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Abstract. For a C1 non-conformal repeller, this paper proves that there exists an ergodic
measure of full Carathéodory singular dimension. For an average conformal hyperbolic
set of a C1 diffeomorphism, this paper constructs a Borel probability measure (with
support strictly inside the repeller) of full Hausdorff dimension. If the average conformal
hyperbolic set is of a C1+α diffeomorphism, this paper shows that there exists an ergodic
measure of maximal dimension.
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1. Introduction
Let f : M → M be a C1+α expanding map on a compact smooth Riemannian manifold
M with a conformal repeller�. Let μ be the unique equilibrium measure corresponding to
the Hölder continuous function −s log ‖Dxf ‖, where s is the unique solution of Bowen’s
equation

P(f |�, −s log ‖Dxf ‖) = 0,

then the following properties hold:
(1) dimH � = dimB � = s;
(2) the s-Hausdorff dimension of � is positive and finite, moreover, it is equivalent to

the equilibrium measure μ;
(3) dimH μ = dimH �,
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where dimH and dimB denote the Hausdorff dimension and the box dimension,
respectively. The first property of Hausdorff dimension was first established by Bowen
in a special case [8]. Ruelle showed the general case in [24], where his proof consists
of showing the second property. Falconer [15] obtained the equality between Hausdorff
dimension and box dimension. Later, the smoothness C1+α was eventually relaxed to C1

by Gatzouras and Peres [18]. The third property is clear from the variational principle of
topological pressure. Such a measure is called the measure of full dimension.

By the variational principle of topological pressure, there exists an equilibrium measure
provided that the entropy map μ �→ hμ(f ) is upper semi-continuous. The existence of
measures of full dimension could be regarded as a dimensional version of the existence
of an equilibrium state. However, the map μ �→ dimH μ enjoys no continuity property
even if the entropy map is upper semi-continuous. This is the crucial difference between
dimension and pressure/entropy.

As one can see, a C1 conformal repeller admits a measure of full dimension. How
about the non-conformal and hyperbolic case? The answer is usually negative, although
a certain special non-conformal repeller–average conformal repeller, which is introduced
in [2], does have an ergodic measure of full dimension (see [10, Theorem E]). So it is
natural to generalize the question into two parts: one is to consider a general quantity
of dimension type; the other one is to consider the existence of measures of maximal
dimension, that is, try to find an invariant measure which attains the supremum of the
following quantity:

δ(f ) = sup{dimH μ : μ is f -invariant}.
This quantity was introduced by Denker and Urbański [14] in the context of
one-dimensional complex dynamics, where they considered the supremum over the
ergodic measures of positive entropy. Later, this quantity has been intensively studied
in one-dimensional complex dynamics (see [25] for more details).

For non-conformal repellers, we consider a substitute quantity of dimension type
called Carathéodory singular dimension (see §2.3.2 for a detailed definition) which was
introduced by Cao, Pesin, and Zhao [11]. They proved its continuity for C1+α maps
under C1 topology. Later, following the approach described in [21], the authors introduced
the Carathéodory singular dimension of invariant measures in [12], and proved that the
unique zero of the measure theoretic pressure function equals the Carathéodory singular
dimension of ergodic measures. For a general C1 non-conformal repeller, in this paper, we
will prove that there exists an ergodic measure of full Carathéodory singular dimension.

For the existence of measures of maximal dimension for hyperbolic diffeomorphisms, it
was shown by Barreira and Wolf [5] that if f : M → M is a C1+α surface diffeomorphism
and � is a topological mixing locally maximal hyperbolic set, then there exists an ergodic
measure of maximal dimension, see [4, Ch. 5] for the hyperbolic conformal case. In [22],
Rams proved the existence of a measure of maximal dimension for piecewise linear
horseshoe maps by computing δ(f ) explicitly. In [30], Wolf showed that there exist finitely
many measures of maximal dimension for polynomial automorphisms of C2. However,
these are not guaranteed to be measures of full dimension unless the automorphism is
volume preserving. It should be noted that only a minimal lack of hyperbolicity may
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yield no measure of maximal dimension. Urbański and Wolf [26] constructed nonlinear
horseshoes of a surface, which are hyperbolic except at one parabolic fixed point, and
which do not have any measure of maximal dimension.

For an average conformal hyperbolic (ACH for short) set � of a C1 diffeomorphism,
which is introduced in [29], we construct a Borel probability measure μ (not necessarily
invariant) on � and show that this measure has full Hausdorff dimension, that is,
dimH μ = dimH �. Our method consists of using the weak Gibbs measure of a continuous
function. The desired measure is the product of two weak Gibbs measure with respect to
the future and past behavior of the derivative continuous function along unstable and stable
directions. The measure constructed in this way has support strictly inside the repeller. If�
is an average conformal hyperbolic set of a C1+α diffeomorphism, following Barreira and
Wolf’s approach in [5], this paper proves that there exists an ergodic measure of maximal
dimension, which extends the result [5] for average conformal hyperbolic sets.

The paper is organized as follows. In §2, we recall some necessary concepts, such
as average conformal hyperbolic set and Carathéodory singular dimension, and give the
statement of the main result in this paper. Section 3 presents the detailed proofs of the
results in the previous section. Namely, we prove that there exists an ergodic measure of
full Carathéodory singular dimension on a C1 non-conformal repeller; and we construct
a Borel probability measure of full Hausdorff dimension on a C1 average conformal
hyperbolic set; finally, we show that there exists an ergodic measure of maximal dimension
on a C1+α average conformal hyperbolic set.

