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This paper considers a model with general regressors and unobservable common
factors. An estimator based on iterated principal component analysis is proposed,
which is shown to be not only asymptotically normal, but under certain conditions
also free of the otherwise so common asymptotic incidental parameters bias. Interest-
ingly, the conditions required to achieve unbiasedness become weaker the stronger
the trends in the factors, and if the trending is strong enough, unbiasedness comes
at no cost at all. The approach does not require any knowledge of how many factors
there are, or whether they are deterministic or stochastic. The order of integration of
the factors is also treated as unknown, as is the order of integration of the regressors,
which means that there is no need to pre-test for unit roots, or to decide on which
deterministic terms to include in the model.

1. INTRODUCTION

The use of panel data with interactive fixed effects in regression analyses has
attracted considerable attention in the empirical literature in economics and
elsewhere. One of the most common approaches to such models by far is the
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principal component (PC) approach of Bai (2009). In fact, the PC approach is
so common that it has given rise to a separate strand of literature (see Moon and
Weidner, 2015; Ando and Bai, 2017, for overviews). The present paper aims to
contribute to this strand, and it does so in at least three ways.

The first contribution of the paper is to consider a general data generating
process (DGP) that includes most of the specifications considered previously in
the literature as special cases. The only requirement is that suitably normalized
sample second moment matrices of the factors and regressors have positive definite
limits. This is noteworthy because the existing literature is almost exclusively
based on the assumption that both the factors and regressors are stationary. The
only exceptions known to us are Bai, Kao, and Ng (2009) and Huang et al. (2021),
but they limit the non-stationarity to unit-root processes only, which is also not
realistic. Indeed, regressors and factors of different orders of magnitude are likely
to be the rule rather than the exception, especially in economic and financial data,
due to differences in persistence over time.

The unrestricted DGP is important in itself because it can be accommodated
without requiring any knowledge thereof. Hence, not only do we treat the factors
and their number as unknown, but we also do not require any knowledge of the
order of magnitude of both factors and regressors. An important implication is
that there is no need to distinguish between deterministic and stochastic factors,
or stationary and non-stationary factors. In the existing literature, deterministic
factors are often treated as known, and are projected out prior to the application
of PC (see, for example, Moon and Weidner, 2015). The problem is that there is
typically great uncertainty over which deterministic terms to include, which raises
the issue of model misspecification. The fact that in the present paper deterministic
terms are treated as additional factors means that the problem of deciding on which
terms to include does not arise. Similarly, while the regressors can be tested for unit
roots, and the estimation can be made conditional on the test outcome, this raises
the issue of pre-testing bias. In the present paper, we do not require any knowledge
about the order of integration of the regressors, which means that there is no need
for any pre-testing.

Equally as important as the general model formulation and its empirical appeal
is the extension of the existing econometric theory, which has not yet ventured
much outside the stationary or pure unit-root environments. This is our second
contribution. The main difficulty here is not the unrestricted specification of the
factors and regressors per se, but rather that the order of magnitude of the factors
may differ. In particular, the problem is that the nonlinearity of the PC estimator
distorts the signal coming from the factors, just as it does in estimation of nonlinear
regression models with mixtures of integrated regressors (see, for example, Park
and Phillips, 2000). This is true if both the number and order of the factors are
known, and the problem does not become any simpler when these quantities
are treated as unknown, as they are here. An additional problem is that existing
studies on the selection of the number of factors all require data to be stationary
(see, for example, Bai and Ng, 2002; Ahn and Horenstein, 2013), and it is not
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obvious how one should go about it when the order of magnitude of the factor is
unknown.

Intuitively, the factors whose order is largest should dominate the PC estimator.
This motivates the use of an iterative estimation procedure in which the factors and
their number are estimated in order according to their magnitude with relatively
larger factors being estimated first. We begin by prescribing a large number
of factors, and estimate the resulting model by PC. The estimated factors only
capture the most dominating factors whose order of magnitude is largest. In
spite of this, we can show that the estimator is consistent, albeit at a relatively
low rate of convergence. The rate is, however, high enough to ensure that the
number of dominating factors can be consistently estimated using a version of the
eigenvalue ratio approach of Lam and Yao (2012) and Ahn and Horenstein (2013).
We then apply PC conditional on the first-step factor estimates, and estimate the
second most dominating set of factors. This procedure continues until we cannot
identify any more factors. Because of the iterative fashion in which the factors are
estimated, we refer to the new estimation procedure as “iterative PC” (IPC), which
is shown to be asymptotically (mixed) normal.

Our third contribution is to point out a “blessing” of trending factors. The
blessing occurs if the magnitude of the factors is sufficiently large, in which case
the otherwise common asymptotic bias of the PC approach can be completely
eliminated without imposing any additional restrictions on the cross-sectional and
time series dependencies of the regression errors. This is noteworthy because the
sentiment in the previous literature is that in order to eliminate the asymptotic bias
the errors have to be independent, which is not realistic.

The remainder of the paper is organized as follows. We begin by describing
the IPC approach. This is done in Section 2. Sections 3 and 4 present the formal
assumptions and our main asymptotic results, respectively. Section 5 provides
simulations to examine our theoretical findings. Section 6 concludes. In the
Supplementary Material, we provide (i) an empirical illustration using as an
example of the long-run relationship between U.S. house prices and income, (ii)
the proofs of our asymptotic results, and (iii) some results of secondary nature.

