PRODUCTS OF IDEMPOTENT ENDOMORPHISMS OF AN INDEPENDENCE ALGEBRA OF FINITE RANK

by JOHN FOUNTAIN and ANDREW LEWIN
(Received 8th October 1990)

Abstract

Products of idempotents are investigated in the endomorphism monoid of an algebra belonging to a class of algebras which includes finite sets and finite dimensional vector spaces as special cases. It is shown that every endomorphism which is not an automorphism is a product of idempotent endomorphisms. This provides a common generalisation of earlier results of Howie and Erdos for the cases when the algebra is a set or vector space respectively.

1991 Mathematics subject classification (1985 Revision): 20M20

Introduction

For a mathematical structure M we denote the set of endomorphisms of M by $\operatorname{End}(M)$ and the set of automorphisms of M by $\operatorname{Aut}(M)$. Under composition of mappings, $\operatorname{End}(M)$ is a monoid and $\operatorname{Aut}(M)$ is a subgroup of this monoid. We let E denote the set of non-identity idempotents of $\operatorname{End}(M)$. Over the last twenty-five years considerable effort has been devoted to describing the subsemigroup $\langle E\rangle$ generated by E. The first results were obtained by Howie in [7] where a set-theoretic description of $\langle E\rangle$ is given when M is simply a set and $\operatorname{End}(M)$ is the full transformation semigroup on M. For the case when M is a finite set, the result is:

$$
\langle E\rangle=\operatorname{End}(M) \backslash \operatorname{Aut}(M) .
$$

When M is a finite dimensional vector space, J. A. Erdos [3] proved the same result. An alternative proof was given later by Dawlings [1].

The object of the present paper is to prove the result for a class of algebras, called independence algebras, of which sets and vector spaces are specific instances. We thus obtain a common generalisation of the theorems of Howie and Erdos.

In [7], Howie also described $\langle E\rangle$ when M is an infinite set and the analogous result for an infinite dimensional vector space M was found by Reynolds and Sullivan [11]. A common generalisation of these theorems for a special class of independence algebras is the subject of a subsequent paper.

Independence algebras were defined by Gould in [4] where she describes the basic semigroup structure of the endomorphism monoids of such algebras. In fact, independence algebras are precisely the v^{*}-algebras introduced by Narkiewicz [10] and
described in [5]. However, we follow Gould's formulation of the concept as this is designed to facilitate the study of the endomorphism monoid of the algebra. We give the appropriate definitions and terminology in Section 1 and follow this with a summary of some of Gould's results on the endomorphism monoids of independence algebras. The second section of the paper is devoted to proving the main theorem.

1. Preliminaries

For standard concepts of semigroup theory see, for example, [8]. For universal algebra terminology and notation we follow [9] with the exception that we denote the subalgebra generated by a subset X of an algebra A by $\langle X\rangle$. If the algebra A contains constants, that is, values of nullary operations, then we denote the subalgebra generated by the constants by Con and make the convention that $\langle\varnothing\rangle=$ Con. A subset X of an algebra A is said to be independent if $X=\varnothing$ or for every element x of X we have $x \notin\langle X \backslash\{x\}\rangle ; X$ is dependent if it is not independent. Clearly, every singleton set consisting of a non-constant element of A is independent.

A standard Zorn's lemma argument shows that, given subsets X_{0}, X of A with X_{0} independent and contained in X, there is an independent subset Y of A with $X_{0} \subseteq Y \subseteq X$ such that Y is maximal among independent sets contained in X. The following result is from [9, p. 50, Exercise 6].

Proposition 1.1. For an algebra A, the following conditions are equivalent:
(1) For every subset X of A and all elements u, v, of A, if $u \in\langle X \cup\{v\}\rangle$ and $u \notin\langle X\rangle$, then $v \in\langle X \cup\{u\}\rangle$.
(2) For every subset X of A and every element u of A, if X is independent and $u \notin\langle X\rangle$, then $X \cup\{u\}$ is independent.
(3) For every subset X of A, if Y is a maximal independent subset of X, then $\langle X\rangle=\langle Y\rangle$.
(4) For subsets X, Y of A with $Y \subseteq X$, if Y is independent, then there is an independent set Z with $Y \subseteq Z \subseteq X$ and $\langle Z\rangle=\langle X\rangle$.

