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Abstract . We study the stability of an idealised model of stellar promi­
nences. We find that surface fields of a few hundred gauss are required 
to hold them in a stable equilibrium. 

1. Physical Considerations 

Prominence-like clouds have now been observed in many stars other than the 
Sun. These stars are invariably very rapid rotators and exhibit a strong mag­
netic activity. In contrast to their solar counterparts, there is a class of stellar 
prominences that do not he close to the surface but rather at heights of sev­
eral stellar radii. In particular, they are inferred to form close to, or beyond, 
the corotation radius (Rk). This is the point at which the centrifugal force and 
gravity are in balanc e at the equatorial plane in a co-rotating atmosphere. 

Let us first consider the simple problem of determining the locations where 
material could, in principle, accumulate to form a prominence in a prescribed 
magnetic field. This is illustrated in Figures 1 and 2 where we calculate the 
points at which the combine d effects of gravity and centrifugal force (that we 
denote as effective gravity, geff = —GM+/r2+u>2r) are in a stable balance along 
the direction of the field. 

Figure 1. Equilibrium points for a dipole and a combined dipole and 
sextupole fields. Shown are the equipotential lines (dashed), field lines 
(light full), the unstable equilibrium points (dotted) and the stable 
equilibrium points (thick full). 
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Figure 2. Equilibrium points for a quadrupolar field. The parallel 
dashed lines contain the part of stellar surface occulted by a prominence 
formed in the stable equilibrium region, as seen by a distant observer 
along that direction. 

From these simple examples we infer that stable equilibrium along the di­
rection of the field is possible with simple potential fields. Not so obvious is the 
fact that this can occur below Rk even in the absence of a dipped configuration 
(Figure 1 a), while in other cases stable equilibrium is only possible further way 
from Rk (Figure 2). Assuming that prominences form on some of these equi­
librium surfaces, then, with the exception of the field configurations symmetric 
with respect to the stellar equator, they will in general have a curved shape. 

If we make the analogy with solar prominences, we expect these stellar 
clouds to be thin structures along the direction of B. If so, how can they be 
observed? This crucial question was raised during this conference by U. Anzer. 
Naturally, one can not rule out the possibility that stellar prominences are very 
different from their solar counterparts (e.g., Could they be evolving, cool post-
flare loops?). Nevertheless, if we assume this analogy, the question can be an­
swered by the fact that the area of the prominence projected on the stellar surface 
along the direction of the observer is a substantial fraction of the total stellar 
surface area, therefore absorbing a significant fraction of the chromospheric flux 
(Figure 2). Also, noticing that in the region where stellar prominences form 
the pressure scale-height is about one order of magnitude larger than the solar 
value, we predict that stellar promine nces have a greater width than solar ones. 

Let us now turn our attention to the equilibrium and stability of the promi­
nence material in the direction perpendicular to the field. The ratio of the gas 
pressure gradient force to the effective gravity in the radial direction is 

f „ _J1_ = Hi. (1) 
P9eff(r) loPQeff lo9eff 

where fo is the typical radial extent of the prominence and Tp its temperature. 
At the corotation radius geff = 0 and pressure is the only non-magnetic force 
present. However, if prominence material forms even a fraction of a stellar ra­
dius away from Rk and for typical parameters (Tp = 104K, fo « 108 - 109m), 
effective gravity dominates over pressure gradient and the above ratio is much 
smaller than one. We then neglect the gas pressure gradient force in the equi-
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librium equation and only look at the balance between the Lorentz force and 
effective gravity. It is reasonable to consider that stable equilibrium can occur 
in the prominence if the local magnetic energy is greater than the generalized 
gravitational potential energy: 

2p, 
> 

GM* 
+ 

w V 2 

(2) 
=** 

If the prominence lies sufficiently away from Rk this condition is similar to 
imposing VA > wrp. Writing the unknown prominence mass density in terms 
of the mass density of solar prominences, p = (p/p®)p®, and taking p© = 
1.6 X 10-13gcm~3, we obtain a minimum field strength, B(rp) 

5(3) = 5 (p/p@)1/2 G ; B{A) = 20 (p/P@)1/2 G, (3) 

which is similar to the field strength measured for solar prominences. Assuming 
a dipolar field one obtains a surface field of B3(rp = 3) = 135G and Ba(rp = 
4) = 1.3 kG, respectively. 

2. Axisymmetric Massive Current Sheet Model 

In this model prominences are represented by an equatorial axisymmetric mas­
sive current sheet supported by a dipole field. After prescribing the surface cur­
rent distribution, a(r) = —[Br]/p. = —2Bf/p,, the total magnetic field is com­
puted by assuming that either the field is closed everywhere or it opens up at a 
given radius in order to simulate the effect of a wind (Figure 3). The surface mass 
density is then determined using the equilibrium equation, m = —2B^Bglp,gejj. 

1 2 3 4 0 2 4 6 
Figure 3. Prominences as massive current sheets. Left: The promi­
nence extends from r = 2.4 to r = 3.4 and the field is closed everywhere. 
Right: The prominence extends from r = 3.0 to r = 4.0 and the field 
opens up at r = 5.0. The represented configurations are stable. 

In a rotating system there is no energy principle because of the Coriolis 
force. Nevertheless, by simply substituting gravity for geff and neglecting the 
Coriolis force one can still apply the energy method of Bernstein et al. (1958) 
to obtain sufficient, though not necessary, linear and ideal stability conditions: 

B ^ - ^ < + C (4) 
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dB+ 1 dgefJ p+ d ( m \ 

~^~ " J7f^~ r ~ d~r {\BT\J ^ ~ ~^ (5) 

The functions A and C represent the stabilizing effect of line-tying (Lep-
eltier and Aly 1996) and are such that A,C > 0. The above conditions are 
written assuming B$ < 0, Bf > 0 (r > Rk). These stability criteria are similar 
to the ones derived for solar prominences (Anzer 1969). Condition (4) is related 
with the field curvature and is easily obeyed by the equilibrium models. The 
term tuu2/r is stabilizing and allows for stable equilibrium to be possible for 
r < Rk without the presence of a dip at the loop top (Figure la). Condition 
(5) states that the mass per unit flux cannot decrease outwards very fast and 
this can be associated with the magnetic Rayleigh-Taylor instability. While so­
lar promin ences are most unstable to the interchange mode at their lower end, 
these stellar counterparts are most unstable at their upper end where the mag­
netic field strength is weaker and therefore less capable of stabilizing the equi­
librium. A normal mode analysis restricted to short wavelength perturbations 
yields necessary stability conditions (Spruit and Taam 1990). In the particular 
case considered, with the equilibrium at the equatorial plane, conditions (4) and 
(5) are found to be both necessary and sufficient. 

Masses of stellar prominences have been estimated to be of the order of 
2 - 6 x 1017g (Collier-Cameron et al. 1990). Although the model is axisymmetric, 
we consider that the prominence mass is concentrated in a region of dimension 
L in the azimuthal direction. We find that the minimum surface field strength 
necessary for a stable equilibrium is given by 

5s = M^rro%) (ix) G' 
where BQ depends on the following: the prominence location (rp), its radial 
extent, the mass distribution profile along it and also how close the prominence 
is to the open field region. Making sensible choices one obtains BQ — 200 —800G. 
The kinetic energy of these prominences is of the order of 1032 - 1033erg while 
the free magnetic energy calculated using stable equilibrium models is almost 
one order of magnitude lower. The energy of the flares observed on these stars 
can be as high as 5 X 1034 erg. We conclude that in these prominences there is 
enough energy to explain the low and medium energetic flares but probably not 
the very energetic ones. 
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