ON A THEOREM OF KOROUS

by J. A. ANDERSON

(Received 2nd April 1965; revised MS. received 17th July 1965)

1. Introduction

Let

$$
\begin{equation*}
l(z)=\left(z-l_{0}\right) \prod_{v=1}^{\infty}\left(1-\frac{z}{l_{v}}\right)\left(1-\frac{z}{l_{-v}}\right) \tag{1}
\end{equation*}
$$

where the $\left\{l_{v}\right\}$ are numbers near to an arithmetic progression of common difference unity. Let

$$
\begin{equation*}
\rho(z)=-\frac{l(0)}{\pi z}+\frac{z}{\pi} \sum_{v \neq 0} \frac{l(v)}{v(v-z)}+b, \tag{2}
\end{equation*}
$$

b being a constant. Write

$$
\begin{equation*}
k(z)=l(z) \cot \pi z+\rho(z), \tag{3}
\end{equation*}
$$

so that $k(z)$ is an integral function, and

$$
\begin{equation*}
Q(z)=\frac{k(z)}{2 l(z)} \tag{4}
\end{equation*}
$$

is meromorphic with simple poles at $\left\{l_{v}\right\}$.
Let $f \in B V(\alpha, \alpha+\pi)$, and suppose that C_{p} is a circle, centre the origin, not passing through any v or l_{v}, and containing in its interior those l_{v} for which $|v| \leqq N_{p}$. Then,
where

$$
\left.\begin{array}{rl}
s_{p}(x) & =\frac{1}{2 \pi i} \int_{c_{p}} Q(z) d z \int_{\alpha}^{\alpha+\pi} f(t) e^{i z(x-t)} d t \tag{5}\\
& =\sum_{|v| \leqq N_{p}} c_{v} e^{i i_{v} x}
\end{array}\right\}
$$

$$
\begin{equation*}
c_{v}=\frac{k\left(l_{v}\right)}{2 l^{\prime}\left(l_{v}\right)} \int_{a}^{\alpha+\pi} f(t) e^{-i l_{v} t} d t \tag{6}
\end{equation*}
$$

is the N_{p} th partial sum of the Cauchy Exponential Series (CES) of f with respect to $Q(z)$. If

$$
\begin{equation*}
S_{p}(x)=\frac{1}{4 \pi i} \int_{C_{p}} \cot \pi z d z \int_{\alpha}^{a+\pi} f(t) e^{i z(x-t)} d t \tag{7}
\end{equation*}
$$

then it is easily seen that $S_{p}(x)$ is the N_{p} th partial sum of the Fourier series (FS) of g, given by

$$
g(x)= \begin{cases}f(x) & \alpha \leqq x \leqq \alpha+\pi \tag{8}\\ 0 & \alpha-\pi \leqq x<\alpha\end{cases}
$$

We have

$$
\begin{equation*}
s_{p}(x)-S_{p}(x)=\frac{1}{4 \pi i} \int_{C_{p}} \frac{\rho(z)}{l(z)} d z \int_{\alpha}^{\alpha+\pi} f(t) e^{i z(x-t)} d t \tag{9}
\end{equation*}
$$

and so, if the right-hand side of (9) is $o(1)$, we have the CES equiconvergent with a FS. We shall give some sufficient conditions for this equiconvergence.

Korous (1) takes $\left\{l_{v}\right\}$ real, and satisfying

$$
l_{-1}<0 \leqq l_{0}, \quad l_{v}<l_{v+1}, \quad l_{v}=v+a+\lambda_{v}
$$

where $a=0$ or $\pm \frac{1}{2}$. He considers partial sums $s_{p}(x ; f), S_{p}(x ; f)$ [see (1), p. 3], where f, b are real, and which are given, in terms of (5) and (7) above, by

$$
s_{p}(x ; f)=\operatorname{Re} s_{p}(x), \quad S_{p}(x ; f)=\operatorname{Re} S_{p}(x)
$$

(9) becomes, therefore,

$$
s_{p}(x ; f)-S_{p}(x ; f)=\frac{1}{4 \pi i} \int_{C_{p}} \frac{\rho(z)}{l(z)} d z \int_{z}^{\alpha+\pi} f(t) \cos z(x-t) d t
$$

which is (1), equation (2.7). He proves (Theorem A) that if $\lim \sup \left|\lambda_{v}\right|<\frac{1}{12}$, and $f \in B V(\alpha, \alpha+\pi)$, then $s_{p}(x ; f)-S_{p}(x ; f)=o(1)$ uniformly in any closed interval interior to ($\alpha, \alpha+\pi$).