An algebra A is said to have the exchange property or to satisfy [EP] if it satisfies the equivalent conditions of Proposition 1.1. A basis for A is a subset of A which generates A and is independent. It is clear from Proposition 1.1 that any algebra with the exchange property has a basis. Furthermore, for such an algebra A, bases may be characterised as minimal generating sets or maximal independent sets, and all bases for A have the same cardinality. This cardinal is called the rank of A and is written as rank A.

We emphasise that (4) of Proposition 1.1 tells us that any independent subset of A can be extended to a basis for A. We also remark that it is clear that if A satisfies [EP], then so does any subalgebra of A.

We now define an independence algebra to be an algebra A which satisfies [EP] and also satisfies:
[F] For any basis X of A and any function $\alpha: X \rightarrow A$, there is an endomorphism $\bar{\alpha}$ of A such that $\left.\bar{\alpha}\right|_{X}=\alpha$.

Condition [F] is equivalent to asserting that A is free in the variety it generates and that any basis is a set of free generators. We note that if A is an independence algebra and Y is an independent subset of A and $\alpha: Y \rightarrow A$ is any function, then there is a homomorphism $\bar{\alpha}:\langle Y\rangle \rightarrow A$ which extends α. This follows from [F] since, by the exchange property, Y can be extended to a basis X for A and then any extension of α to X gives rise to an endomorphism of A which restricts to give the required homomorphism.

It is easily seen that this homomorphism is uniquely determined by α. Thus if the endomorphisms θ and ψ agree on a basis for A, then $\theta=\psi$.

Familiar examples of independence algebras are sets (where all subsets are independent), vector spaces (where the independent subsets are the linearly independent subsets) and for any group G, free G-sets (where the independent sets are subsets of free generating sets).

Let A be an independence algebra. The rank of an endomorphism α of A is defined to be rank of the subalgebra $\operatorname{Im} \alpha$. We quote the following lemma from [4].

Lemma 1.2. Let A be an independence algebra. If $\alpha, \beta \in \operatorname{End}(A)$, then rank $\alpha \beta \leqq m i n$ $\{$ rank α, rank $\beta\}$.

As a consequence of this lemma, for each cardinal κ with $\kappa \leqq \operatorname{rank} A$, the set

$$
T_{\kappa}=\{\alpha \in \operatorname{End}(A): \operatorname{rank} \alpha \leqq \kappa\}
$$

is an ideal of $\operatorname{End}(A)$. When A has finite rank n we also use the notation $K(n, r)$ to denote T_{r} for $r \leqq n$.

The following description of Green's relations on the endomorphism monoid of an independence algebra is taken from [4].

Proposition 1.3. Let A be an independence algebra. Then for $\alpha, \beta \in \operatorname{End}(A)$,
(1) $\alpha \mathscr{L} \beta$ if and only if $\operatorname{Im} \alpha=\operatorname{Im} \beta$,
(2) $\alpha \mathscr{R} \beta$ if and only if $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$,
(3) $\alpha \mathscr{D} \beta$ if and only if rank $\alpha=\operatorname{rank} \beta$,
(4) $\mathscr{D}=\mathscr{F}$.

It follows from this proposition that the principal ideals of $\operatorname{End}(A)$ are precisely the ideals T_{κ} for $\kappa \leqq \operatorname{rank} A$. Other ideals exist only when rank A is infinite and when this is the case the remaining ideals are the sets

$$
I_{\kappa}=\{\alpha \in \operatorname{End}(A): \operatorname{rank} \alpha<\kappa\}=\bigcup\left\{T_{\lambda}: \lambda<\kappa\right\}
$$

for limit cardinals κ.

If $C o n \neq \varnothing$, then $T_{0} \neq \varnothing$ and T_{0} is a principal factor of $\operatorname{End}(A)$. Otherwise, $T_{0}=\varnothing$ and T_{1} is a principal factor. The remaining principal factors are the Rees quotients $T_{\kappa}+/ T_{\kappa}$ where κ^{+}is the successor of κ, and T_{κ} / I_{κ} for limit cardinals κ.

