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ALGEBRAS OF ACYCLIC TYPE 

PHIL HANLON 

Introduction. In this paper we consider the problem of determining 
when an algebra of formal power series over a commutative ring R is the 
homomorphic image of a reduced incidence algebra P ( P , ~). The 
question of when two such algebras are isomorphic is answered in 
Section 8 of [1]. A slight generalization of their notion of full binomial 
type is introduced here. 

Section 1 contains background material together writh a summary of 
the results of [1]. In Section 2 we present the desired characterization, 
and to conclude an application appears in Section 3. In Section 3 the tools 
of Section 2 are used to derive an equation of R. W. Robinson and R. P. 
Stanley which counts labelled, acyclic digraphs. 

1. Preliminaries. Let (P, ^ ) be a locally finite, partially ordered set. 
For each pair r and 5 in P with r ^ s, we let [r, s] denote the set 

[r, s] = {/: r g / ^ s}. 

This set, when given the ordering inherited from P , is called the interval 
between r and 5. We let S(P) denote the set of all intervals in P. 

Let @t be a commutative ring containing the rationals 0- Consider the 
^-algebra of all functions / mapping S(P) to ^?, with addition and 
multiplication of functions defined as 

(f+g)[r,s) =f[r,s] + g[r,s] 

(f*g)[r,s]= Z f[r,t)g[t,s] 
tf[r,s] 

and with multiplication of a function / by a scalar a ^ f defined as 

(af)[r,s] = af[r,s]. 

This (associative) algebra is called the incidence algebra of P and is 
denoted «/(P) . Three functions in Jr(P) will be of particular interest to 
us. The multiplicative identity is the Kronecker delta function b defined 
by 

AT 1 = I 1 ^r = 5 
[r' Si lO otherwise. 
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130 PHIL HANLON 

The zeta function, f, takes on the value 1 everywhere. It is easy to show 
that f is invertible; its inverse is the Môbius function of P , denoted ju. 
Those interested in a more thorough discussion of incidence algebras 
should see [3], or [1, Section 3]. 

It is worth noting that J (P) is commutative only if P is trivial. For 
suppose there exist r and 5 in P with r < s. Define/, g £ J (P) by 

f[u, v] = 

[u, v\ = 

1 if u = r and v = s 
0 otherwise 

1 if u = s and v = s 
0 otherwise. 

It is easy to check that (f*g)[r, s] = 1 whereas (g*/)[r, 5] = 0 and so 
J (P) does not commute. For this reason, a nontrivial partially ordered 
set can never have an incidence algebra which is isomorphic to an algebra 
of formal power series in one variable. 

Nonetheless, certain generating function identities can be interpreted 
within incidence algebras, and so it is appropriate to ask when an in­
cidence algebra J (P) may have subalgebras which are isomorphic to 
algebras of formal power series. In answer to this question, Doubilet, 
Rota and Stanley [1] introduced the notion of a reduced incidence 
algebra. 

Definition 1. Let (P, ^ ) be a locally finite partially ordered set, let ^ 
be an equivalence relation on the set of intervals S(P) and let R(P, ^ ) 
denote the set of all functions in J (P) which are constant on equivalent 
intervals; i.e., 

R(P,~) = {f e J(P):f[r,s] = f [r\ s'] whenever [r, s] ~ [r',s']}. 

The equivalence relation ~ is called order compatible if R(P, ~) is a 
subalgebra of J' (P) and in this case, R(P,~) is called the reduced 
incidence algebra associated with ~. 

Note that R(P}~) is a submodule of J{P) for any equivalence 
relation ^ , and so the condition that it be a subalgebra is precisely the 
condition that it be closed under multiplication. 

The equivalence classes of intervals will be called types and denoted 
with small Greek letters. If / is a function in R(P, ~) and a is a type, 
f(a) will denote the va lue / assumes on the intervals of type a. 

Definition 2. Let R(P, ^ ) be a reduced incidence algebra. For types 

a, j3, 7 define the incidence coefficients 7 
a, 0. 

as follows ; choose an interval 

[r, s] of type 7 and let 7 

that [r, t] is of type a and [t, s] is of type 0. 

be the number of elements t in [r, s] such 
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We need to check that Y 

.<*, P. 
is well-defined; i.e., independent of the 

choice of interval [r, s]. Define functions fa and/p by 

1 if [r, s] is of type a 
fa[r, s] = 

0 otherwise 

f\r cl = / l if b' ^ iS ° f t y P e ^ 
Jn ' J lo otherwise. 