2. Preliminaries and statements
In this section, we recall some notions in dimension theory and smooth dynamical systems,
and give the statement of the main results in this paper. The proofs will be postponed to
the next section.

2.1. Topological pressure. Let f : X → X be a continuous transformation on a compact
metric space X equipped with metric d. A subset F ⊂ X is called an (n, ε)−separated
set with respect to f if for any two different points x, y ∈ F , we have dn(x, y) :=
max0≤k≤n−1 d(f

k(x), f k(y)) > ε. A sequence of continuous functions � = {φn}n≥1 is
called sub-additive, if

φm+n ≤ φn + φm ◦ f n for all n, m ∈ N.

Given a sub-additive potential � = {φn}n≥1 on X, put

Pn(f , �, ε) = sup
{ ∑
x∈F

eφn(x)|F is an (n, ε)-separated subset of X
}

.

Definition 2.1. We call the following quantity

P(f , �) = lim
ε→0

lim sup
n→∞

1
n

log Pn(f , �, ε) (2.1)

the sub-additive topological pressure of (f , �).
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Remark 2.1. If � = {φn}n≥1 is additive in the sense that φn(x) = φ(x)+ φ(f x)+
· · · + φ(f n−1x) for some continuous function φ : X → R, we simply write P(f , �) as
P(f , φ). If it is clear from the context of the dynamics, we will simplify the topological
pressure as P(φ).

Cao, Feng, and Huang [9] proved the following variational principle:

P(f , �) = sup{hμ(f )+ L∗(�, μ) : μ ∈ Mf (X), L∗(�, μ) �= −∞}, (2.2)

where Mf (X) denotes the space of all f -invariant measures on X, hμ(f ) denotes the
metric entropy of f with respect to μ (see [27] for details of metric entropy), and

L∗(�, μ) = lim
n→∞

1
n

∫
φndμ

for every μ ∈ Mf (X). The previous limit is well defined. A standard sub-additive argu-
ment yields the existence of this limit. A measure μ ∈ Mf (X) that attains the supermum
in equation (2.2) is called an equilibrium state of the topological pressure P(f , �).

2.2. Dimensions of sets and measures. Now we recall the definitions of Hausdorff and
box dimensions of subsets and measures. Given a subset Z ⊂ X, for any s ≥ 0, let

Hs
δ(Z) = inf

{ ∞∑
i=1

(diamUi)s : {Ui}i≥1 is a cover of Z with diamUi ≤ δ, for all i ≥ 1
}

and

Hs(Z) = lim
δ→0

Hs
δ(Z).

The above limit exists, though the limit may be infinity. We call Hs(Z) the s-Hausdorff
measure of Z.

Definition 2.2. The following jump-up value of Hs(Z)

dimH Z = inf{s : Hs(Z) = 0} = sup{s : Hs(Z) = ∞}
is called the Hausdorff dimension of Z. The lower and upper box dimension of Z are
defined respectively by

dimBZ = lim inf
δ→0

log N(Z, δ)
− log δ

and dimBZ = lim sup
δ→0

log N(Z, δ)
− log δ

,

where N(Z, δ) denotes the least number of balls of radius δ that are needed to cover the
set Z. If dimBZ = dimBZ, we will denote the common value by dimB Z and call it the
box dimension of Z.

Given a Borel probability measure μ on X, the following quantity

dimH μ = inf{dimH Z : Z ⊂ X and μ(Z) = 1}
= lim
δ→0

inf{dimH Z : Z ⊂ X and μ(Z) ≥ 1 − δ}
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is called the Hausdorff dimension of the measure μ. Similarly, we call the following two
quantities

dimBμ = lim
δ→0

inf{dimBZ : Z ⊂ X and μ(Z) ≥ 1 − δ}
and

dimBμ = lim
δ→0

inf{dimBZ : Z ⊂ X and μ(Z) ≥ 1 − δ}
the lower box dimension and upper box dimension of μ, respectively.

If μ is a finite measure on X, the following quantities

d̄μ(x) = lim sup
r→0

log μ(Br(x))
log r

and dμ(x) = lim inf
r→0

log μ(Br(x))
log r

are called lower and upper point-wise dimensions of μ at point x, respectively, where
Br(x) = {y ∈ X : d(x, y) < r}. We recall two basic properties relating these quantities
with the Hausdorff dimension of subsets and measures (see [21] for details):
(1) if dμ(x) � a for μ almost every x ∈ �, then dimH μ � a;
(2) if dμ(x) � a for every x ∈ Z ⊂ �, then dimH Z � a.

2.3. Measures of full Carathéodory singular dimension for repellers. In this section,
we will recall the concept of Carathéodory singular dimension of subsets and invariant
measures. For a non-conformal repeller of a C1 map, we will show that there exists an
ergodic measure of full Carathéodory singular dimension.

2.3.1. Singular valued potentials. Let f : M → M be a C1 transformation of a
m0-dimensional compact smooth Riemannian manifold M, and let � be a compact
f -invariant subset of M. Denote by M(f |�) and E(f |�) the set of all f -invariant measures
and ergodic measures on �, respectively.

