l-w)2 

r2 ( 1 - r ) 2 (r + w-rw)2 

N 

5w<5r (r + w-rw)2 

521 \ N r ( l + w - w r ) N / 5Z \ Nr (1 -
(A7a) E ( ) = — 

\ 5w2 ) w(r + 

(A7b) E(j!L)_^i±I 
V 5r2 / r (r + w -

/ 621 \ N 
(A7c) E ( -— ) = 

\ 5 w 5 r / (r + w-rw> 

w-rw)2 1-w2 

rw) N 

(r + w-rw)2 (1-r)2 

If this method is applied to the occurrence of multiple maternities in the Aland Islands 
[3, p 63], we obtain the estimates w = 0.08376 and r = 0.001628. 

The equations (A7a), (A7b) and (A7c) give the information matrix and its inverse gives 
the estimated variances. 

For the estimated w, r, and N = 1673 we obtain a = 0.020533 and a = 0.0004936. 
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