A word on notation. For any T-rowed full column rank matrix A, we define
its projection error matrix as MA = IT − A(A′A)−1A′ = IT − PA. If A is square,
λmin(A) and λmax(A) signify its smallest and largest eigenvalues, respectively,
trA signifies its trace, and ‖A‖ = √

trA′A and ‖A‖2 = √
λmax(A′A) signify its

Frobenius and spectral norms, respectively. We write A > 0 to signify that A is
positive definite. If B is also a matrix, diag(A,B) denotes the block-diagonal
matrix that takes A (B) as the upper-left (lower-right) block. The symbols
→D, →P, and MN(·,·) signify convergence in distribution, convergence in
probability, and a mixed normal distribution, respectively. We use N, T → ∞
to indicate that the limit has been taken while passing both N and T to infinity.
We use w.p.a.1 to denote with probability approaching one. Finally, I(A) is the
indicator function for the event A.
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2. THE IPC PROCEDURE

Consider the stacked T ×1 vector-valued variable yi = (yi,1, . . . ,yi,T)′, observable
for i = 1, . . . ,N cross-sectional units. The DGP that we will consider for this
variable is given by

yi = Xiβ
0 +F0γ 0

i +εi, (1)

where Xi = (xi,1, . . . ,xi,T)′ is a T × dx matrix of regressors, F0 = (f0
1, . . . ,f

0
T)′ is a

T ×df matrix of unobservable common factors with γ 0
i being a conformable vector

of factor loadings, and εi = (εi,1, . . . ,εi,T)′ is a T ×1 vector of idiosyncratic errors.
The interactive effects are here given by F0γ 0

i .
The factors are divided into groups according to their order of magnitude. There

are G groups of size d1, . . . ,dG, which means that d1 +·· ·+dG = df . Because the
grouping is unknown, we may without loss of generality assume that the factors
are ordered, such that the first d1 factors have the highest order of magnitude, the
next d2 factors have the second highest order, and so on. Hence, if we denote by F0

g

and γ 0
g,i the T × dg matrix of factors and the dg × 1 vector of loadings associated

with group g, respectively, then F0γ 0
i = ∑G

g=1 F0
gγ

0
g,i, where F0 = (F0

1, . . . ,F
0
G) and

γ 0
i = (γ 0′

1,i, . . . ,γ
0′
G,i)

′.
The goal is to infer β0. The main difficulty in the estimation process is, however,

how to control for F0. Our proposed IPC estimation procedure consists of three
steps. We first initialize the estimation procedure by applying the PC estimator
of Bai (2009). However, because the first group of factors dominates all the
other groups in terms of order of magnitude, the first-step PC factor estimator
will only estimate (the space spanned by) F0

1. The second step of the procedure
therefore involves iteratively applying PC conditional on previous factor estimates
to estimate all subsequent groups of factors; hence, the “I” in IPC. In the third and
final step, we estimate β0 conditional on the second-step IPC estimator of F0 and
the first-step PC estimator of β0.

Step 1 (Initial estimation). The objective function that we consider is given by

SSR(β,F) =
N∑

i=1

(yi −Xiβ)′MF(yi −Xiβ), (2)

where F ∈ DF = {FT×dmax : T−δF′F = Idmax} with dmax ≥ df and δ ∈ [0,∞) being
user-specified numbers. As we explain in Remark 1, the IPC estimator of β0 is
invariant to the choice of δ and the need to select dmax is standard. The initial
estimator is the minimizer of SSR(β,F):

(β̂0,F̂0) = argmin
(β,F)∈D

SSR(β,F), (3)
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where D = R
dx ×DF. It is useful to note that β̂0 satisfies β̂0 = β̂ (̂F0), where

β̂(F) =
(

N∑
i=1

X′
iMFXi

)−1 N∑
i=1

X′
iMFyi. (4)

Step 2 (Iterative estimation of factors). As already pointed out, the factors
are estimated in order according to magnitude. Therefore, F̂0 is estimating F0

1.
Since d1 ≤ df ≤ dmax, in general the dimension of F̂0 will be larger than that of F0

1.
We therefore begin this step of the estimation procedure by estimating d1, and
for this purpose we employ a version of the ratio of eigenvalue-based estimator
considered by, for example, Lam and Yao (2012) and Ahn and Horenstein (2013),
which is given by

d̂1 = argmin
0≤d≤dmax

{
λ̂1,d+1

λ̂1,d
· I

(
λ̂1,d

λ̂1,0
≥ τN

)
+ I

(
λ̂1,d

λ̂1,0
< τN

)}
, (5)

where τN = 1/ ln(max{̂λ1,0,N}), λ̂1,0 = N−1 ∑N
i=1 ‖yi − Xiβ̂0‖2, and λ̂1,1 ≥ ·· · ≥

λ̂1,dmax are the dmax largest eigenvalues of the following matrix:

�̂1 = 1

N

N∑
i=1

(yi −Xiβ̂0)(yi −Xiβ̂0)
′. (6)

The threshold τN , the “mock” eigenvalue λ̂1,0, and the indicator function are there
to ensure that the estimator is consistent. The need for these will be explained later.
Given d̂1, we update the estimate of F0

1 by setting F̂1 equal to the first d̂1 columns

of F̂0, and estimate γ 0
1,i by γ̂ 1,i = T−δF̂′

1(yi −Xiβ̂0).
The estimation of F0

2, . . . ,F
0
G is analogous to that of F0

1. The main difference is
that we have to condition on all previous estimates. Let us therefore use F̂−g =
(̂F1, . . . ,F̂g−1) and γ̂ −g,i = (γ̂ ′

1,i, . . . ,γ̂
′
g−1,i)

′ to denote the matrices containing the
previously estimated factors and loadings, respectively, when estimating group g.
The estimator of dg is then given by

d̂g = argmin
0≤d≤dmax

{
λ̂g,d+1

λ̂g,d
· I

(
λ̂g,d

λ̂g,0
≥ τN

)
+ I

(
λ̂g,d

λ̂g,0
< τN

)}
, (7)

where we update τN by letting τN = 1/ ln(max{̂λg,0,N}), λ̂g,0 = N−1 ∑N
i=1‖MF̂−g

(yi − Xiβ̂0)‖2 and λ̂g,1 ≥ ·· · ≥ λ̂g,dmax−d̂g−1−···−d̂1
are the dmax − d̂g−1 −

·· ·− d̂1 largest eigenvalues of

�̂g = 1

N

N∑
i=1

(yi −Xiβ̂0 − F̂−gγ̂ −g,i)(yi −Xiβ̂0 − F̂−gγ̂ −g,i)
′. (8)