If a compact f -invariant subset � satisfies the following two properties:
(1) there exists an open neighborhood U of � such that � = {x ∈ U : f n(x) ∈ U

for all n ≥ 0};
(2) there is κ > 1 such that

‖Dxf v‖ ≥ κ‖v‖ for all x ∈ �, and v ∈ TxM ,

where ‖ · ‖ is the norm induced by the Riemannian metric on M, andDxf : TxM →
Tf (x)M is the differential operator,

then we call � a repeller for f or f is expanding on �.
Given x ∈ � and n ≥ 1, denote the singular values of Dxf n (square roots of the

eigenvalues of (Dxf n)∗Dxf n) in the decreasing order by

α1(x, f n) ≥ α2(x, f n) ≥ · · · ≥ αm0(x, f n). (2.3)

For t ∈ [0, m0], set

ϕt (x, f n) :=
m0∑

i=m0−[t]+1

log αi(x, f n)+ (t − [t]) log αm0−[t](x, f n). (2.4)
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The functions x �→ αi(x, f n), x �→ ϕt (x, f n) are continuous for every n ≥ 1, since f is
smooth. It is easy to see that for all n, 
 ∈ N,

ϕt (x, f n+
) ≥ ϕt (x, f n)+ ϕt (f n(x), f 
).

Hence, the sequence of functions �f (t) := {−ϕt (·, f n)}n≥1 is sub-additive, which is
called the sub-additive singular valued potentials.

2.3.2. Carathéodory singular dimension of sets and measures. The Carathéodory
singular dimension of a repeller is introduced in [11]. Following the approach in [11], we
will introduce the notions of Carathéodory singular dimension of subsets and measures.

Let Bn(x, r) := {x ∈ M : dn(x, y) < r}. Given a subset Z ⊆ �, for each small number
r > 0, let

m(Z, t , r) := lim
N→∞ inf

{ ∑
i

exp
(

sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)}

,

where the infimum is taken over all collections {Bni (xi , r)} of Bowen’s balls with xi ∈ �,
ni ≥ N that cover Z. It is easy to see that there is a critical point

dimC,r Z := inf{t : m(Z, t , r) = 0} = sup{t : m(Z, t , r) = +∞}. (2.5)

Consequently, we call the following quantity

dimC Z := lim inf
r→0

dimC,r Z

the Carathéodory singular dimension of Z. In particular, the Carathéodory singular dimen-
sion of the repeller � is independent of sufficiently small r > 0 (see [11, Theorem 4.1]).

For each f -invariant measure μ supported on �, let

dimC,r μ := inf{dimC,r Z : μ(Z) = 1},
and the following quantity

dimC μ := lim inf
r→0

dimC,r μ

is called the Carathéodory singular dimension of the measure μ.

THEOREM A. Let f : M → M be a C1 transformation of an m0-dimensional compact
smooth Riemannian manifold M, and � a repeller of f. Then there exists an f-invariant
ergodic measure μ such that

dimC μ = dimC � = sup{dimC ν : ν ∈ M(f |�)}.

2.4. Measures of full and maximal dimension for ACH sets. In this section, we first
recall the concept of an average conformal hyperbolic set which is introduced in [29]. By
modifying the methods in [13], we construct a Borel probability measure (not necessarily
invariant) of full Hausdorff dimension for ACH sets of C1 diffeomorphisms. Following
Barreira and Wolf’s approach [5], we prove that there exists an ergodic measure of maximal
Hausdorff dimension for ACH sets of C1+α diffeomorphisms.

https://doi.org/10.1017/etds.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.12


Measures of maximal and full dimension for smooth maps 37

2.4.1. Definition of ACH. Let f :M →M be aC1 diffeomorphism on am0-dimensional
compact Riemannian manifold. For each x ∈ M , the following quantities

‖Dxf ‖ = sup
0�=v∈TxM

‖Dxf (v)‖
‖v‖ , m(Dxf ) = inf

0�=v∈TxM
‖Dxf (v)‖

‖v‖
are respectively called the maximal norm and minimum norm of the differentiable operator
Dxf : TxM → Tf (x)M , where ‖ · ‖ is the norm induced by the Riemannian metric on M.
A compact f -invariant subset � ⊂ M is called a locally maximal hyperbolic set if there
exists an open neighborhood U such that � = ⋂

n∈Z f nU , and a continuous splitting of
the tangent bundle TxM = Esx ⊕ Eux , and constants 0 < λ < 1, C > 0 such that for every
x ∈ �:
(1) Dxf (E

u
x ) = Euf (x), Dxf (E

s
x) = Esf (x);

(2) for every n ∈ N, one has ‖Dxf−n(v)‖ � Cλn‖v‖ for all v ∈ Eux , and ‖Dxf n(v)‖ �
Cλn‖v‖ for all v ∈ Esx .

For x ∈ M and v ∈ TxM , the Lyapunov exponent of v at x is the limit

λ(x, v) = lim
n→∞

1
n

log ‖Dxf n(v)‖

whenever the limit exists. Given an invariant measure μ ∈ M(f |�), by the Oseledec
multiplicative ergodic theorem [20], for μ-almost every x, every vector v ∈ TxM has
a Lyapunov exponent, and they can be denoted by λ1(x) � λ2(x) � · · · � λm0(x).
Furthermore, if μ is ergodic, since the Lyapunov exponents are f -invariant, we write
the Lyapunov exponents as λ1(μ) � λ2(μ) � · · · � λm0(μ). Notice that ‖Dxf ‖ =
‖Dxf |Eux ‖, ‖Dxf−1‖ = ‖Dxf−1|Esx‖ in the hyperbolic setting.

A hyperbolic set � ⊂ M is called an average conformal hyperbolic set if for each
μ ∈ E(f |�), one has λ1(μ) = λ2(μ) = · · · = λdu(μ) > 0 and λdu+1(μ) = λdu+2(μ) =
· · · = λm0(μ) < 0, where du = dim Eu and ds = dim Es = m0 − du. In other words,
it has only two Lyapunov exponents λu(ν) > 0 and λs(ν) < 0 with respect to each
ν ∈ E(f |�).

