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Drift of the microscope during imaging is an unavoidable and generally undesired attribute that impedes 
high quality imaging and spectroscopic studies. As a result, means for compensating drift have been 
developed [1,2] and utilized by the community for several decades. In some cases, the methods require 
knowledge of the crystal structure as inputs to the algorithm. Regardless, continual improvement in drift 
correction, especially during microscope operation, will be needed to make studies such as recent atomic 
manipulation efforts [3] possible at larger scales.  
 
Recently, it has been shown that deep convolutional neural networks (DCNN) offer a remarkable ability 
to automatically locate and classify atomic-scale defects in images captured from scanning tunneling 
and scanning transmission electron microscopy [4,5]. The remarkable success of DCNNs is likely due to 
the fact that such methods are often more robust against noise than traditional feature-crafted methods 
[6], as the deep networks are composed of layers of increasingly more abstract learned features. 
 
Here, we explore whether DCNNs can be useful to quickly diagnose and rectify drift issues in the 
microscope. As a proof of principle, we operate entirely on simulated data of a hexagonal atomic lattice 
with different lattice spacings and rotation. We simulated these hexagonal lattices with the addition of 
uniform noise of a differing intensity. We then took the same image set and applied a simple 
displacement transformation of known magnitude, thus resulting in two images: one before and one after 
the linear transformation (see Fig. 1(a,b)).  The goal of the network was to learn the transformation, 
represented as a simple [x,y] vector.  
 
Our approach consisted of three distinct steps: (1) Denoise the two images using a specifically trained 
DCNN, (2) Calculate the normalized cross correlation between the two denoised images, and (3) Use 
another DCNN on the cross-correlation matrix to learn the transformation. The reasons for using cross 
correlation as an input is that we found empirically that simply inputting the two images is insufficient 
for the network to learn the appropriate mapping. This is probably because CNNs utilize spatial 
invariance due to the convolution operation, whereas in this example, our goal is specifically the 
opposite, i.e. to learn a spatial transformation. Moreover, calculating the normalized cross correlation 
between the two images is more accurate if the images are first denoised. We trained a separate DCNN 
to accomplish the denoising, and an example output of running the two images in Fig. 1(a,b) through 
this network are shown in Fig. 1(c,d). Based on this, we calculate the normalized 2D Cross correlation, 
and then input this to our DCNN, whose architecture is shown in Fig. 1(e), and trained to learn the 
transformation. The results of training the DCNN are shown in Fig. 1(f). In total we trained for 250 
batches, with each batch consisting of 1024 image pairs (giving a total of 256,000 image data pairs). As 
Fig. 1(g) shows, there is a steady increase in the accuracy of the network as training progresses and 
giving a total validation accuracy of just above 80%. Further results on the validation set for the x and y 
shifts of the transformation are shown in Fig. 1(g, h). Note that this is calculated based on the error 
between the predicted transformation vector and the actual transformation vector. Efforts are ongoing at 
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(a) generalizing to more realistic situations where defects and voids are present, and (b) implementing 
this setup on an electron microscope [7].  
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Figure 1.  Deep Learning for Image Denoising and Drift Correction. (a,b) Simulated images of a 
hexagonal lattice with the image in (a) shifted by some amount and plotted in (b). The aim is to learn the 
level of shifts. To accomplish this, the images are first denoised, via a separate deep convolutional 
neural network, with results shown in (c,d). The normalized 2D cross-correlation is calculated and fed to 
the DCNN in (e), which consists of several convolutional layers followed by three fully connected 
layers. This then outputs the transformation (i.e., the image shift). The training of this DCNN is shown 
in (f) as a function of batch number. Results are on the validation set are shown in (g,h).  
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