Clearly these functions are in the reduced incidence algebra R(P, ~), so 
their product is as well. Hence fa*fp takes on the same value for each 

7 interval [r, s] of type y. But this value is simply the number 
«,0. 

The incidence coefficients describe the multiplication of R(P, ~) in 
the following way. L e t / and g be in R(P, ~) and let 7 be a type. Then 

(f*g)(y) = Z 
a.0 

y 
• a, fi. 

/(«)«(«. 

An example of an order compatible equivalence relation is to let P be 
the set of all finite subsets of {0, 1, 2, . . .} ordered by inclusion and to 
let ~ be defined by (5, T) ~ (Sf, T') if and only if the cardinality of the 
set T — S equals the cardinality of the set T' — Sr. In this case, the types 
are in one to one correspondence with the natural numbers so we denote 
the types by integers. The incidence coefficients are the binomial co­
efficients 

_ky n — k. 

and the map 

- G ) 

/-Z f(l)xl 

11 

is an isomorphism from R(P, ~) onto the algebra of exponential 
generating functions in one variable x. 

It is worth noting that if the equivalence relation ^ is order com­
patible and if the intervals [r, s] and [r't s'] are equivalent then the length 
of the longest chain in [r, s] equals the length of the longest chain in 
[r', s']. This can be seen as follows. Note that f is in R(Pf ~) hence f2 is 
in R(P, ~). It is easy to check that f2[r, s] is the cardinality of the 
interval [r, s] and so the function c defined by 

c[r, s] lOc 
f ^ covers r (i.e., if f [r, s] = 2) 

otherwise 
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is in R(P} ~). Now observe that the length of the longest chain in [r, s] 
is the maximal positive integer / such that cl[r, s] 7e 0. As cl must be 
constant on equivalent intervals, the result follows. 

In view of this, it makes sense to define the length of a type a} denoted 
1(a), to be the length of the longest chain in those intervals of type a. The 
reduced incidence algebra of the previous example is characteristic of 
those in which the map 

j V B(1(a)) 

is an ^-algebra isomorphism for an appropriately chosen sequence 
{B(n)\. Doubilet, Rota and Stanley [1] have characterized exactly when 
this happens; we next present their characterization. 

Definition 3. A reduced incidence algebra R(P, ~) is of full binomial 
type if the map 1(a) is one to one. 

This condition is very strong for it says that two intervals are equiv­
alent if and only if they have the same length. We note that in this case 
the function 1(a) maps the set of types one to one and onto a set of the 
form {0, 1, 2, . . . , N}. We consider only the case where N = oo. 

THEOREM 1. ([1]). Let R(P, ^ ) be a reduced incidence algebra. Then: 
(i) The map \p defined by 

^f(a)xl(a) 

Hf) = ?m«y) 
is an â?-algebra isomorphism for an appropriately chosen sequence of ring 
elements B(n) if and only if R(P, ^ ) is of full binomial type. 

(ii) Suppose ^ is an R-algebra homomorphism. By the change of variables 
xf = x/B(l) we will normalise B(l) to equal 1. Then B(n) is the number 
of maximal chains in the intervals of P of length n. 

In the next section, we consider the case where the map 1(a) is allowed 
to be many-one. We know that the map 

will fail to be an isomorphism. We instead look for conditions that will 
force it to be a homomorphism. 

2. Algebras of acyclic type. In this section we introduce the notion 
of an algebra of acyclic type and prove that a reduced incidence algebra 
is acyclic if and only if the natural map \p is a homomorphism. It is 
readily seen that every algebra of full binomial type is acyclic; the 
example in Section 3 will show that the converse does not hold. 
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Definition 4. Let R(P, ~) be a reduced incidence algebra. We say 
R(P, ~) is of acyclic type if for each a and ($, the sum 

7 

•a,0J 

is a function only of 1(a) and /(/3). To put this another way, R(P, ~) is 
of acyclic type if and only if whenever 1(a) = l(a') and /(/?) = l(j3f) then 

Y = s La', /?' 

THEOREM 2. Le/ i?(P, ^ ) èe a reduced incidence algebra. Then 
(i) the map \p defined by 

*(/) - Z /(<*)* 
«(a) 

3-5( / (a)) 

w aw S%-algebra homomorphism for an appropriately chosen sequence of ring 
elements B(n) if and only if R(P, ~) is of acyclic type. 