2.4.2. Statements of main results. Although we cannot obtain an invariant measure of
full dimension even in the case of conformal hyperbolic dynamical systems (see [4, Ch. 5]
for a detailed description), the following result shows that there exists a measure (not
necessarily invariant) of full dimension for ACH sets of a C1 diffeomorphism.

THEOREM B. Let f : M → M be a C1 diffeomorphism on a m0-dimensional compact
Riemannian manifold, and let � ⊂ M be a compact locally maximal hyperbolic set
such that f |� is topologically mixing and average conformal. Then there exists a Borel
probability measure μ on � with support strictly inside � such that

dimH μ = dimH �.

Under the setting of the above theorem, if f is of C1+α smoothness, then there exists an
f -invariant ergodic measure of maximal dimension.
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THEOREM C. Let f : M → M be a C1+α diffeomorphism on an m0-dimensional com-
pact Riemannian manifold, and let � ⊂ M be a compact locally maximal hyperbolic
set such that f |� is topologically mixing and average conformal. Then there exists an
f-invariant ergodic probability measure μ on � such that

dimH μ = sup{dimH ν : ν ∈ M(f |�)}.

3. Proofs
In this section, we provide the detailed proof of the main results in this paper.

3.1. Proof of Theorem A. By the definition of Carathéodory singular dimension of
subsets and measures, for every μ ∈ M(f |�), we have that

dimC � = dimC,r � ≥ dimC,r μ

for all sufficiently small r > 0, see [11, Theorem 4.1] for the first equality. Letting r → 0,
one has dimC � ≥ dimC μ for every μ ∈ M(f |�). Hence, we have that

dimC � ≥ sup{dimC μ : μ ∈ M(f |�)}.
However, for each f -invariant measure μ, let

Pμ(f |�, �f (t)) := hμ(f )+ L∗(�f (t), μ).

It is easy to see that Pμ(f |�, �f (t)) = 0 has a unique root, since Pμ(f |�, �f (t)) is
strictly decreasing and continuous with respect to t. If μ ∈ E(f |�), it follows from [12,
Theorem A] that

dimC μ = tμ,

where tμ is the unique solution of the equation Pμ(f |�, �f (t)) = 0. Let t∗ be the unique
zero of Bowen’s equation P(f |�, �f (t)) = 0. Then dimC � = t∗ (see [11, Theorem 4.1]
for details).

Since f is expanding on �, the map μ �→ Pμ(f |�, �f (t∗)) is upper semi-continuous
on M(f |�). It follows from the variational principle of sub-additive topological pressure
that there exists an f -invariant ergodic measure μ̃ so that

0 = P(f |�, �f (t∗)) = Pμ̃(f |�, �f (t∗)).

Hence,

dimC � = t∗ = tμ̃ = dimC μ̃.

This completes the proof of the theorem. �

3.2. Proof of Theorem B. We first recall some facts of average conformal hyperbolic
sets. For each x ∈ �, denote

φu(x) = − log |det Dxf |Eux |1/du , φs(x) = log |det Dxf |Esx |1/ds , (3.1)
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where du = dim Eux , ds = dim Esx , and du + ds = m0. It is clear that φu and φs are
continuous functions, since f is a C1 diffeomorphism. Furthermore, the following
properties hold:
(1) for any n ∈ Z, one has m(Dxf n|Eix ) � |det Dxf n|Eix |1/di � ‖Dxf n|Eix‖ and

lim
n→±∞

1
|n| (log ‖Dxf n|Eix‖ − log m(Dxf n|Eix )) = 0 (3.2)

uniformly on �, for i ∈ {u, s}. In fact, let ψn(x) = log ‖Dxf n|Eux ‖ − log m
(Dxf

n|Eux ). Then the sequence of continuous functions  := {ψn}n≥1 is
sub-additive. By [19, Theorem A.3], one has

lim
n→∞

1
n

max
x∈� ψn(x) = sup{L∗(, μ) : μ ∈ E(f |�)}

= sup{λ1(μ)− λdu(μ) : μ ∈ E(f |�)}
= 0.

The case of i = s can be proven in a similar fashion. This yields the uniformly
convergence in equation (3.2). See [2, Theorem 4.2] for the detailed proof of the
case of average conformal repellers;

(2) let tu and ts denote the unique root of P(f |�, tφu) = 0 and P(f |�, tφs) = 0,
respectively. Then

dimH � = dimB � = tu + ts , (3.3)

see [29, Theorem A and Remark 7] for a detailed description.
Since f is hyperbolic on�, it is expansive, so we let 0 < c < 1 be an expansive constant

of f |�. In the rest of the proof of Theorem B, we fix a small number δ > 0. According to
equation (3.2), there exists N(δ) such that

1 �
‖Dxf n|Eux ‖

exp{− ∑n−1
i=0 φu(f

ix)} � enδ , e−
δ �
‖Dxf−
|Esx‖

exp{− ∑
−1
i=0 φs(f

−ix)} � 1

for any n, 
 � N(δ) and any x ∈ �. Fix a positive integer L � N(δ). It follows from the
uniform continuity of the map x �→ ‖Dxf L‖ that there exists 0 < ε0 < c/4 such that

e−δ � ‖Dzf L‖
‖Dyf L‖ � eδ and e−δ � ‖Dzf−L‖

‖Dyf−L‖ � eδ

for any y, z ∈ � with d(y, z) < ε0.
Choose a Markov partition R = {R1, . . . , Rs} of � such that

diam R := max{diam Ri | i = 1, . . . , s} < ε0

and #{1 � q � s : Rp ∩ Rq = ∅} > 0 for every p ∈ {1, . . . , s} (see [7]). Let A =
(aij )1�i,j�s be the structure matrix of R and (�A, σ) be the corresponding Markov
subshift. We denote the set of all words of length n of �A by �(n) and let