For each positive integer n we denote the principal factor T_{n+1} / T_{n} by P_{n+1} and the \mathscr{D}-class of endomorphisms of rank n by D_{n}. Then $P_{n+1}=D_{n+1} \cup\{0\}$ with the product of two members of D_{n+1} being zero if and only if the product in $\operatorname{End}(A)$ is not in D_{n+1}. If Con $\neq \varnothing$, then $P_{1}=T_{1} / T_{0}$ and $P_{0}=T_{0}$; otherwise, $P_{1}=T_{1}$.

We require two more results from [4].
Proposition 1.4. For each positive integer n, the principal factor P_{n} is completely 0 -simple (or completely simple if $n=1$ and $P_{1}=T_{1}$).

In [4] Gould gives an explicit representation of P_{n} as a Rees matrix semigroup.
Lemma 1.5. Let α be an endomorphism of an independence algebra A. If $\left\{x_{1}, \ldots, x_{k}\right\}$ is a basis for $\operatorname{Im} \alpha$ and if $y_{1}, \ldots, y_{\kappa} \in A$ are such that $y_{i} \alpha=x_{i}$ for $i=1, \ldots, k$, then $\left\{y_{1}, \ldots, y_{k}\right\}$ is independent.

2. The main theorem

Let A be an independence algebra and E be the set of idempotents in $\operatorname{End}(A) \backslash \operatorname{Aut}(A)$. We devote this section to the proof of the following theorem.

Theorem 2.1. If rank $A=n$ is finite, then

$$
\langle E\rangle=\left\langle E_{1}\right\rangle=\operatorname{End}(A) \backslash \operatorname{Aut}(A)
$$

where E_{1} is the set of idempotents of rank $n-1$ in $\operatorname{End}(A)$.
The strategy of the proof is inspired by an outline of a proof given in [2] for the case when A is a vector space. Let

$$
S=K(n, n-1)=\operatorname{End}(A) \backslash \operatorname{Aut}(A) .
$$

We show first that D_{n-1} generates S; in fact, we show that D_{n} generates $K(n, r)$. Next we consider a group \mathscr{H}-class H contained in D_{n-1}. We show that any \mathscr{H}-class in the same \mathscr{R}-class as H or in the same \mathscr{L}-class as H contains an element which is a product of idempotents. It then follows from Green's Lemma that P_{n-1} is generated by $H \cup E_{1}$. Finally, this allows us to show that P_{n-1} is generated by E_{1} and the theorem follows.

For the remainder of the paper, A denotes an independence algebra of rank n. If $n=1$, then either $C o n=\varnothing$ and $K(1,0)=\varnothing$ or A contains constant and $K(1,0)$ consists of all endomorphisms α with Im $\alpha=$ Con. Since all such endomorphisms are idempotent, it is certainly true that $K(1,0)$ is generated by idempotents. We may therefore assume henceforth that $n \geqq 2$.

Lemma 2.2. Let $\alpha \in D_{r-1}$ where $r<n$. Then there are endomorphisms β, γ in D_{r} such that $\alpha=\beta \gamma$.

Proof. If A contains constants, then r can be 1 . In this case, let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for A and define $\beta \in \operatorname{End}(A)$ by specifying $x_{1} \beta=x_{1}, x_{i} \beta=x_{i} \alpha$ for $i=2, \ldots, n$. Then $\operatorname{Im} \beta=\left\langle x_{1}\right\rangle$ so that $\beta \in D_{1}$. Now define $\gamma \in \operatorname{End}(A)$ by putting $x_{1} \gamma=x_{1} \alpha, x_{i} \gamma=x_{1}$ for $i=2, \ldots, n$. Since $2 \leqq n$, it is clear that γ has rank 1 . Further, it is equally clear that $x_{i} \beta \gamma=x_{i} \alpha$ for $i=1, \ldots, n$ so that $\beta \gamma=\alpha$ as required.