The resulting estimator F̂g of F0
g is given by the eigenvectors associated with

λ̂g,1, . . . ,̂λg,d̂g
and γ̂ g,i = T−δF̂′

g(yi −Xiβ̂0 − F̂−gγ̂ −g,i). New groups of factors are

https://doi.org/10.1017/S0266466623000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000270


6 BIN PENG ET AL.

estimated until d̂g = 0. At this point, we set Ĝ = g−1 and define F̂ = (̂F1, . . . ,F̂Ĝ).
This is the IPC estimator of F0.

Step 3 (Estimation of β0). Given F̂, we compute β̂1 = β̂ (̂F) using (4). The IPC-
based estimator of β0 is given by

β̂ = β̂0 +
(

N∑
i=1

Ẑ′
iẐi

)−1 N∑
i=1

X′
iMF̂Xi(β̂1 − β̂0), (9)

where Ẑi = MF̂Xi −∑N
j=1 MF̂Xĵaij with âij = γ̂ ′

i(�̂
′
�̂)−1γ̂ j, γ̂ i = (γ̂ ′

1,i, . . . ,γ̂
′̂
G,i

)′

and �̂ = (γ̂ 1, . . . ,γ̂ N)′.

Remark 1. In the bulk of the previous literature, the appropriate value of δ to use
depends on whether F0 is stationary or unit-root non-stationary (see, for example,
Bai, 2004). The assumed knowledge of δ is therefore tantamount to assuming that
the order of integration of F0 is known, which is not needed here. In fact, the
IPC procedure is invariant with respect to δ, which can therefore be set arbitrarily.
Choosing τN is analogous to choosing a suitable penalty in information criteria.
The choice is therefore not unique. The main requirement is that τN should tend
to zero at a slower rate than λ̂g,d/̂λg,0. Extensive Monte Carlo experimentation

suggests that τN = 1/ ln(max{̂λg,0,N}) works well in finite samples. The need to
specify a maximum dmax for the number of factors is standard in the literature (see,
for example, Bai and Ng, 2002).

Remark 2. The eigenvalue ratio λ̂g,d+1/̂λg,d is self-normalizing, which makes
it possible to handle factors that are of different order of magnitude. Still, there are
two issues. First, since λ̂g,d+1/̂λg,d is not defined for d = 0, we cannot have df = 0.

The use of the mock eigenvalue λ̂g,0 allows us to entertain this possibility. Second,
the limiting behavior of λ̂g,d+1/̂λg,d is unknown for d > dg ( Lam and Yao, 2012).
The use of the indicator function allows us to circumvent this problem. The idea is
to look at λ̂g,d only. If this eigenvalue is “small,” we take it as a sign of d > dg and

set λ̂g,d+1/̂λg,d to one. However, because the order of magnitude of f0
t is assumed

to be unknown, we cannot look at λ̂g,d directly but rather we look at λ̂g,d/̂λg,0,
which in contrast to λ̂g,d is self-normalizing.

Remark 3. Intuition suggests to take β̂1, the ordinary least squares (OLS)
estimator conditional on F̂, as the final estimator of β0 in Step 3. Interestingly,
while consistent, because of the step-wise estimation of the factors, the asymptotic
distribution of β̂1 is generally not (mixed) normal and nuisance parameter-free.
In Section 5, we use Monte Carlo simulations to evaluate the extent of this non-
normality.

3. ASSUMPTIONS

Assumption 1 is a high-level moment condition concerned mainly with the order
of magnitude of f0

t and xi,t. The high-level formulation is convenient because
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it is the moment conditions that drive the distribution theory, and we are not
specifically interested here in the exact conditions under which they hold. It may
be noted, however, that there are a variety of more primitive conditions that lead
to Assumption 1 (see Westerlund, 2018, for a discussion).

Assumption 1 (Moments).

(a) There exists a matrix �X such that E‖(NT)−1 ∑N
i=1 DTX′

iMF0 XiDT −�X‖2 =
o(1), where DT = diag(T−κ1/2, . . . ,T−κdx /2) with 0 ≤ κj < ∞ for j = 1, . . . ,dx,
E‖�X‖2 < ∞, and 0 < λmin(�X) ≤ λmax(�X) < ∞ w.p.a.1.

(b) ‖(NT)−1 ∑N
i=1 DTX′

iεi‖ = OP(1/min{√N,
√

T}) and ‖ε‖2 = OP(max{√N,√
T}) with ε = (ε1, . . . ,εN).

(c) There exists a matrix �F0 such that E‖CTF0′F0CT − �F0‖2 = o(1), where
CT = diag(T−ν1/2Id1, . . . ,T

−νG/2IdG) with ν1 > · · · > νG > 1/2, E‖�F0‖2 < ∞
and 0 < λmin(�F0) ≤ λmax(�F0) < ∞ w.p.a.1.

(d) There exists a matrix ��0 such that ‖N−1�0′�0 − ��0‖ = oP(1) and
maxi≥1E‖γ 0

i ‖4 < ∞, where �0 = (γ 0
1, . . . ,γ

0
N)′ is N ×df and 0 < λmin(��0) ≤

λmax(��0) < ∞.