(ii) In this case, if B(l) is normalized to equal 1, then B(n) is the sum, 
taken over all types a of length n, of the number of chains of length n in a. 

Proof. We first prove (i). 
(=>) Suppose \p is an S%-algebra homomorphism. Let a and 0 be types 

with 1(a) = k and l(fi) = m. We will show that 

Y 
La, P 

B(k + m) 
B(k)B(m) ' 

Define fa and/^ in R(P, ~) by 

: a = T] 

(0 otherwise 

J^V) (O otherwise. 

Note that 

/ ( f \ x^f<*(v)x k 
X 

= ~B(k) • 

Similarly 

4,(ff) = x"/B(m). 
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Now 

Hf«%) = Z (/•»*//.) ( ? ) « 
Ky) 

5( / (7 ) ) 

/«(^l)//j(U2)J 
7 

J(7) 

£ ( % ) ) 

7 
a, 0. 

X 
Z(7) 

7 
a, 0. 

Observe that if 

above sum can be rewritten as 

k+m 

BUM) ' 

^ 0 then /(?) = /(a) + 1(0) = k + m and so the 

*(/«*/*) = 
X 

(2 
7 

B(k + m) x 7 

Lastly, we use the fact that \p is a homomorphism to get 

(2 5(fe + m) ^ 7 

and so 

7 
= * ( / « * « = *( /«)*( /*) = 

,/c m 

B(k)B(m) ' 

7 £(fe + m) 
B(k)B(m)' 

The right hand side depends only on & = Z(a) and w = l(f$) so P ( P , ^ ) 
is acyclic. 

(<=) Suppose P ( P , ^ ) is acyclic. We let S(m, k) denote the sum 

S(m, k) = £ 7 

for a and 0 with 1(a) = k and /(/3) = m. Also we let Tk denote the set 
of types of length k. 

Recall that the function c defined by 

c[r, s\ = 
Hi s covers ; 
0 otherwise 

is in R(P, ~). Observe that cn[r, s] is the number of maximal chains in 
the interval [r, s] of length n. 

Define B(n) to be the sum, taken over all types a of length n, of the 
number of chains of length n in a. So 

B(n) = D cn(y). 
y£Tn 

Let k be less than or equal to n. Then we can calculate B (n) in a different 
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way by 

B(n) = £ c"(7) = £ («^Ofr) = £ ( E 1 
La, PJ 

c*(a)c^*(0) 
) • 

At this point, observe that if 7 
a, 0. 

cfc(a:)cw-A:(j3) is nonzero, then a £ 7\-

and (3 £ T^.*. This follows from the three observations that 

(i) 9e 0 implies that a G T x and fi £ 7"m where / + m = n; y 
L«,£J 

(ii) ck(a) 7^ 0 implies that a £ Tt where I ^ k; 
(iii) cn~k(/3) 7* 0 implies that (3 d Tm where m ^ n — k. 

So the above sum becomes 

BM= £ (E £ y 
a, & 

= Z Z ^(«)^*(/J)(E f 7 J ) 
a£Tk P€Tn-k ^y€Tn L a , P _ | / 

= E c * ( a ) E cB-*(/3)5(/fe,w-^) 

= S ( * , » - A ) ( £ c * ( a ) ) ( E C~*(0)) 

= S(£,w - k)B(k)B{n - k). 

So for each fe and w, 5(&, w) = B(k + m)/B(k)B(m). 
Using this fact, we can now show that ^ is a homomorphism. It is 

clearly linear; consider next *p(f*g). 

Hf*g) = E (f*g)M 
J(T) 

B(l(y)) 

k n—k 
X X 

oo / n T 1 \ 

= £ £ £ £ E /(«)s(0)L7
fl ) / ^ 

«=o 7çr» ^k=o a£Tk PeTn-k La, p j / î TZj 
= V T T T (f^A ( g(fl)*"~* \ B(k)B{n - k) 

h t i „?& »<k-u \ B(k)J \B(n - k)J B(n) 

X ( E [ 7 1 ) = Ê Ê E E (/(a)**gW*n~*) 
\yeTn L a , fi]/ n=0 * = 0 a£Tk 0£Tn-k \ B (k) B (ft — k) / 

6(k,n — k) VjSoatr* B(k) 1 

x (Ê £ ^ f f ) - *«*<«>. 
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136 PHIL HANLON 

So \p is a homomorphism which completes the proof of (i). 
The proof of (ii) follows from the proof just given for (i). 