In this note, we suppose that the numbers $\left\{l_{v}\right\}$ are complex, say $l_{v}=\alpha_{v}+i \beta_{v}$, where

$$
\left.\begin{array}{rl}
\alpha_{v} & =v+\lambda_{v} \tag{10}\\
\left|\beta_{v}\right| & \leqq M
\end{array}\right\}
$$

M being a constant. We prove the following generalisation of (1), Theorem A:
Theorem 1. Let $f \in B V(\alpha, \alpha+\pi)$. Suppose that the numbers $\left\{l_{v}\right\}$ satisfy (10) and the condition

$$
\begin{equation*}
\lim \sup \left|\lambda_{v}\right|<\frac{1}{8} \tag{11}
\end{equation*}
$$

Then, the CES of f is uniformly equiconvergent, in any closed interval interior to ($\alpha, \alpha+\pi$), with the FS of the function g given by (8). Further, the coefficients c_{v} tend to zero as $|v| \rightarrow \infty$.

2. Proof of the theorem

Let $E=\left\{z:\left|z-l_{v}\right| \geqq \frac{1}{4},\left|r-|v| \| \geqq \frac{1}{4}\right\}\right.$. Let C_{p} be the circle

$$
|z|=r=p+\frac{1}{2}
$$

which satisfies the condition $z \in E$, if p is sufficiently large. Write

$$
s_{p}(x)-S_{p}(x)=\int_{\alpha}^{\alpha+\pi} f(t) \phi_{p}(x-t) d t
$$

where

$$
\phi_{p}(u)=\frac{1}{4 \pi i} \int_{C_{p}} \frac{\rho(z)}{l(z)} e^{i z u} d z
$$

If

$$
\begin{equation*}
J_{p}(u)=-\frac{1}{4 \pi} \int_{C_{p}} \frac{\rho(z) e^{i z u}}{z l(z)} d z \tag{12}
\end{equation*}
$$

then

$$
\int_{\alpha}^{\alpha+\pi} f(t) \phi_{p}(x-t) d t=-f(\alpha+\pi) J_{p}(x-\alpha-\pi)+f(\alpha) J_{p}(x-\alpha)+\int_{\alpha}^{x+\pi} J_{p}(x-t) d f(t)
$$

It will therefore suffice to prove that $J_{p}(u)$ tends to zero uniformly in

$$
[-\pi+\eta, \pi-\eta] .
$$

In fact, it is enough to consider the first quadrant, and the function

$$
\begin{align*}
K_{p}(u) & =\int_{0}^{\pi / 2} \frac{\rho(z)}{l(z)} e^{i z u} d \theta \\
& =O\left(\int_{0}^{\pi / 2}\left|\frac{\rho(z)}{l(z)}\right| e^{|y| u} d \theta\right) . \tag{13}
\end{align*}
$$

We employ Theorem 1 of (2): there is a number $L<\frac{1}{8}$ such that for $z \in C_{p}$,

$$
|l(z)|>A e^{\pi|y|} G^{-2 L}
$$

where

$$
\begin{aligned}
G & =\frac{|z|^{2}+1}{|y|+1} \\
& =O\left(r^{2}\right)
\end{aligned}
$$

on C_{p}, whence

$$
\left|\frac{1}{l(z)}\right|=O\left(e^{-\pi|y| r^{4 L}}\right) .
$$

Also by Theorem 1 of (2), we have, for all z,

$$
|l(z)|<A e^{\pi|y|} G^{2 L} .
$$

Hence, for $v \neq 0$,

$$
|l(v)|=O\left(|v|^{4 L}\right)
$$

and so

$$
|\rho(z)|=O\left(\sum_{v \neq 0} \frac{r}{|v|^{1-4 L} \| v|-r|}\right)+O(1) .
$$

