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ON THE CONJUGACY CLASSES IN A N 
INTEGRAL GROUP RING 

BY 

ALAN WILLIAMSON 

1. Introduction. Let G be a periodic group and ZG its integral group ring. 
The elements ±g(geG) are called the trivial units of ZG. In [1], S. D. 
Berman has shown that if G is finite, then every unit of finite order is trivial if 
and only if G is abelian or the direct product of a quaternion group of order 8 
and an elementary abelin 2-group. By comparison, Losey in [7] has shown that 
if ZG contains one non-trivial unit of finite order, then it contains infinitely 
many. 

If we set about the task of constructing non-trivial units of finite order, one 
way is to take conjugates of the elements of G in the group ring ZG. This 
raises the question as to when such a procedure will work. It is a consequence 
of a result of Sehgal and Zassenhaus [8] that at least one element of G has 
infinite conjugacy class in ZG, unless of course G is abelian or the direct 
product of a quaternion group of order 8 and an elementary abelian 2-group. 
In this paper we prove the following: 

THEOREM 1. Let G be a periodic group. An element x in G has finite conjugacy 
class in ZG if and only if either 

(i) x is central in G, or 
(ii) x has order 4 and is contained in an abelian subgroup H of index 2 in G 

where G = (H, c:c2 = x2 and hc = h'1 for all h e H). 

In fact the proof shows that if x is not central, then there are an infinite 
number of non-trivial conjugates unless JC has order 4 and G has the structure 
described in (ii). This may be compared with results of Bovdi: Let N be a 
normal periodic divisor subgroup of U(ZG), the group of units of ZG It is 
easy to show that N consists only of trivial units (Theorem 1 of [3]). In 
Theorem 11 of [4], Bovdi shows that U(ZG) contains a non-central abelian 
normal subgroup if and only if G has the structure described in (ii) above. 

2. Some lemmas. In this section we collect together various results on which 
our proof of Theorem 1 depends. Note that Lemmas 1, 2, and 3 are well-
known, they are to be found in the work of Berman [1] and Bovdi [3, 4]. For 
brevity, for y e G, whenever we write £ y S it is to be understood that the sum 
is taken over all the elements of (y). 
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LEMMA 1 (cf. p. 260 of [1]). Suppose that XGG and that there is an element 
a e ZG such that a2 — 0 and ax ¥^ xa. Then the set {(1 + ka)x(l — ka) :keZ} 
forms an infinite set of conjugates of x. 

Proof. Observe that 1 + ka is a unit in ZG with inverse 1 - ka. Furthermore, 
since (l + ka)x(l — ka) = x + k[(ax — xa) — kaxd] and ax — xa is non-zero, an 
infinite number of these conjugates are distinct. 

LEMMA 2. Let g and h be elements of finite order in the group G Then 
(lgi)(h-h^)(lgi) = Q. 

Proof. Observe that £ g^hgiZ gl) = £ gOMI gO-

LEMMA 3 (cf. p. 497 of [3]). Let xeG and suppose that x does not normalize 
some cyclic subgroup (c). Then there are an infinite number of conjugates of x in 
ZG 

Proof. Define a = (x -xc) £ c\ This is a sum of 2 \(c)\ distinct elements of G; 
for if xcl=xcc} (some i,/), then x~xcxe(c), which is not so. Now x~lax = 
(1 — [JC, c])X clx. This cannot equal a, for then J C ^ C ' ^ X C ' X and x would 
normalize (c). By Lemma 2, a2 = 0 and use of Lemma 1 gives the desired 
result. 

There is another result similar to Lemma 3: 

LEMMA 4. Let x, y, and c be elements in the periodic group G Suppose that c 
does not normalize (y) and that x has finite conjugacy class in ZG. Then 
[x, c]e(y). 

Proof. Define a = (c — cy) £ yl. This is a sum of 2 |(y)| distinct terms, because 
c does not normalize (y). By Lemma 2 a2 = 0, and as x normalizes (y) by 
Lemma 3, we have that x~1ax = (x~1cx — x~lcyx)^yi' This must equal a (by 
Lemma 1). Hence x~xcx X y1 = c X yl and [JC, c]e(y) as required. 

COROLLARY 1. Let x be an element in the periodic group G with finite 
conjugacy class in ZG. Then x normalizes every subgroup of G and (x) < G. 

Proof. By Lemma 3 it suffices to show that (x)<G. Suppose then, that (x) is 
not normal in G and let ce G\NG((x)). By Lemma 4 it follows that [x, c]e(x), 
which is impossible. 

COROLLARY 2. Let the finite group G contain a non-central element x with 
finite conjugacy class in ZG. Then every subgroup of G of prime order is a 
normal subgroup of G. 