−k[a−k . . . a0 . . . a
]
 = {b = (bi) ∈ �A | ai = bi , for all i = −k, . . . , 0, . . . , 
}
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for each a = (ai) ∈ �A and k, 
 ∈ N. Define a coding map h : �A → � by

h(−k[a−k . . . a0 . . . a
]
) =

⋂

j=−k
f−jRaj for all (a−k . . . a
) ∈ �(k + 
+ 1),

then the map h is a continuous surjection which satisfies h ◦ σ = f ◦ h. Let

R(−k, 
) =
{ 
⋂
j=−k

f−jRaj : (a−k . . . a
) ∈ �(k + 
+ 1)
}

.

Since h is bounded finite to one (see [1]), there is an integer e0 > 0 such that

#{W ∈ R(−k, 
) | x ∈ W } � e0 (3.4)

for every x ∈ � and k, 
 ∈ N.
We construct the desired Borel probability measure as follows. Since tuφu ◦ h and

tsφs ◦ h are continuous functions and

P(σ , tuφu ◦ h) = P(f |�, tuφu) = 0, P(σ , tsφs ◦ h) = P(f |�, tsφs) = 0,

there exist two weak Gibbs measures m+, m− on �A in the sense that there exist two
sequences of positive constants {A
}
∈N and {Bk}k∈N satisfying lim
→∞(1/
) log A
 = 0
and limk→∞(1/k) log Bk = 0 such that

1
Al+1

� m+(0[a0 . . . al]l)

exp
{ ∑l

j=0 tuφu ◦ h(σ ja)
} � Al+1

and
1

Bk+1
� m−(−k[a−k . . . a0]0)

exp
{ ∑k

j=0 tsφs ◦ h(σ−ja)
} � Bk+1

for every a = (ai) ∈ �A and k, 
 ∈ N (see [3, pp. 289]).
Let m be a Borel probability measure on �A such that

m(−k[a−k . . . a0 . . . a
]
) =
{
C1m+(0[a0 . . . a
]
)m−(−k[a−k . . . a0]0), a0 = 1,

0, a0 �= 1,

for every a = (ai) ∈ �A, k, 
 ∈ N, and C1 = m+(0[1]0)
−1m−(0[1]0)

−1.
Define a Borel probability measure μ on � by

μ(A) = m(h−1(A))

for each Borel subset A ⊂ �. It is clear from the definition that the support of μ is R1.
Furthermore, if a0 = 1 and (a−k . . . a0 . . . a
) ∈ �(k + 
+ 1), k, 
 ∈ N, then we have
that for x ∈ ⋂


j=−k f−jRaj ,

C1

A
+1Bk+1
�

μ(
⋂

j=−k f−jRaj )

exp{∑

i=0 tuφu(f

ix)+ ∑k
j=0 tsφs(f

−j x)} � C1A
+1Bk+1. (3.5)

To prove Theorem B, we first prove some auxiliary results.
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LEMMA 3.1. Let f : M → M be a C1 diffeomorphism on an m0-dimensional compact
Riemannian manifold, and let � ⊂ M be a compact locally maximal hyperbolic set
such that f |� is topologically mixing and average conformal. There exists ε0 > 0 (make
ε0 small if necessarily) such that for any n, m ∈ N, if x, z ∈ � satisfy max0�j�n−1
d(f jx, f j z) < ε0 and y, w ∈ � satisfy max0�j�m−1 d(f

−j y, f−jw) < ε0, then

e−nδ <
|det Dzf n|Euz |1/du
|det Dxf n|Eux |1/du

< enδ

and

e−mδ <
|det Dwf−m|Esw |1/ds
|det Dyf−m|Esy |1/ds

< emδ .

Proof. Since log |det Dxf | is uniformly continuous on �, there exists ε0 > 0 such that if
d(x, z) < ε0, then

|log |det Dzf | − log |det Dxf || < δ.

Hence, if x, z ∈ � satisfy max0�j�n−1 d(f
jx, f j z) < ε0, then∣∣∣∣log

|det Dzf n|Euz |1/du
|det Dxf n|Eux |1/du

∣∣∣∣ ≤
n−1∑
j=0

∣∣∣∣log
|det Dfjzf |Eu

f j z
|1/du

|det Df jxf |Eu
f j x

|1/du
∣∣∣∣

< nδ.

The other one can be proven in a similar fashion. This completes the proof of the
lemma.

Set δ0 = inf{d(x, y) : x ∈ Rp, y ∈ Rq , Rp ∩ Rq = ∅, 1 � p < q � s} > 0, r0 =
min{δ0/2, ε0/2} > 0, and C2 = max1�i�L−1 maxx∈M{‖Dxf i‖}.
LEMMA 3.2. For n, 
 > L � N(δ), if x ∈ � and 0 < r < r0 satisfy that C2r exp{2nδ −∑n−1
i=0 φu(f

ix)} < r0 and C2r exp{2
δ − ∑
−1
i=0 φs(f

−ix)} < r0, then

Br(x) ⊂ B
f
r0(x, −
, n),

where Bfr0(x, −
, n) = {z ∈ M : d(f jx, f j z) < r0, for all j = −
, . . . , n}.
Proof. Take y ∈ Br(x), we first show that d(f jx, f jy) < r0 for every j = 1, . . . , n if
C2r exp{2nδ − ∑n−1

i=0 φu(f
ix)} < r0.