The above result assumed that the poset P contained intervals of 
arbitrarily large finite length. As in [1], this assumption can be dropped 
by considering the power series \p{f ) modulo xN+l where N is the length 
of the longest interval. 

3. An example. In this section we apply the methods of Section 2 
to the problem of counting labelled acyclic digraphs. 

Definition 5. An n-labelled digraph r of order k is a pair (V(r), E(r)) 
such that 

ii) V(r) Q {1,2, . . . , n) and \V{r)\ = k; 
(ii) E(r) is a set of ordered pairs of elements of V(r). 

Clearly k must be less than or equal to n. If k = n then r is called 
canonically labelled. 

To each ^-labelled digraph r or order k is associated a canonically 
labelled digraph of the same order which is obtained by relabelling the 
vertices of r with the numbers 1, 2, . . . , k in such a way as to respect 
the natural ordering of the vertices. This new digraph will be called the 
cononical representative of r and will be denoted r. 

For example, a 15-labelled digraph r or order 4 is shown below along 
with r. 

Definition 6. Let r = (V(r), E(r)) be an n-labelled digraph of order k. 
A directed cycle in r is a sequence of vertices v0j V\, . . . , v t with (viy vi+i) G 
E(r) for i = 0, 1, . . . , / — 1. r is acyclic if it contains no directed cycles. 
Let Pn be the set of all w-labelled acyclic digraphs and let P = US=o Pn-

Define the partial ordering ^ on P by r ^ s if there exists some t in P 
such that 
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(i) V(s) = V(r) U V(t) and V(r) H V(t) = 0; 
( i i ) £ ( r ) U J E ( r ) Ç £ ( s ) ; 

(iii) Those edges of 5 not in E(r) \J E(t) are directed from vertices in / 
to vertices in r. 

This definition states that s is constructed by placing t above r and 
then inserting directed edges from / to r. 

Note that if r ^ 5 then the element t is uniquely defined to be the 
subdigraph of s induced by the set of vertices V(s) — V(r). 

} -

This digraph / will be denoted I(r, s). Note that as a partially ordered 
set, the interval from r to s is isomorphic to the interval from the empty 
digraph to I(r, s). 

Recall that an order ideal in a partially ordered set (Q, ^ ) is a subset 
J oî Q having the property that if x ^ y and y G J then x G J. L e t ^ ( Ç ) 
denote the set of all order ideals of Q. It is easily verified that if J and K 
are order ideals in Q then so are J VJ K and J C\ K. Hence, if Q is a finite 
partially ordered set, then J(Q)} ordered by inclusion, is a sublattice of 
BQ where BQ denotes the lattice of subsets of Q. In particular, <f (Q) is 
distributive. 

Observe that for t G P, the interval from 0 to t is isomorphic as a 
partially ordered set to^/(?) , the lattice of order ideals of /, where I is the 
transitive closure of the digraph /. Note that ? is a partially ordered set 
since t is acyclic. Hence, each interval [r, s] in P is isomorphic to a finite 
distributive lattice of height \I(r, s)\. Here \I(r, s)\ denotes the number 
of points in /(r , s). 

Define an equivalence relation ^ on the intervals of P by [r, s] ~ 
[r'} s'] if and only if the canonical representatives of I[r, s] and I[r'r s'] 
are equal. For example, if 
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J 7 

3 7 

the canonical representat ive for both I(r, s) and I(rr, s') is 

2 3 

I(r,s) X X = I(r',s'). 

1 

So [r, 5] ^ [r', s ']. 
Observe t ha t within each equivalence class of intervals, there is a 

unique interval of the form (0, a) where a is a canonically labelled acyclic 
digraph. So we identify the types with the s e t s / of canonically labelled 
acyclic digraphs. T h e problem we wish to solve is t h a t of enumerat ing 
this s e t j / . 

T h e next four propositions explore some of the propert ies of this 
part ial ly ordered set and this equivalence relation ^ . We use the notion 
of an inpoint in a digraph, this being a point which has no edges leading 
away from it. 0 will denote the empty digraph. 