Proof. Let y have prime order and suppose that (y) is not normal in G. We 
have that NG((y))<G and CG(x)<G, so |N G «y»U CG(x)\<\G\ and there is 
an element c in G which neither centralizes x nor normalizes (y). By Lemma 
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4, 17* [x, c] 6 (y). Since y has prime order, it follows that y e ([x, c]). However x 
normalizes (c) (Corollary 1) and so y e (c), which contradicts our choice of c. 

Given a group G containing at least one non-normal subgroup we can define 
R(G) to be the intersection of all the non-normal subgroups. In [2], Blackburn 
has classified all finite groups in which R(G) ^ 1. It turns out that we need his 
classification for p-groups, which is as follows: 

THEOREM (Theorem 1 of [2]). Let G be a finite p-group. Suppose that G 
contains at least one non-normal subgroup and that R(G) ^ 1. Then p = 2 and 
one of the following holds' 

(1) G is the direct product of a quaternion group of order 8, a cyclic group of 
order 4 and an elementary abelian 2-group. 

(2) G is the direct product of two quaternion groups of order 8 and an 
elementary abelian 2-group. 

(3) G contains an abelian subgroup A of index 2 where A is not elementary 
abelian. G is generated by A and t where r1 at = a - 1 (aeA) and t2eA is of 
order 2. 

During the proof of Theorem 1, we need to consider a group which is the 
direct product of a quaternion group of order 8 and a group of odd prime 
order. For convenience we deal with this rather special case here: 

LEMMA 5. Let x be a non-central element in a group G which is the direct 
product of a quaternion group of order 8 and a cyclic group of odd prime order p. 
Then x has an infinite conjugacy class in ZG. 

Proof. Let G = <u, v, y :uv = u~\ u2 = v2, u 4 = l , yp = 1, [w ,y ]= l = [i;,y]>. 
The non-central elements in G have order 4 or 4p. Without loss of generality 
we may assume that either x = v or x = vy. Let us write w for uy which has 
order 4p. Use the notation that if H is a group, then U(ZH) is the group of 
units in ZH. By Dirichlet's Unit Theorem (see 5.3.10 and 7.6.1 of [9]), the 
rank of U(Z(w)) is |<M4p) - 1 = p - 2 and the rank of U(Z(w2)) is |<M2p) - 1 = 
\{p — 3). Let us define a ring-homomorphism 6 from U(Z(w)) into U(Z(w2)) 
such that w6 = w2. 

Now rank U(Z(w»/ker 6 + rank ker 6 = rank U(Z(w)). So the rank of ker 6 
is at least p - 2 - | ( p ~ 3 ) . As this is at least | ( p - 1 ) , there is a unit / in ker 0 of 
infinite order such that </>n U(Z(w2))= 1. Since f6 = l, the unit / has form 
l + ( l - w 2 p ) I ? p - 1 a y ( a i G Z ) . 

Let us write f = fi+f2 where fxeZ(w) is the sum of those terms of / 
involving odd powers of w, and f2eZ(w2) is the corresponding sum involving 
even powers. We see that f2v = vf2 since w2 is central in G, but that fxv = —vft 

on using the fact that wv = vw2p+1. 
Consider fvf'1: it equals (/i + /2)t>(gi + g2) where gi is the sum of those terms 
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of / * involving odd powers of w, and g2 is the corresponding sum involving 
even powers. Hence fvf~l = v(f2-f1)(g1 + g2). But from (/i+/2)(gi + g2)=: 1 = 
(/igi+/2g2) + (/ig2+/2gi), it follows that / i g i+ / 2 g 2 = l and / ig 2 + /2gi = 0, as 
the first term involves even powers of w only and the second term odd powers. 

Hence fvf~x = v(f2g2-/igi + 2/2gi) is a non-trivial unit unless f2g2-f\g\ = wl 

(for some /) and /2gi = 0 = /1g2 . But in this case, as f igi+f 2g2=l we deduce 
that 2/2g2 = l + wl and so w£ = l . Therefore f2g2

:=l and figi = 0. But from 
above, fxg2 = 0, so f1(g1 4- g2) = 0 and fx = 0 since gx + g2 is a unit. Hence f = f2 

is a unit in Z(w2) contrary to hypothesis. An identical argument shows that 
{fkvf~k :keZ} forms an infinite set of distinct conjugates of v. Furthermore, 
{fkvyf~k} forms an infinite set of distinct conjugates of vy, as w centralizes y. 

3. Proof of Theorem 1. Let x be a non-central element in the periodic 
group G with a finite conjugacy class in ZG. The Corollaries 1 and 2 restrict 
very much the possible structure of G As a preliminary to proving the main 
theorem, we use these to prove: 

PROPOSITION. Let xbe a non-central element in the periodic group G with finite 
conjugacy class in ZG. Then x has order 4 and for any element c in G not 
centralizing x, the group generated by x and c is isomorphic to a quaternion group 
of order 8. 