Assumption 1(c) is general in that it imposes almost no restrictions on the
type of trending behavior that ft may have. The trending can be deterministic
and/or stochastic. Either way, the degree of the trending is not restricted. The
main requirement is that λmin(�F0) > 0 w.p.a.1, which implies that the elements
of ft cannot be asymptotically collinear. A majority of previous PC-based works
assume that T−1F0′F0 converges to positive definite matrix (see, for example, Bai,
2009; Moon and Weidner, 2015). Notable exceptions include Bai (2004) and
Bai et al. (2009), in which f0

t is assumed to follow pure unit-root process, and
Bai and Ng (2004), who allow for a mix of stationary and unit-root factors. The
fact that �F0 is not required to be a constant matrix means that we allow factors
that are stochastically integrated, although in this case λmin(�F0) > 0 rules out
the possibility of linear combinations of factors within groups that are of reduced
integration order. This is similar to the scenario considered by Bai and Ng (2004),
except that they restrict the order of integration of f0

t to be at most one. The only
study that comes close to ours in terms of the generality of the factors is that of
Westerlund (2018). However, he assumes that xi,t has a factor structure that loads
on the same set of factors as yi,t, which is not required here. Also, unlike Westerlund
(2018), we allow 1/2 < νG < 1, which means that the signal coming from f0

G,t is
even weaker than under stationarity, as when f0

G,t is stationary and sparse. Similarly
to Lam and Yao (2012), we refer to these types factors as “signal-weak.”

Assumption 1(a) is similar to Assumption 1(c) in that it leaves the trending
behavior of the regressors essentially unrestricted, provided that they are not
asymptotically collinear.

The first requirement of Assumption 1(b) is quite mild and holds if a central
limit theorem in only one of the two panel dimensions applies to the normalized
sum of DTX′

iεi. The second requirement is quite common in the literature, and is
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expected to hold as long as εi,t has zero mean, and weak serial and cross-sectional
correlation (see Moon and Weidner, 2015, for a discussion).

Assumption 1(d) is standard and ensures that each factor has a nontrivial
contribution to the variance of yi,t (see, for example, Bai and Ng, 2004, for a
discussion).

Assumption 2 (Identification). infF∈DF λmin(B(F)) ≥ c0 > 0 for all N and T,
where B(F)= (NT)−1 ∑N

i=1 DTZi(F)′Zi(F)DT with Zi(F)= MFXi −∑N
j=1 MFXjaij

and aij = γ 0′
i (�0′�0)−1γ 0

j .

Assumption 2 is analogous to Assumption A in Bai (2009), and Assumption
NC in Moon and Weidner (2015), and is there to rule out “low-rank” elements
in Xi that are wiped out by the defactoring and demeaning carried out in Zi(F) to
eliminate the interactive effects. The limitation here is therefore not that we cannot
allow for low-rank data components, which we do through the interactive effects,
but that we cannot identify their effects if included among the observed regressors.

Assumption 3 (Errors).

(a) E(εi,t) = 0 and E(εiε
′
i) = �ε,i.

(b) Let εt = (ε1,t, . . . ,εN,t)
′ in this assumption only. {εt : t ≥ 1} is strictly

stationary and α-mixing such that maxi≥1E|εi,1|4+μ < ∞ for some μ > 0 and
the mixing coefficient α(t) = supA∈F0−∞,B∈F∞

t
|P(A)P(B)−P(A∩B)| satisfies∑∞

t=1 α(t)μ/(4+μ) < ∞, where F0−∞ and F∞
t are the sigma-algebras generated

by {εs : s ≤ 0} and {εs : s ≥ t}, respectively.
(c)

∑N
i,j=1

∑T
t,s=1 |E(εi,tεj,s)| = O(NT) and

∑N
i,j=1 |σε,ij| = O(N), where σε,ij =

E(εi,tεj,t).
(d) εi,t is independent of γ 0

j , f0
s and xj,s for all i, j, t, and s.

Assumption 3 is similar to Assumptions C and D in Bai (2009). Assumptions
3(b) and (c) ensure that the serial and cross-sectional dependencies of εi,t are at
most weak. Assumption 3(d) requires xi,t and εi,t to be independent, which rules
out the presence of lagged dependent variables in xi,t.1 However, xi,t may still
be correlated with the unobserved regression error γ 0′

i f0
t in (1), as the correlation

between xi,t, γ 0
i , and f0

t is not restricted in any way.

Assumption 4 (Factors and loadings).

(a) maxg�=h ‖�0′
g �0

h‖ = OP(Np) and maxg�=h ‖F0′
g F0

h‖ = OP(Tq), where g,h =
1, . . . ,G, G > 1, p < 1, q < (νG +νG−1)/2 and νG−1 ≥ 1.

(b) If νG < 1, then T/N2 → c1 ∈ [0,∞).

The Assumption 4(a) condition that νG−1 ≥ 1 means that we only allow for
one group of weak factors. This can be seen as a form of normalization and is

1In the special case that yi,t , xi,t , and f0
t are cointegrated unit-root processes, a certain type of endogeneity can be

permitted whereby �xi,t and �f0
t are correlated with εi,t . This type of endogeneity can be dealt with as in Bai et al.

(2009).
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not particularly restrictive. Let us therefore instead consider maxg�=h ‖F0′
g F0

h‖ =
OP(Tq), which is less restrictive than the exact orthogonality condition typically
required in papers on grouped factor structures (see, for example, Ando and Bai,
2017). Even so, we now provide a justification for Assumption 4(a). As is well
known, γ 0′

i f0
t = γ 0′

i W−1Wf0
t for any positive definite rotation matrix W. Now set

W = (F0′F0C2
T)−1/2. This implies CTWF0′F0W′CT = Idf , which means that the

rotated factors are exactly orthogonal, and hence that Assumption 4 is satisfied
for F0W′ with q = −∞. The loading condition, maxg�=h ‖�0′

g �0
h‖ = OP(Np), can

be justified in the same way.2 Assumption 4(b) is not required unless some of the
factors are signal-weak.

4. ASYMPTOTIC RESULTS

Lemma 1 justifies the use of β̂0 in Step 1 of the IPC procedure as an initial estimator
of β0.