Now suppose that $1<r$. Then there is a basis $\left\{x_{1}, \ldots, x_{r-1}\right\}$ for $\operatorname{Im} \alpha$; this is contained in a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for A. Choose y_{1}, \ldots, y_{r-1} in A with $y_{i} \alpha=x_{i}$ for $i=1, \ldots, r-1$; then, by Lemma $1.5,\left\{y_{1}, \ldots, y_{r-1}\right\}$ is independent and so there is a basis $\left\{y_{1}, \ldots, y_{r-1}\right.$, $\left.y_{r}, \ldots, y_{n}\right\}$ for A. For $i=r, \ldots, n$ we have $y_{i} \alpha \in\left\langle x_{1}, \ldots, x_{r-1}\right\rangle$.

Define endomorphisms β and γ as follows:

$$
y_{i} \beta= \begin{cases}x_{i} & \text { for } 1 \leqq i \leqq r \\ y_{i} \alpha & \text { for } r<i \leqq r\end{cases}
$$

and

$$
x_{i} \gamma= \begin{cases}x_{i} & \text { for } 1 \leqq i \leqq r-1 \\ y_{i} \alpha & \text { for } i=r \\ x_{r} & \text { for } r<i \leqq n .\end{cases}
$$

It is readily seen that $\alpha=\beta \gamma$ and that

$$
\operatorname{Im} \beta=\operatorname{Im} \gamma=\left\langle x_{1}, \ldots, x_{r}\right\rangle
$$

so that β and γ both have rank r.

As a consequence of this lemma, a set of elements of rank r generates P_{r} if and only if it generates $K(n, r)$.

Lemma 2.3. If ϕ, γ are idempotents in D_{n-1}, then there is an idempotent ε in D_{n-1} such that $\phi \varepsilon \gamma \in D_{n-1}$.

Proof. Let $\left\{x_{1}, \ldots, x_{n-1}\right\}$ be a basis for $\operatorname{Im} \phi$; then $x_{i} \phi=x_{i}$ for $i=1, \ldots, n-1$ since ϕ is idempotent. Let $x_{n} \in A$ be such that $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for A. Then

$$
\operatorname{Im} \gamma=\left\langle x_{1} \gamma, \ldots, x_{n} \gamma\right\rangle
$$

and since γ has rank $n-1$, there is an independent subset of $\left\{x_{1} \gamma, \ldots, x_{n} \gamma\right\}$ of cardinality $n-1$.

If $\left\{x_{1} \gamma, \ldots, x_{n-1} \gamma\right\}$ is independent, then since $x_{i} \phi \gamma=x_{i} \gamma$ for $i=1, \ldots, n-1$, it follows that $\phi \gamma$ has rank $n-1$ and so taking $\varepsilon=\phi$ we have $\phi \varepsilon \gamma, \varepsilon \in D_{n-1}$.

Now suppose that $\left\{x_{1} \gamma, \ldots, x_{n-1} \gamma\right\}$ is dependent; then without loss of generality we may suppose that $\left\{x_{2} \gamma, \ldots, x_{n} \gamma\right\}$ is independent.

If $x_{n} \gamma \in\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$, then $x_{n} \gamma=\left(x_{n} \gamma\right) \gamma$ is in $\left\langle x_{1} \gamma, \ldots, x_{n-1} \gamma\right\rangle$ so that $\operatorname{Im} \gamma=$ $\left\langle x_{1} \gamma, \ldots, x_{n-1} \gamma\right\rangle$. But γ has rank $n-1$ and so we have $\left\{x_{1} \gamma, \ldots, x_{n-1} \gamma\right\}$ is independent, a contradiction. Hence $x_{n} \gamma \notin\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$ and it follows that $\left\{x_{1}, \ldots, x_{n-1}, x_{n} \gamma\right\}$ is independent. Now we define $\varepsilon \in \operatorname{End}(A)$ by putting $x_{1} \varepsilon=x_{n} \gamma,\left(x_{n} \gamma\right) \varepsilon=x_{n} \gamma$ and $x_{i} \varepsilon=x_{i}$ for $2 \leqq i \leqq n-1$. Then $\varepsilon^{2}=\varepsilon$ and ε has rank $n-1$. We also have $\phi \varepsilon \gamma \in D_{n-1}$ as required.