Proof. Suppose that the result is false and that the group G is a counterex
ample. So G contains a non-central element x with finite conjugacy class in ZG 
and an element c e G\CG(x) such that (x, c)^Q8, a quaternion group of order 
8. We may suppose that G = (x, c) and that G is a minimal counterexample. 
Note that x normalizes (c) and c normalizes (x) (Corollary 1). 

Consider first the possibility that every subgroup of G is normal. It is 
well-known that a finite group with this property belongs to one of the 
following types: Q8, Q8xA, Q8xB or Q8xAxB where A is an elementary 
abelian 2-group and B is an abelian group of odd order (see Theorem 10.2.5 of 
[5]). In our case, G is a 2-generated finite group and so G must be of type 
Q8xB. By Lemma 5, B has composite order. Let p be a prime dividing \B\; at 
least one of the elements x and c has order divisible by p -suppose x. By the 
minimality of G, the group (xp, c) must be such that xp is centralized by c, 
which is not the case. We arrive at a similar contradiction if we assume that c 
has order divisible by p. 

Therefore there is a non-normal cyclic subgroup (y) in G. By Corollary 1, (y) 
is normalized by x and so (y) is not normalized by c. Again by Corollary 1, 
[x,c]e(y), and so [x, c]e Pl(y) where the intersection runs through all the 
non-normal cyclic subgroups of G. As [x, c ] ^ 1, it follows that R(G) ^ 1. We 
could use Blackburn's classification at this point, but it is easier if we first show 
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that G is a p-group. To do this, we show in turn that both x and c have 
prime-power order. Because (x)Pi(c)^l, this is sufficient. 

Assume first that x does not have prime power order. Let {pt} be the set of 
distinct primes dividing the order of x. We may choose pt such that (xp% c) is 
non-abelian (such is possible, for if c centralizes each xPi, then c would 
centralize x). As G is a minimal counterexample, (xPi, c)=Q8. Certainly p ^ 2 , 
but if pt is an odd prime it follows that G = Q8xB where B here is the cyclic 
group of order pt generated by x4 and Q8 is generated by xPi and c. This 
contradicts Lemma 5. An identical argument works in the case where c does 
not have prime-power order. 

We are now in a position to use Blackburn's Theorem applied to p-groups, 
quoted in the Introduction. The group G must be a 2-group, and the only 
2-generated 2-groups with R(G)^1 are of type (3): G = (A, t) where A is 
abelian, r1at = a~1 for all aeA and t2eA has order 2. 

Now if x lies in A, then t~1xtx~1 = x~1x~1 = x~2. But x normalizes every 
subgroup of G (Corollary 1) and so xtx~x = r1 (x does not centralize f, since 
then x would be central in G). Hence x2 = t2 and x has order 4. On the other 
hand, any element in G\A has order 4, for (at)2 = t(t~1at)at = t2. So JC has 
order 4. 

Let c have order 2 r + 1 . Clearly <JC) H (c) = (x2) = (c2r) and so x2 = c2\ From the 
fact that c~xxc = JC-1 it follows that x~xcx = c1+2r. Hence c2 is central in G, and 
as r > 1, c2r_1 is also central. But now consider that (xc2r1)2 = x2c2r = x4 = 1 and 
by Corollary 2 we deduce that xc2rl is central in G. This is impossible, for 
c~1(xc2r~1)c = x~1c2r~\ This completes the proof of the Proposition. 

We now complete the proof of Theorem 1. Let x be a non-central element in 
the periodic group G with finite conjugacy class in ZG. By the Proposition, x 
has order 4 and for any element geG\CG(x) we have that (x, g) = Q8. Put 
H=CG(x) and choose c e G\CG(x). For arbitrary h e H, hce G\CG(x) and so 
hchc = x2 = c2. Therefore c~xhc = h~x and it follows (cf. ex. 1 of Chapter 2 of 
[5]) that H is abelian, as required. 

Conversely, if x is central in G, then clearly it has finite conjugacy class in 
ZG. Whereas if x has order 4 and is contained in an abelian subgroup H of 
index 2 in G, where G is generated by H and an element c such that c2 = x2 

and hc = h~x for arbitrary heH, then Bovdi has shown (Theorem 11, [4]) that 
x is conjugate only to x and x"1. 

In conclusion it should be noted that conjugates of the elements ±g (ge G) 
are not, in general, the only units of finite order in ZG For example the 
element -3a + 3a2 + b-3ab + 3ba is a unit of order 3 in ZS3 (where S3 = 
(a, b : a3 = 1 = fc2, ab = a2)), but is not conjugate to a trivial unit. (For a full 
description of the group of units of ZS3, see [6].) It would be interesting to 
know which groups have the property that any unit of finite order is conjugate 
to a trivial unit. 
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