Lemma 1 (Consistency of β̂0). Under Assumptions 1 and 2, as N,T → ∞,

min{√N,
√

T}D−1
T (β̂0 −β0) = OP(1).

According to Lemma 1, Assumptions 1 and 2 are enough to ensure that β̂0 is
consistent for β0. The rate of convergence is given by ‖DT‖/min{√N,

√
T} =

max{T−κ1/2, . . . ,T−κdx /2}/min{√N,
√

T}. To put this into perspective, suppose that
xi,t is stationary, such that κ1 = ·· · = κdx = 0. In this case, DT = Idx and the rate of
convergence is given by 1/min{√N,

√
T}, which is the slowest of the regular rates

in pure time series and cross-sectional regressions. Still, the rate is fast enough for
the estimation of the number of factors. This brings us to Step 2 of the estimation
procedure.

Lemma 2 (Consistency of (̂d1, . . . ,d̂G+1) and F̂). Suppose that Assumptions 1–4
are satisfied. Then, the following results hold as N, T → ∞:

(a) P
(
(̂d1, . . . ,d̂G+1) = (d1, . . . ,dG+1)

) → 1, where dG+1 = 0;
(b) ‖PF̂ −PF0‖ = oP(1).

The consistency of (̂d1, . . . ,d̂G) is important for obvious reasons. The consis-
tency of d̂G+1 ensures that the stopping rule of Step 2 is asymptotically valid,
which in turn implies that P(Ĝ = G) → 1.

As we alluded to earlier, F0 and γ 0
i are only identified up to a rotation matrix.

However, we cannot claim that F̂ is rotationally consistent for F0, as the number of
rows of both objects is growing with T. We therefore have to resort to alternative

2Another way to rationalize Assumption 4 is if �0
1, . . . ,�

0
G are independent and at most one of them has nonzero

mean. Independence is often assumed, and we therefore do not justify it here (see, for example, Pesaran, 2006;
Chudik, Pesaran, and Tosetti, 2011). In order to justify the zero-mean assumption, suppose for simplicity that G = 2,
that γ 0

1,i = 1, and that γ 0
2,i = γ 0

2 + ηi with E(ηi) = 0. Hence, γ 0′
i f0

t = (γ 0
1,i,γ

0
2,i)(f

0
1,t,f

0
2,t)

′ = f 0
1,t + (γ 0

2 + ηi)f 0
2,t =

(1,ηi)(̃f 0
1,t,f

0
2,t)

′, where f̃ 0
1,t = (f 0

1,t +γ 0
2 f 0

2,t). Then the zero-mean assumption is fulfilled.
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consistency concepts. This is where Lemma 2(b) comes in. It shows that the spaces
spanned by F̂ and F0 are asymptotically the same.

We have now established that all the estimates of Steps 1 and 2 are consistent. We
therefore move on to investigate the Step-3 IPC estimator β̂ of β0. In Theorem 1,
we provide the asymptotic distribution of this estimator. In order to do so, however,
we need to impose another two assumptions.

Assumption 5 (Rates).

(a) N/TνG → ρ1 ∈ [0,∞);
(b) T2−νG/N → ρ2 ∈ [0,∞).

Assumption 6 (Asymptotic normality).

1√
NT

N∑
i=1

DTZi(F0)′εi →D MN(0dx×1,�),

as N, T → ∞, where � = plimN,T→∞
1

NT

∑N
i=1

∑N
j=1 DTE[Zi(F0)′εiεjZj(F0)|C]DT

with C being the sigma-algebra generated by F0.

If all the factors in f0
t are stationary such that G = 1 and νG = ν1 = 1, Assump-

tion 5 requires that N/T → ρ1 = 1/ρ2 ∈ (0,∞), which is the same condition as in
Bai (2009) and Moon and Weidner (2015). Note also that Assumption 5 rules out
the signal-weak case when νG < 1.

Assumption 6 is a central limit theorem that is analogous to Assumption E of Bai
(2009). The reason for requiring that the asymptotic distribution is mixed normal
as opposed to normal is that by doing so we can accommodate stochastically
integrated factors (see, for example, Bai et al., 2009). In the absence of such
integrated factors, the mixed normal becomes normal. Either way, Assumption 6

ensures that standard normal and chi-square inference based on β̂ is possible.

Theorem 1 (Asymptotic distribution of β̂). Under Assumptions 1–6, as
N, T → ∞,
√

NTD−1
T (β̂ −β0) →D MN(B−1

0 (
√

ρ1A1 +√
ρ2A2),B−1

0 �B−1
0 ),

where

B0 = plim
N,T→∞

E[B(F0)|C],

A1 = − plim
N,T→∞

1

T(1−νG)/2

N∑
i=1

DTE[X′
iMF0�εF0

G(F0′
GF0

G)−1(�0′
G�0

G)−1γ 0
G,i|C],

A2 = − plim
N,T→∞

1

T(3−νG)/2

N∑
i=1

N∑
j=1

DTE[Zi(0)′F0
G(F0′

GF0
G)−1(�0′

G�0
G)−1γ 0

G,jε
′
jεi|C],

with �ε = N−1 ∑N
i=1 �ε,i and Zi(0) = Xi −∑N

j=1 Xjaij.
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According to Theorem 1, the asymptotic bias is driven by the factors and
loadings of group G, which is intuitive as the factors of this group are smallest
in order of magnitude. They therefore dominate the asymptotic bias. By bounding
νG from below, Assumption 5 ensures that B−1

0 (
√

ρ1A1 +√
ρ2A2) is not diverging.

