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FRACTAL MHD WAVES IN THE SOLAR ATMOSPHERE 

LUIGI NOCERA 
Istituto di Fisica Atomica e Molecolare - CNR, Via Giardino 7,1-56127 Pisa 

ABSTRACT Nonlinear MHD waves forced into a bounded cavity exhibit 
structural instability of their equilibria and periodic orbits as the forcing varies. 
For some values of the forcing the computed Poincare" maps, Lyapunov 
exponents and phase-space correlation reveal that the waves become chaotic; the 
Haussdorff dimension of the waves' attracting set lies between its correlation 
dimension (= 2.2) and its information dimension (= 2.25). 

INTRODUCTION 

MHD waves in the solar atmosphere are prone to structural instability, defined as 
their ability to move from one dynamical equilibrium (a stationary oscillatory 
state) to another, as the former experiences an arbitrarily small perturbation. 

In special occasions the partial differential equations for wave propagation can 
be reduced to ordinary differential equations (ODEs) for a few modes (see e.g. 
the lumped parameter model of Stepanov and Tsap in these proceedings). Then 
Classical Mechanics - jointly with numerical techniques - offers an excellent 
framework for the analysis of structural instability and it has been profitably used 
in several circumstances: see e.g. the work by Hada et al. (1990) who tested the 
structural stability of two-fluid, forced, dissipative Alfven waves modelled by a 
Vector Derivative Nonlinear Schrodinger equation reduced to two ODEs. 

Nocera and Priest (1991) found MHD waves in viscous, magnetized, forced 
cavities (Fig. 1) to be bistable as the forcing frequency varies. Here we report that 
they are prone to other structural instabilities (subharmonic bifurcations, e.g. 
Guckenheimer and Holmes 1983) and exhibit chaotic behaviour. 

BASIC EQUATIONS 

Let VeZj « 1 and co be the velocity (normalized to the Alfvdn speed) and the 
frequency of the Alfven wave at the boundaries of the cavity of Fig. 1; let p, q, r, 
s, CT, <I> be complex constants depending on the plasma P and compressive 
Reynolds number Reo ; let Bo, 

oo 

85z (x, t) = VeB0 £ //m(r)exp(-/mcor)sin(mx) + c.c, //,(0) =A+ZX (1) 
m=l 

be the equilibrium, the perturbation magnetic fields in the cavity and the initial 
condition for H\, c.c. denoting the complex conjugate and A an arbitrary 

complex constant. Then, if 5co = (co2 - l)/2co is the frequency detuning, we find 

dHxldt = i 8co(//! - Z{) + eiplHJ2 + q\H3\
2)Hl + er7772//3 , (2a) 
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Thus £>H is itself fractional and the limit set of the flow in Fig. 5a is fractal. 
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Fig. 5. The Poincari map (a), the phase-space correlation C (b) and the four 
Lyapunov exponents Xi (_) and information dimension DKY (...) (c) for the 
chaotic solution of (2). Parameters as in Fig. 3, but A = 0.155. 

CONCLUSIONS 

The study of coronal loop dynamics and its relevance to flares has now entered 
a non linear phase. In this context, we have investigated the properties of waves 
in such structures, approximated as homogeneous cavities forced at the 
boundaries by photospheric motions. Varying the forcing's frequency, bistability 
of the waves' amplitude occurs and the energy released during a bistable 
transition is of practical use for coronal heating. Varying the forcing's amplitude, 
we observe subharmonic bifurcations and chaotic behaviour of the wave's 
amplitude: this provides an insight in the onset of turbulence, which is 
instrumental to both coronal heating and particle acceleration. 

The normal form of the cavity's Duffing oscillations coincides with the one 
found by Hada et al. (1990) and this encourages the conjecture that general 
underlying properties may exist for waves in plasmas. 
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a = u3{u±[l-£2(u2-l)]1 / 2}/(u2- 1), (5) 

where u = l/^l. These are represented in Fig. 4 for three values of viscosity. 

Fig. 3. Period 3, 6 and 12 orbits of (2). Parameters as in Fig. 2, but Reo 
1000 and A*0. 
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Fig. 4. Equilibria of (2a) according to (5). Arrows denote bistable transitions. 

When Reg is large, the maximum average volumetric power released during the 
downward transition of Fig. 4 is (Nocera and Priest 1991) 

W, J.JL max- 3 6 4 ^e2Re^B2/(87txA) at p = l ± l / V 3 . (6) 

Here xA is the Alfven transit time over the cavity if Fig. 1 and BQ /(8TTXA) is the 
order of magnitude of the volumetric power released in an ideal MHD instability: 
due to the factor Reo, (6) compares well with that, despite the nonlinear factor. 

ONSET OF CHAOS 

When A in eq. (1) approaches 0.155, the wave flow enters a chaotic state (Fig. 
5). A feature of the chaotic flow is one positive Lyapunov exponent and a 
fractional value of the Haussdorff dimension £>H of its limit set. A lower bound 

(the correlation dimension v of Grassberger and Procaccia 1983) and an upper 
bound (the information dimension D^y of Kaplan and Yorke 1979) to DH are: 

v = 2.22 < £>H < 2.25 = D 'KY (7) 
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dH-i/dt = 3i 8co H2 + e(s\H1\
2 + o\H3\

2)H3 + e<P//f (2b) 

Fig. 1. MHD waves propagate in a 
homogeneous tube of magnetized 
plasma whose boundaries move 
parallel to each other allowing for 
neither compressive nor slip motions. 

DUFFING OSCILLATIONS 

When the frequency detuning is O(Ve) 
(loose resonance) define 

VeAco = 8co. (3) 

The system (2) becomes autonomous 
when A = 0 and conservative when 
Reg —> °°. In this case it can be 
derived from the Hamiltonian (the 
reduced Duffing Hamiltonian) whose 
energy levels are shown in Fig. 2: 
three continuous families of elliptic 
orbits exist each with different energy 
Ea and a period Ta which tends to °° 
as the orbits approach the double 
homoclinic loop (energy EQ). The 
study of the numerically computed 
Melnikov's function reveals that only 
those orbits whose period is an integer 

multiple of 2JC/ACO survive the 
introduction of forcing (A * 0) and 
dissipation (Reg < °°). This is 
consistent with the results for the 
Duffing oscillator (e.g. Guckenheimer 
and Holmes 1983). Fig. 3 shows the 
period 3, 6 and 12 orbits. 

VAN PER POT . osnrr i .ATTONS 

When the frequency detuning is 0(e) 
(sharp resonance) define 

ea = 5co, ^ = \Rep\/\Imp\. (4) 
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Fig 2. The energy levels, the double 
homoclinic loop (boldface) and the 
elliptic orbits (a) and their periods (b) 
for the conservative (A = 0, Reo —> 

~) system (2). p = 0.7, Ve = 0.15, 

ACQ = 0.26, Z7 = 0.6. 

Then to leading order, equation (2a) admits the stationary solutions 
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