Choose 0 < ε1 < ε0/2 so small that C2(r + ε1) exp{2nδ − ∑n−1
i=0 φu(f

ix)} < r0.
According to the definition of the Riemannian metric, there exists a smooth curve
ξ : [0, 1] → M such that

ξ(0) = x, ξ(1) = y and
∫ 1

0
‖ξ̇ (s)‖ ds ≤ r + ε1.

Since

d(x, ξ(t)) �
∫ t

0
‖ξ̇ (s)‖ ds � r + ε1 < ε0 (0 � t � 1),
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we have

d(f Lx, f Lξ(t)) ≤
∫ t

0
‖Dξ(s)f L‖ · ‖ξ̇ (s)‖ ds

� eδ‖Dxf L‖
∫ t

0
‖ξ̇ (s)‖ ds

= eδ‖Dxf L|Eux ‖
∫ t

0
‖ξ̇ (s)‖ ds

� (r + ε1)e
(L+1)δ ·

L−1∏
i=0

‖det Df ixf |Eu
f ix

‖1/du

= (r + ε1) exp
{
(L+ 1)δ −

L−1∑
i=0

φu(f
ix)

}
< r0(< ε0).

Furthermore, we have that

d(f 2Lx, f 2Lξ(t)) �
∫ t

0
‖Dξ(s)f L‖ · ‖DfLξ(s)f L‖ · ‖ξ̇ (s)‖ ds

� e2δ‖Dxf L‖ · ‖DfLxf L‖
∫ t

0
‖ξ̇ (s)‖ ds

= e2δ‖Dxf L|Eux ‖ · ‖DfLxf L|Eu
fLx

‖
∫ t

0
‖ξ̇ (s)‖ ds

� (r + ε1)e
2(L+1)δ ·

2L−1∏
i=0

‖det Df ixf |Eu
f ix

‖1/du

= (r + ε1) exp
{

2(L+ 1)δ −
2L−1∑
i=0

φu(f
ix)

}
.

Therefore, for every j = 1, . . . , n, write j = gjL+ tj , where gj ∈ N and 0 � tj < L,
we have

d(f jx, f j ξ(t)) �
∫ t

0

gj−1∏
i=0

‖Df iLξ(s)f L‖ · ‖D
f
gjLξ(s)

f tj ‖ · ‖ξ̇ (s)‖ ds

� C2e
gj δ ·

gj−1∏
i=0

‖Df iLxf L‖ ·
∫ t

0
‖ξ̇ (s)‖ ds

� C2(r + ε1) exp
{
gj (L+ 1)δ −

gjL−1∑
i=0

φu(f
ix)

}

� C2(r + ε1) exp
{

2jδ −
j−1∑
i=0

φu(f
ix)

}

� C2(r + ε1) exp
{

2nδ −
n−1∑
i=0

φu(f
ix)

}
< r0 (0 � t � 1).

https://doi.org/10.1017/etds.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.12


Measures of maximal and full dimension for smooth maps 43

Setting t = 1, we obtain d(f jx, f jy) � r0 for every 1 � j � n. Analogously, one can
show that d(f−j x, f−j y) < r0 for j = 1, . . . , 
 if C2r exp{2
δ− ∑
−1

i=0 φs(f
−ix)}< r0.

This completes the proof of the lemma.

For each x ∈ � and sufficiently small 0 < r < r0, let

n1 = min
{
n ∈ Z

+ : C2r exp
{

2(n+ 1)δ −
n∑
i=0

φu(f
ix)

}
� r0

}
,

n2 = min
{
n ∈ Z

+ : C2r exp
{

2(n+ 1)δ −
n∑
i=0

φs(f
−ix)

}
� r0

}
.

It follows from the definition of n1, n2 that n1, n2 → +∞ (r → 0). Recall that
R = {R1, . . . , Rs} is a Markov partition of � and e0 is defined in equation (3.4).

LEMMA 3.3. For each x ∈ �, take a sufficiently small 0 < r < r0 so that n1, n2 > L.
Then there exist W1, . . . , Wm ∈ R(−n2, n1) with m = m(x, r0, −n2, n1) ≤ s2e0 such
that

Wk ∩ Bfr0(x, −n2, n1) �= ∅ for all k = 1, . . . , m,

and Br(x) ∩� ⊂ ⋃m
k=1 Wk .

Proof. For y ∈ �, let Ry = {Q ∈ R | R ∩Q �= ∅, y ∈ R ∈ R} and Py = ⋃
Ry

Q, then
Py ⊂ B2ε0(y) ∩�. From the definition of δ0, if z ∈ � and d(y, z) < δ0, then for any
Q ∈ R containing z, Q ∈ Ry .

Let

P(x, −n2, n1)

=
{
W =

n1⋂
j=−n2

f−jRaj ∈ R(−n2, n1) : Raj ⊂ Pf j x for all j = −n2, . . . , n1

}

and P(x, r0, −n2, n1) = {W ∈ P(x, −n2, n1) : Bfr0(x, −n2, n1) ∩W �= ∅}. By Lemma
3.2 and the choice of n1, n2, we have

Br(x) ∩� ⊂ B
f
r0(x, −n2, n1) ∩� ⊂

⋃
W∈P(x,r0,−n2,n1)

W .

Let m = #P(x, r0, −n2, n1) and P(x, r0, −n2, n1) = {W1, . . . , Wm}. To complete the
proof of the lemma, it suffices to show that

m = m(x, r0, −n2, n1) ≤ s2e0.