Let us now illustrate the implications of Theorem 1 taking as examples the cases
when f0

t is stationary and when it is unit-root non-stationary. If stationarity holds,
such that G = ν1 = 1 and ρ1 = 1/ρ2 ∈ (0,∞), the bias in Theorem 1 reduces to
B−1

0 (
√

ρ1A1 +ρ
−1/2
1 A2), which under the additional condition that xi,t is stationary

is identically the bias reported in Theorem 3 of Bai (2009). It is important to
note that while

√
ρ1A1 can be made arbitrarily small (large) by taking ρ1 to zero

(infinity), this will make ρ
−1/2
1 A2 divergent (negligible). It follows that unless

ρ1 ∈ (0,∞) the bias will diverge, which in turn means that there is no way to
make the bias disappear by just manipulating ρ1, which in practical terms means
restricting T/N. Indeed, as pointed out by Bai (2009), the only way to avoid bias
under stationarity is to assume that εi,t is homoskedastic and serially uncorrelated.3

A major point about Theorem 1 is that it showcases the importance of νG for
the IPC bias. In particular, the theorem makes clear that by allowing νG > 1,
we can break the abovementioned inverse relationship between ρ1 and ρ2, which
means that one can be zero without for that matter forcing the other to infinity.
In particular, ρ1 and ρ2 may both be zero. Let us therefore now consider the case
when f0

t is unit-root non-stationary. In this case, νG = 2, implying that T2−νG/N =
1/N → 0 as N → ∞, and hence Assumption 5(b) is satisfied with ρ2 = 0. The
part of the bias that emanates from

√
ρ2 B−1

0 A2 is therefore zero. Hence, if we in
addition assume that N/TνG = N/T2 → 0, so that ρ1 = 0, then

√
ρ1 B−1

0 A1 is zero
too, and the bias is gone. This is consistent with Proposition 4 of Bai et al. (2009),
which establishes that their version of the regular PC estimator is asymptotically
unbiased under exogeneity if N/T2 → 0.

In general, the larger νG is, the less restrictive the condition on T/N has to be for
ρ1 and ρ2 to be zero. The intuition for this result is simple. Indeed, while F0

G appears
twice in the denominator of A1 and A2, it only appears once in the numerator.
This “unbalancedness” together with ‖F0

G‖ = OP(TνG/2) means that A1 and A2 are
OP(T−νG/2), and therefore the bias is decreasing in νG.

Remark 4. Note that while biased, β̂ is still consistent at the best achievable
rate.4 This is in contrast to Lemma 1 and the relatively slow rate of convergence
reported there. The reason for this difference is that unlike Theorem 1, which
requires that Assumptions 1–6 all hold, Lemma 1 only requires Assumptions 1
and 2, and under these very relaxed conditions the Theorem 1 rate is not attainable.

3It is easy to see that A1 = 0dx×1 if εi,t is homoskedastic and serially uncorrelated, as MF0 �εF0
G = 0T×dG if �ε =

σ 2
ε IT . The proof of A2 = 0dx×1 requires more work and can be found in Bai (2009, Proof of Thm. 2(ii)).

4For example, if xi,t is stationary, such that DT = Idx , the rate of convergence is given by 1/
√

NT , which is the same
as in Bai (2009). If, on the other hand, xi,t is unit-root non-stationary, such that DT = T−1/2Idx , then the rate of
convergence is given by 1/

√
NT , just as in Bai et al. (2009).
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If, however, the conditions of Theorem 1 are met, then β̂0 and β̂1 are consistent
at the same rate as β̂ (see Lemma B.6 of the Supplementary Material for a formal
proof).

Corollary 1 (Unbiased asymptotic distribution). Suppose that the conditions
of Theorem 1 are met and that ρ1 = ρ2 = 0. Then, as N, T → ∞,

√
NTD−1

T (β̂ −β0) →D MN(0dx×1,B−1
0 �B−1

0 ). (10)

In Appendix C of the Supplementary Material, we provide some alternative
conditions that ensure A1 = A2 = 0dx×1. If ρ1, ρ2, A1, and A2 are all different
from zero, one possibility is to use bias correction. In the Supplementary Material,
we explain how the Jackknife approach can be used for this purpose.

Theorem 1 imposes only minimal conditions on the correlation and het-
eroskedasticity of εi,t, and is in this sense very general. Such generality is, however,
not possible if we also want to ensure consistent estimation of �. Let us therefore
assume for a moment that E(εi,tεj,s) = 0 for all (i,t) �= (j,s), so that εi,t is serially
and cross-sectionally uncorrelated. In this case,

N∑
i=1

N∑
j=1

E[Zi(F0)′εiεjZj(F0)|C] =
N∑

i=1

σ 2
ε,iE[Zi(F0)′Zi(F0)|C]. (11)

A natural estimator of this matrix is given by
∑N

i=1 σ̂ 2
ε,iẐ

′
iẐi, where σ̂ 2

ε,i =
T−1 ∑T

t=1 ‖MF̂(yi −Xiβ̂)‖2 and Ẑi is as in the definition of β̂. It is not difficult to
show that under the conditions of Theorem 1,∥∥∥∥∥ 1

NT

N∑
i=1

σ̂ 2
ε,iDT Ẑ′

iẐiDT −�

∥∥∥∥∥ = oP(1). (12)

Of course, in this paper, we do not assume knowledge of the order of the regressors,
which in practice means that the appropriate normalization matrix DT to use is
unknown. This is not a problem, however, as the usual Wald and t-test statistics
are self-normalizing. As an illustration, consider testing the null hypothesis of H0 :
Rβ0 = r, where R is a r0 ×dx matrix of rank r0 ≤ dx and r is a r0 ×1 vector. The
Wald test statistic for testing this hypothesis is given by

Wβ̂ = (Rβ̂ − r)′
⎡⎣R

(
N∑

i=1

Ẑ′
iẐi

)−1 N∑
i=1

σ̂ 2
ε,iẐ

′
iẐi

(
N∑

i=1

Ẑ′
iẐi

)−1

R

⎤⎦−1

(Rβ̂ − r),

(13)

which has a limiting chi-square distribution with r0 degrees of freedom under H0,
as is clear from
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Wβ̂ = [RDT
√

NTD−1
T (β̂ −β0)]′

[
RDT

(
1

NT

N∑
i=1

DT Ẑ′
iẐiDT

)−1
1

NT

N∑
i=1

σ̂ 2
ε,iDT Ẑ′

iẐiDT

×
(

1

NT

N∑
i=1

DT Ẑ′
iẐiDT

)−1

DT R
]−1

RDT
√

NTD−1
T (β̂ −β0) →D χ2(r0).