Corollary 2.4. Every \mathscr{H}-class contained in D_{n-1} contains an element which is a product of idempotents.

Proof. Let H be an \mathscr{H}-class contained in D_{n-1} and α be a member of H. Since $\operatorname{End}(A)$ is regular, there are idempotents γ, ϕ in R_{α} and L_{α} respectively. By Lemma 2.3, there is an idempotent ε such that $\gamma \varepsilon \phi \in D_{n-1}$. From the fact that P_{n-1} is completely 0 -simple, it follows that $\gamma \mathscr{R} \gamma \varepsilon \phi \mathscr{L} \phi$ so that $\gamma \varepsilon \phi \in H$.

An immediate consequence of this corollary and Green's Lemmas (see [8, Lemmas II.2.1 and II.2.2]) is the following result.

Corollary 2.5. Let H be a group of \mathscr{H}-class in D_{n-1}. Then every element in D_{n-1} can be written as a product of elements from $H \cup E_{1}$.

Lemma 2.6. Every element of D_{n-1} is a product of elements of E_{1}.
Proof. We use induction on n. When $n=1, D_{0}$ is the set of endomorphisms of rank 0 . Either $D_{0}=\varnothing$ and there is nothing to prove or A contains some constants and

$$
D_{0}=\{\alpha \in \operatorname{End}(A): \operatorname{Im} \alpha=\operatorname{Con}\} .
$$

In this case, D_{0} consists of idempotents and the result is true.
When $n=2$, let $\{x, y\}$ be a basis for A and consider the \mathscr{H}-class

$$
H=\left\{\alpha \in \operatorname{End}(A): \operatorname{Im} \alpha=\langle y\rangle, \operatorname{Ker} \alpha=C g^{A}(x, y)\right\} .
$$

Certainly H is a group \mathscr{H}-class because it contains the idempotent η given by $x \eta=y$, $y \eta=y$. If $\alpha \in H$, then $x \alpha=y \alpha=a$ for some element a of $\langle y\rangle$. Define ε_{1} and ε_{2} in $\operatorname{End}(A)$ by putting $x \varepsilon_{1}=y \varepsilon_{1}=x$ and $x \varepsilon_{2}=a, y \varepsilon_{2}=y$. Then $\alpha=\varepsilon_{1} \varepsilon_{2}$ and $\varepsilon_{1}, \varepsilon_{2}$ are clearly idempotents of rank 1 . Thus every member of H is a product of idempotents (of rank 1) and it follows from Corollary 2.5 that the same is therefore true of D_{1}.

Now assume that the result holds for $n-1$ where $3 \leqq n$. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for A and consider the \mathscr{H}-class

$$
H=\left\{\alpha \in \operatorname{End}(A): \operatorname{Im} \alpha=\left\langle x_{2}, \ldots, x_{n}\right\rangle, \operatorname{Ker} \alpha=C g^{A}\left(x_{1}, x_{2}\right)\right\} .
$$

The idempotent θ is in H where $x_{1} \theta=x_{2} \theta=x_{2}$ and $x_{i} \theta=x_{i}$ for $i=3, \ldots, n$. Thus H is a group \mathscr{H}-class. For $\alpha \in H$ we have $x_{1} \alpha=x_{2} \alpha$ and hence

$$
\operatorname{Im} \alpha=\left\langle x_{2} \alpha, \ldots, x_{n} \alpha\right\rangle
$$

and consequently, $\left\{x_{2} \alpha, \ldots, x_{n} \alpha\right\}$ is independent. Since $x_{1} \notin \operatorname{Im} \alpha$ it follows that $\left\{x_{1}, x_{2} \alpha, \ldots, x_{n} \alpha\right\}$ is independent and hence this set is a basis for A. We use this basis to define $\psi \in \operatorname{End}(A)$ by putting $x_{1} \psi=x_{2} \alpha$ and $\left(x_{i} \alpha\right) \psi=x_{i} \alpha$ for $i=2, \ldots, n$. Then ψ is an idempotent of rank $n-1$.