To prove this, set 
1 = #Rf n1x , 
2 = #Rf−n2x and take α1, . . . , α
1 , β1, . . . , β
2 ∈
{1, . . . , s} so that

Pf n1x =

1⋃
p=1

Rαp , Pf−n2x =

2⋃
q=1

Rβq .
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Then,

P(x, r0, −n2, n1) =
l1⋃
p=1

l2⋃
q=1

Qp,q ,

whereQp,q = {W ∈ P(x, r0, −n2, n1) : W ⊂ f n2Rβq ∩ f−n1Rαp }. Fix 1 � p � 
1, 1 �
q � 
2 such that Qp,q �= ∅. Put t = #Qp,q and let

Qp,q = {W 1
p,q , . . . , Wt

p,q}.
Since (�A, σ) is topologically mixing, there is a K0 � 2 such that AK > 0 for each
K � K0. We choose (αpω1ω2 . . . ωK0−1βq) ∈ �(K0 + 1) and take

zip,q ∈ Wi
p,q ∩

( K0−1⋂
k=1

f−n1−kRωk
)

such that f n1+n2+K0zip,q = zip,q

for each i = 1, 2, . . . , t .
Hence, for 1 ≤ i, j ≤ t , one has

d(f kzip,q , f kzjp,q) � d(f kzip,q , f kx)+ d(f kx, f kzjp,q)

� 2ε0 + 2ε0

< c

for each k = −n2, . . . , 0, . . . , n1, where c is the expansive constant of f. Moreover, for
k = 1, . . . , K0 − 1, we have that

d(f n1+kzip,q , f n1+kzjp,q) � diam Rωk < c.

This implies that d(f mzip,q , f mzjp,q) < c for every m ∈ Z. Thus, zip,q = z
j
p,q for each 1 �

i, j � t . Hence, we have that

z1
p,q ∈

t⋂
i=1

Wi
p,q =

⋂
W∈Qp,q

W .

Furthermore, one has #Qp,q ≤ e0 since #{W ∈ R(−n2, n1) : z1
p,q ∈ W } � e0. Hence,

we have

m = #P(x, r0, −n2, n1)

=
l1∑
p=1

l2∑
q=1

#Qp,q

� s2e0.

This completes the proof of the lemma.

Using the previous results, we proceed with the proof of Theorem B.

Proof of Theorem B. For every x ∈ suppμ (= R1) and sufficiently small 0 < r <

r0, choose n1, n2 > L � N(δ) and W1, . . . , Wm ∈ R(−n2, n1) with m � s2e0, as in
Lemma 3.3. For each k = 1, . . . , m, pick
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yk ∈ Wk ∩ Bfr0(x, −n2, n1).

By Lemma 3.1, we have

exp
{ n1∑
i=0

φu(f
iyk)

}
≤ exp

{
(n1 + 1)δ +

n1∑
i=0

φu(f
ix)

}
and

exp
{ n2∑
j=0

φs(f
−j yk)

}
� exp

{
(n2 + 1)δ +

n2∑
j=0

φs(f
−j x)

}
.

Furthermore, for each k = 1, . . . , m, it follows from equation (3.5) that

μ(Wk) � C1An1+1Bn2+1 exp
{ n1∑
i=0

tuφu(f
iyk)+

n2∑
j=0

tsφs(f
−j yk)

}

≤ C1An1+1Bn2+1 exp
{
(tu(n1 + 1)+ ts(n2 + 1))δ +

n1∑
i=0

tuφu(f
ix)

+
n2∑
j=0

tsφs(f
−j x)

}
≤ C1An1+1Bn2+1 exp{3(tu(n1 + 1)+ ts(n2 + 1))δ}

· exp
{

− 2tu(n1 + 1)δ +
n1∑
i=0

tuφu(f
ix)− 2ts(n2 + 1)δ +

n2∑
j=0

tsφs(f
−j x)

}

� C1An1+1Bn2+1

(
C2r

r0

)dimH �

· exp{3(tu(n1 + 1)+ ts(n2 + 1))δ},

where we use the fact that dimH � = tu + ts . Hence, we have

μ(Br(x) ∩�)

�
m∑
k=1

μ(Wk)

� CAn1+1Bn2+1r
dimH � · exp{3(tu(n1 + 1)+ ts(n2 + 1))δ},

(3.6)

where C = s2e0C1C
dimH �
2 r

− dimH �
0 .

By the definition of n1, n2, we have

2n1δ −
n1−1∑
i=0

φu(f
ix) < log r0 − log C2 − log r , (3.7)

2n2δ −
n2−1∑
i=0

φs(f
−ix) < log r0 − log C2 − log r . (3.8)

Let M := maxx∈�{φu(x), φs(x)} < 0. Thus, by equation (3.7), we conclude

lim inf
r→0

2n1δ − n1M

log r
� lim inf

r→0

log r0 − log C2 − log r
log r

,
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that is,

lim inf
r→0

n1

log r
� −1

2δ −M
.

Similarly, by equatoin (3.8), one has

lim inf
r→0

n2

log r
� −1

2δ −M
.

Therefore, by equation (3.6), we have

lim inf
r→0

log μ(Br(x))
log r

� dimH �− 3(tu + ts)δ

2δ −M

for every x ∈ suppμ. The arbitrariness of δ implies

dμ(x) � dimH �

for every x ∈ suppμ. Thus, we have that

dimH μ � dimH �.

However, the reverse inequality dimH μ � dimH � clearly follows from the definitions.
This completes the proof of Theorem B.