(14)

In the next section, we use Monte Carlo simulations as a means to evaluate the
accuracy of this last result in small samples.

The above results are for the case when εi,t is serially and cross-sectionally
uncorrelated. If εi,t is serially and/or cross-sectionally correlated, we recommend
following Bai (2009), who discusses the issue of consistent covariance matrix
estimation at length. The same arguments can be applied without change in current
context.

5. MONTE CARLO RESULTS

This section reports the results obtained from a small-scale Monte Carlo simulation
exercise. The DGP considered for this purpose is given by a restricted version of
(1) that sets dx = 2, β0 = 12×1, εi,t ∼ N(0,1), and N, T ∈ {40,80,160,320}. We
further set df = 3 and generate the elements of γ i = (γ 0

1,i,γ
0
2,i,γ

0
3,i)

′ as γ 0
1,i ∼ N(1,1),

γ 0
2,i ∼ N(0,1), and γ 0

3,i ∼ N(0,1). The elements of f0
t = (f 0

1,t,f
0
2,t,f

0
3,t)

′ are generated
as f 0

1,t = t, f 0
2,t = μt, and f 0

3,t = ct, where μt = μt−1 + ξt, μ0 = 0, ξt ∼ N(0,1/4),
and ct = sin(8π t/T). Hence, in this DGP, the common component is a random
walk with drift and cycle. Also, d1 = d2 = d3 = 1 and (ν1,ν2,ν3) = (3,2,1). Let
us denote by xj,i,t the jth element of xi,t. The following specification makes xj,i,t

correlated with the common component of yi,t:

xj,i,t = 1

dx

⎛⎝ df∑
j=1

|γ 0
j,i|+ |ξt|+ |ct|

⎞⎠+
( t

4

)(j−1)/4
+ vj,i,t, (15)

where vj,i,t is the ith element of the N ×1 vector vj,t = (vj,1,t, . . . ,vj,N,t)
′, which we

generate as vj,t = 0.5vj,t−1 +ωj,t, where ωj,t ∼ N(0N×1,�ω) and �ω has 0.5|m−n|
in row m and column n. Thus, vj,i,t is weakly correlated across both i and t.

For each combination of N and T, we report the correct selection frequency
for (̂d1, . . . ,d̂Ĝ) when seen as an estimator of (d1, . . . ,dG) and for d̂g individually
for each group g. Hence, while the former frequency captures the accuracy of
the estimation of both (d1, . . . ,dG) and G, the latter frequency only captures the
accuracy of the estimation of each dg. We also report the root-mean-squared error
(RMSE) of β̂ and PF̂, as measured by the square root of the average of ‖β̂ −β0‖2

and ‖PF̂ −PF0‖2, respectively, over the replications. The RMSE of β̂ is compared

to that of β̂0, β̂1 and the infeasible OLS estimator of β0 based on taking F0 as
known, β̂(F0). Some results on the Wald test at the 5% level based on R = Idx and
r = β0 are also reported. In particular, we report the size of Wβ̂ , Wβ̂0

, and Wβ̂1
,
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Table 1. Monte Carlo results for the estimated common component

Correct selection frequency RMSE

N T d̂1, . . . ,d̂Ĝ d̂1 d̂2 d̂3 PF̂

40 40 0.341 1.000 0.406 0.341 0.9453

80 0.628 1.000 0.646 0.628 0.5599

160 0.835 1.000 0.837 0.835 0.3715

320 0.954 1.000 0.954 0.954 0.3520

80 40 0.348 1.000 0.378 0.348 0.9452

80 0.661 1.000 0.668 0.661 0.4523

160 0.867 1.000 0.867 0.867 0.2634

320 0.958 1.000 0.958 0.958 0.2401

160 40 0.329 1.000 0.337 0.329 0.6401

80 0.684 1.000 0.686 0.684 0.4359

160 0.864 1.000 0.864 0.864 0.1761

320 0.960 1.000 0.960 0.960 0.1696

320 40 0.220 1.000 0.225 0.220 0.4043

80 0.603 1.000 0.603 0.603 0.2083

160 0.882 1.000 0.882 0.882 0.1326

320 0.988 1.000 0.988 0.988 0.1195

Note: The correct selection frequencies are for the estimated factor groups, which is Step 2 of the IPC
procedure. The results for d̂1, . . . ,d̂Ĝ treat both the groups and their number, G, as unknown, while the
results for d̂1, d̂2, and d̂3 take G as given. The reported RMSE results for PF̂ refer to the square root of
the average of ‖PF̂ −PF0 ‖2 across the Monte Carlo replications.

which are computed in an obvious fashion by replacing (β̂,F̂) with (β̂0,F̂0) and
(β̂1,F̂), respectively, and Wβ̂(F0), which is calculated in the same way as Wβ̂ but
with MF0 Xi in place of Ẑi. The critical values are taken from χ2(dx). As pointed
out in Section 2, the IPC estimator is invariant to δ. The results reported here are
based on δ = 1. We follow the bulk of the previous literature (see, for example,
Ahn and Horenstein, 2013; Bai and Ng, 2002; Moon and Weidner, 2015) and set
dmax = 10, which led to the same results as some of the other values we tried. The
number of replications is 1,000.