We define ϕ to be the idempotent endomorphism of rank $n-1$ given by $x_{1} \phi=x_{2} \phi=$ x_{1} and $x_{i} \phi=x_{i}$ for $i=3, \ldots, n$.
Now consider the algebra $B=\left\langle x_{2}, \ldots, x_{n}\right\rangle$ and define the endomorphism β^{\prime} of B by specifying

$$
x_{2} \beta^{\prime}=x_{3} \beta^{\prime}=x_{3} \alpha \text { and } x_{i} \beta^{\prime}=x_{i} \alpha \text { for } i=4, \ldots, n
$$

Then $\operatorname{Im} \beta^{\prime}=\left\langle x_{3} \alpha, \ldots, x_{n} \alpha\right\rangle$ so that β^{\prime} has rank $n-2$. By the induction assumption, $\beta^{\prime}=\varepsilon_{1}^{\prime} \ldots \varepsilon_{k}^{\prime}$ for some idempotents of rank $n-2$ in $\operatorname{End}(B)$. Now define $\varepsilon_{i} \in \operatorname{End}(A)$ for $i=1, \ldots, k$ by putting $x_{1} \varepsilon_{i}=x_{1}$ and $x_{j} \varepsilon_{i}=x_{j} \varepsilon_{i}^{\prime}$ for $j=2, \ldots, n$. Clearly, each ε_{i} is an idempotent of rank $n-1$. If we put $\beta=\varepsilon_{1} \ldots \varepsilon_{k}$, then it is readily verified that $\alpha=\phi \beta \psi$ so that the members of H are products of idempotents of rank $n-1$. It now follows from Corollary 2.5 that every member of D_{n-1} is a product of idempotent of rank $n-1$ and this completes the proof by induction.

Theorem 2.1 now follows immediately from Lemmas 2.6 and 2.2. We can deduce a stronger result from Theorem 2.1 and Lemma 2.2. Let E_{n-r} be the set of idempotents of $\operatorname{End}(A)$ having rank r.

Corollary 2.7. If A is an independence algebra of finite rank n, then $K(n, r)=\left\langle E_{n-r}\right\rangle$ for $r=1, \ldots, n-1$.

Proof. The case $r=n-1$ is simply a restatement of the theorem and so we may assume that $r<n-1$. In view of Theorem 2.1 every element of the \mathscr{D}-class D_{r} is certainly a product of idempotents. Hence by Lemma 1 of [6], any element α of D, is a product of idempotents all of which are \mathscr{D}-related to α, that is, in D_{r}. The result now follows from Lemma 2.2.

Finally, we remark that both Theorem 2.1 and Corollary 2.7 specialise immediately to give the corresponding results for the full transformation semigroup on a finite set, the monoid of endomorphisms of a finite dimensional vector space and the endomorphism monoid of a free G-set of finite rank.

REFERENCES

1. R. J. H. Dawlings, Semigroups of singular endomorphisms of vector spaces (PhD thesis, St Andrews, 1980).
2. R. J. H. Dawlings, The semigroup of singular endomorphisms of a finite dimensional vector space, in Semigroups (Eds. T. E. Hall, P. R. Jones, G. B. Preston, Academic Press, Sydney, 1980), 121-131.
3. J. A. Erdos, On products of idempotent matrices, Glasgow Math. J. 8 (1967), 118-122.
4. V. A. R. Gould, Endomorphism monoids of independence algebras, preprint.
5. G. Grätzer, Universal algebra (Van Nostrand, Princeton, 1968).
6. T. E. Hall, On regular semigroups, J. Algebra 24 (1973), 1-24.
7. J. M. Howie, The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707-716.
8. J. M. Howie, An introduction to semigroup theory (Academic Press, London, 1976).
9. R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebra, lattices, varieties, Vol. I (Wadsworth, Monterey, 1983).
10. W. Narkiewicz, Independence in a certain class of abstract algebras, Fund. Math. 50 (1961/62), 333-340.
11. M. A. Reynolds and R. P. Sullivan, Products of idempotent linear transformations, Proc. Roy. Soc. Edinburgh A, 100 (1985), 123-138.
Department of Mathematics
University of York
Heslington
York Y01 5DD