To estimate this, we split up the sum as follows:

$$
\sum_{|v| \leqq 1}=\sum_{1 \leqq|v|<r}+\sum_{r<|v| \leqq 2 r}+\sum_{|v|>2 r}=\sum_{1}+\sum_{2}+\sum_{3} .
$$

Then,

Next,

$$
\begin{aligned}
\sum_{i} & <r^{4 L} \sum_{1 \leqq v<r} \frac{r}{v(r-v)} \\
& \leqq r^{4 L}(2 \log r+O(1)) .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{2} & =O\left(r \sum_{r<v \leqq 2 r} \frac{v^{4 L-1}}{v-r}\right) \\
& =O\left(r^{4 L} \log r\right) .
\end{aligned}
$$

E.M.S.-H
and finally,

$$
\begin{aligned}
\sum_{3} & =O\left(r \sum_{v>2 r} \frac{v^{4 L-1}}{v-r}\right) \\
& =O\left(r \sum_{v>2 r} v^{4 L-2}\right) \\
& =O\left(r^{4 L}\right) .
\end{aligned}
$$

It follows, therefore, that

$$
\rho(z)=O\left(r^{4 L} \log r\right)
$$

Hence,

$$
K_{p}(u)=O\left(\int_{0}^{\pi / 2} e^{-n y} r^{8 L} \log r d \theta\right)
$$

where $u \in[-\pi+\eta, \pi-\eta]$,

$$
\begin{aligned}
& =O\left(r^{8 L-1} \log r\right) \\
& =o(1)
\end{aligned}
$$

uniformly, since $L<\frac{1}{8}$.
Finally, to prove that $c_{v}=o(1)$, let C_{p}^{*} denote the contour obtained from C_{p} by replacing the minor arc formed by $\operatorname{Re} z=p-\frac{1}{2}$ by the chord. If

$$
J_{p}^{*}(u)=-\frac{1}{4 \pi} \int_{C_{p}^{*}} \frac{\rho(z) e^{i z u}}{z l(z)} d z
$$

then $J_{p}^{*}(u) \rightarrow 0$ uniformly, by the same argument as for $J_{p}(u)$. Let $\Sigma d_{v} e^{i v x}$ be the FS of g. Since, as $p \rightarrow \infty, J_{p} \rightarrow 0$, we have

Since $J_{p}^{*} \rightarrow 0$,

$$
\sum_{|v|}\left\{c_{v} e^{i l_{v} x}-d_{v} e^{i v x}\right\} \rightarrow 0
$$

$$
\sum_{-p \leqq}\left\{c_{v} e^{i i_{v} x}-d_{v} v^{i v x}\right\} \rightarrow 0
$$

Thus, $c_{p} e^{i l_{p} x}-d_{p} e^{i p x} \rightarrow 0$ as $p \rightarrow \infty$. But $d_{p} e^{i p x} \rightarrow 0$; hence $c_{p} \rightarrow 0$. Similarly, $c_{-p} \rightarrow 0$. This completes the proof.
3. By adding the condition

$$
\sum_{|v| \leqq p} \frac{\lambda_{v}}{v+\frac{1}{2}}=O(1), \quad p=1,2,3, \ldots
$$

and using (2), Theorem 2 , we can, in the theorem above, replace $\frac{1}{8}$ by $\frac{1}{4}$.
I am indebted to the referee for several helpful suggestions.

REFERENCES

(1) J. Korous, On a generalisation of Fourier series, Časopis Pešt. Mat. 71 (1946), 1-15.
(2) S. Verblunsky, On a class of infinite products, Proc. Cambridge Phil. Soc. 60 (1964), 847-854.

The University, Nottingham