We begin by considering the results reported in Table 1 for the estimated
common component. The correct selection frequency of each d̂g suggests that
accuracy is decreasing in g, which is partly expected because the signal strength of
the factors, as measured by νg, is decreasing in g too. Also, the sequential nature of
the IPC estimation procedure implies that the error coming from the estimation of
dg−1 will tend to be imported into the estimation of dg, and therefore the procedure

will be more accurate in the beginning. We also see that the accuracy of (̂d1, . . . ,d̂Ĝ)

is almost identical to that of d̂G, suggesting that the accuracy of Ĝ is driven by the
accuracy of the group whose factors has the weakest signal.
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Table 2. Monte Carlo results for the estimated slopes

RMSE 5% size

Estimator N\T 40 80 160 320 40 80 160 320

β̂0 40 0.0573 0.0423 0.0380 0.0410 0.6800 0.7280 0.8410 0.9160

80 0.0335 0.0234 0.0212 0.0220 0.5990 0.6550 0.7940 0.9050

160 0.0219 0.0169 0.0158 0.0169 0.5820 0.3500 0.8680 0.9560

320 0.0148 0.0109 0.0105 0.0142 0.5680 0.6230 0.7750 0.9040

β̂1 40 0.0435 0.0296 0.0252 0.0262 0.3330 0.4320 0.6080 0.7520

80 0.0286 0.0177 0.0144 0.0138 0.2520 0.3130 0.4720 0.6830

160 0.0172 0.0127 0.0104 0.0102 0.2300 0.7260 0.5610 0.7560

320 0.0113 0.0079 0.0069 0.0084 0.2330 0.2770 0.4580 0.7060

β̂ 40 0.0383 0.0212 0.0129 0.0091 0.1320 0.0950 0.0580 0.0680

80 0.0280 0.0146 0.0092 0.0062 0.1500 0.0670 0.0650 0.0550

160 0.0164 0.0105 0.0064 0.0043 0.0960 0.0750 0.0690 0.0430

320 0.0099 0.0064 0.0044 0.0032 0.0720 0.0480 0.0420 0.0660

β̂(F0) 40 0.0254 0.0171 0.0114 0.0081 0.0550 0.0610 0.0440 0.0410

80 0.0186 0.0117 0.0084 0.0057 0.0750 0.0470 0.0560 0.0410

160 0.0127 0.0086 0.0059 0.0041 0.0560 0.0600 0.0530 0.0490

320 0.0087 0.0059 0.0041 0.0030 0.0640 0.0420 0.0520 0.0660

Note: The RMSE of β̂ refers to the square root of the average of ‖β̂ −β0‖2 across the Monte Carlo
replications. The RMSEs of β̂0, β̂1, and β̂(F0) are constructed in an analogous fashion, where β̂0 is the
initial Step-1 IPC estimator, β̂1 is the regular PC estimator based on the IPC estimator of the factors,
F̂, and β̂(F0) is the infeasible OLS estimator based on the true factors. The 5% size results are for the
Wald test associated with each estimator.

Looking next at the RMSE results reported in Table 2 for estimating β0, we
see that there is a clear improvement as the sample size increases. The best
overall performance is generally obtained when taking F0 as known, which is in
accordance with our priori expectations. However, the improvement is not very
large and it decreases with increases in N and T. The reason for this is the accuracy
of the estimated factors, which according to the RMSE of PF̂ reported in Table 1 is
high and increasing in N and T. The second best performance is obtained by using
β̂, followed by β̂1, and then β̂0.

If our asymptotic theory is correct, while the rejection frequency of Wβ̂ and
Wβ̂(F0) should converge to the nominal level 5% as the sample size increases, that
of Wβ̂0

and Wβ̂1
should not, and this is exactly what we see in Table 2. Note in

particular how the size of Wβ̂0
and Wβ̂1

is not only nonconvergent, but that it
is in fact increasing in N and T. In order to illustrate these results, in Figure 1,
we plot kernel smoothed versions of the empirical densities of the first element
of all four estimators considered (after centering by β0 and scaling by

√
NT) as

well as the normal density. The first thing to note is that the densities of β̂ and
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Figure 1. Simulated densities for the estimated slopes.
Note: The plotted curves are kernel smoothed empirical densities of the first element of each of√

NT(β̂ − β0) (red solid line),
√

NT(β̂1 − β0) (magenta dotted line),
√

NT(β̂0 − β0) (blue dash-
dotted line), and

√
NT(β̂(F0) − β0) (black dashed line). The normal density (green dashed line) is

also included for reference.

β̂(F0) approach the normal one as the sample size increases, and they are both
unbiased. The densities of β̂1 and β̂0 are by contrast biased and occasionally even
bimodal. Consistent with the size results reported in Table 2, we see that there is
no improvement as N and T increase, but that the non-normality instead tends to
get worse in larger samples.

6. CONCLUSION

The PC approach of Bai (2009) has attracted considerable interest in recent years
so that it has given rise to a separate PC literature. A key assumption in this
literature is that both the unknown factors and regressors are stationary, which
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is rarely the case in practice. In the present paper, we relax this assumption by
considering a very general DGP in which the factors and regressors are essentially
unrestricted. In spite of this generality, the proposed IPC estimator can be applied
without any input from the practitioner, except for the maximum number of factors
to be considered. The fact that in IPC there is no need to distinguish between
deterministic and stochastic factors means that the usual problem in applied work
of deciding on which deterministic terms to include in the model does not arise, as
these are estimated along with the other factors of the model. There is also no need
to pre-test the regressors for unit roots, which is otherwise standard practice when
using procedures that do not require the data to be stationary. In other words, the
proposed IPC is not only very general but also extremely user-friendly. It should
therefore be a valuable addition to the already existing menu of techniques for
panel regression models with interactive effects.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit: https://doi.org/
10.1017/S0266466623000270
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