PROPOSITION 1. The equivalence relation ^ is order compatible. 
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Proof. Let r ^ s. We have noted t ha t the interval from r to s is iso­
morphic as a partially ordered set to the interval from 0 to Tf^T). More­
over, this isomorphism has the property t ha t iî r ^ u ^ v ^ s then the 
image of the interval [u, v] under this isomorphism is equivalent to [u, v]. 
This implies tha t if / , g Ç R(P, ~) then 

(f*g)[r,s] = (f*g)[0,I(r,s)]. 

As [r, s] ~ [rf, s'] if and only if I(r, s) = I(rr, s') we see tha t R(P, ~) is 
closed under multiplication. 

Recall t ha t for a £ A, the interval (0, a) is isomorphic to the lattice 
of order ideals of â, the transit ive closure of a. So, the length of (0, a) is 
equal to |a|, the number of points in a. 

[0, r] ~ [0, a] and where \r, y 

pairs is precisely the sum J^ Such pairs are constructed by first 

PROPSOITION 2. R(P, ~) is acyclic. 

Proof. Fix a, (3 G se and consider the pairs [r, y] where r ^ y, where 
^ [0,13]. Note tha t the number of these 

7 

placing 0 above a, then choosing labels for a and for /3 from amongst the 
set {1, 2, . . . , |a| + |/3|}, and then choosing edges to be inserted from 

be inserted in 2 | a | l / 3 1 ways. So 

P to a. The labels can be chosen in I '"' , , I ways and the edges can 

E T 

• a, P. \ Û: / 

11/31 

which is clearly a function only of \a\ = 1(a) and \fi\ = 1(0). 

PROPOSITION 3. B(n) = n\2^' 

Proof. By Theorem 2 (ii), B(n) is the sum, taken over all types a of 
length n, of the number of maximal chains of length n in a. Viewing the 
intervals as order ideals, it is clear tha t a maximal chain of length n 
consists of an ordering of the vertices 1, 2, . . . , n, together with a choice 
of edges from the later vertices to the earlier vertices. This can be done 

in n\2 2 ways. 

These initial three Propositions dealt with the reduced a lgebraR(P, ^ ) . 
Our final Proposition deals with the partial ordering P, in part icular with 
its Mobius function. 

PROPOSITION 4. Let r, s 6 P with r ^ s. Then 

r , J (— l)n if I(r, s) has n points and no edges 
ix\r s == \ 

1 10 otherwise. 
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Proof. As ~ is order compatible, \i is constant on equivalent intervals 
and so 

n[r,s] = M [ 0 , I ( 5 V O ] . 

Thus it suffices to consider /x[0, a] where a £ s/. 
The atoms of [0, a] are the single point digraphs consisting of those 

inpoints of a. The join of a set of these inpoints can have no edges, since 
an edge between inpoints is clearly impossible. Since every interval of P 
is a distributive lattice, the proposition follows immediately (see [3], 
Ex. 1, pp. 349-350). 

We may now proceed with counting acyclic digraphs, that is, with 
enumerating the set of types <$/. Let A be the linear operator on generating 
functions which takes/(x) = J^n=ofn

xn to 
co r n 

A(/(x)) = £ 1% . 

THEOREM 3. ([2] and [4].) Let A(x) be the exponential generating function 
for acyclic digraphs; i.e., let 

co n 

where an is the number of canonically labelled acyclic digraphs on n vertices. 
Then 

(AA(x))(Ae~k) = 1. 

Proof. We consider the map \p of Theorem 2. We have 

a J3\\a-\) 

unless a is the empty digraph; 

(ii) *(£) = £ 
s(M) ^|a|I?G) 

= AA(x); 

|a|!2 

a fix 

n==0 n\2® 

(Hi) *G0 = ZJ^kh= £ *=4f - ^-, 
\OL\\Z n\2i 

here using Proposition 4. 
In the reduced incidence algebra R(P, ~) we have 

rv = s. 
Applying ^ and using the fact that ^ is a homomorphism gives 

1 = *(S) = V(fV) = * G 0 * ( M ) = (A4(*))(A*-*). 
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ALGEBRAS OF ACYCLIC TYPE 141 

Conclusion. A similar result to the one in Section 2 can be proven for 
algebras of triangular type; again the isomorphism question was settled 
in [1]. An interesting question is to classify all reduced incidence albegras 
for which the natural map ^ is a homomorphism onto an algebra of 
power series in two variables. This would require that the intervals of P 
have two additive invariants and this would probably require that con­
ditions be imposed on the partially ordered set P as well as on the 
equivalence relation ^ . 
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