3.3. Proof of Theorem C. Assume that f : M → M is a C1+α diffeomorphism on an
m0-dimensional compact Riemannian manifold, and let � ⊂ M be a compact locally
maximal hyperbolic set such that f |� is topologically mixing and average conformal.
Recall that M(f |�) and E(f |�) denote the set of f -invariant measures and ergodic
measures on �, respectively.

Recall that the topological pressure P(φ) of a continuous function φ : � �→ R (with
respect to f |�) satisfies the following variational principle:

P(φ) = sup
μ∈M(f |�)

{
hμ(f )+

∫
φ dμ

}
. (3.9)

Remark that P(0) = htop(f ) is the topological entropy of f |�. A measure μ ∈ M(f |�)
which attains the supermum in equation (3.9) is called an equilibrium measure of φ,
and two functions φ, ψ : � → R are said to be cohomologous if φ − ψ = η − η ◦ f for
some continuous function η : � → R. Denote by Cα(�) the space of Hölder continuous
functions ϕ : � → R with Hölder exponent α. We list several properties of the topological
pressure in the following (see [23] for details):
(1) the map φ �→ P(φ) is analytic in Cα(�);
(2) each function φ ∈ Cα(�) has a unique equilibrium measure νφ ∈ E(f |�);
(3) for each φ, ψ ∈ Cα(�), we have νφ = νψ if and only if φ − ψ is cohomologous to

a constant;
(4) for each φ, ψ ∈ Cα(�) and t ∈ R, we have

d

dt
P (φ + tψ) � 0,

with equality if and only if ψ is cohomologous to a constant.
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Note that the functions φu and φs defined in equation (3.1) are α-Hölder continuous in
this case. For each ν ∈ M(f |�), put

λu(ν) = −
∫
φu dν, λs(ν) =

∫
φs dν and d(ν) = hν(f )

(
1

λu(ν)
− 1

λs(ν)

)
,

then λu(ν) > 0, λs(ν) < 0. Furthermore, if ν ∈ E(f |�), then

dimH ν = d(ν). (3.10)

See [28] for the detailed proofs, which can be viewed as an extension of Young’s results in
[31] to the case of an average conformal hyperbolic setting. If μ ∈ M(f |�), Fang, Cao,
and Zhao [16, Theorem 4.4] proved that

dimH μ = ess sup{dimH ν : ν ∈ E(f |�)},
with the essential supremum taken with respect to the ergodic decomposition τ of μ.
See [6, Theorem 2] for the case of hyperbolic surface diffeomorphisms. Their approach
extends without change to general conformal hyperbolic diffeomorphisms (see [4,
Theorem 13.2.4]). Consequently, to prove Theorem C, it suffices to show that there exists
μ ∈ E(f |�) so that

dimH μ = sup{dimH ν : ν ∈ E(f |�)}.
Next, one can show the desired result by following mutatis mutandis Barreira and Wolf’s

proof [5] (see also [4, Ch. 5]). We outline some key steps for the reader’s convenience.
Consider the following bivariate function:

Q : R2 → R, Q(p, q) = P(pφu + qφs).

Since φu, φs ∈ Cα(�), pφu + qφs has a unique equilibrium measure νp,q ∈ E(f |�) for
each (p, q) ∈ R

2. Let

λu(p, q) = λu(νp,q), λs(p, q) = λs(νp,q), h(p, q) = hνp,q (f )

and Q(p, q) = h(p, q)− pλu(p, q)+ qλs(p, q). By properties (1)–(4) of the topolog-
ical pressure, one can show λu, λs and h as functions in R

2 are real-analytic. Further-
more, let

du(p, q) = h(p, q)
λu(p, q)

, ds(p, q) = − h(p, q)
λs(p, q)

.

Then ds and du are also real-analytic.
Since the maps ν �→ λu(ν) and ν �→ λs(ν) are continuous on the compact space

M(f |�), put

λmin
u = min

μ∈M(f |�)
λu(μ), λmax

u = max
μ∈M(f |�)

λu(μ),

λmin
s = min

μ∈M(f |�)
λs(μ), λmax

s = max
μ∈M(f |�)

λs(μ). (3.11)

Set

Iu = (λmin
u , λmax

u ), Is = (λmin
s , λmax

s ).
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Note that Iu �= ∅ (respectively Is �= ∅) if and only if φu (respectively φs) is not
cohomologous to a constant.

Let {νn}n�1 be a sequence of measures in E(f |�) such that

lim
n→∞ dimH νn = sup{dimH ν : ν ∈ E(f |�)}.

Without loss of generality, assume that {νn}n�1 converges to some measurem ∈ M(f |�).
By equation (3.10) and the upper semi-continuity of the entropy map ν �→ hν(f ), one has

lim sup
n→∞

dimH νn = lim sup
n→∞

d(νn) ≤ d(m).

To prove the desired result, it suffices to show that there exists μ ∈ E(f |�) such that

dimH μ = d(m). (3.12)

We also note that when m is ergodic, it follows from equation (3.10) that dimH m = d(m),
this completes the proof. However, m may be non-ergodic.

As in [4, Lemmas 5.24, 5.25, and 5.26], one can show the following properties:
(i) if λs(m) ∈ Is , then there exists p ∈ [0, hm(f )/λu(m)] such that λu(p, γs(p)) =

λu(m);
(ii) assume that neither φu nor φs are cohomologous to a constant, then λu(m) ∈ Iu

if and only if λs(m) ∈ Is ;
(iii) if λu(p, q) = λu(m) and λs(p, q) = λs(m) for some p, q ∈ R, then m = νp,q .
Item (ii) implies that it is sufficient to consider the following four cases:

(I) λu(m) ∈ Iu and λs(m) ∈ Is ;
(II) λs(m) ∈ Is and φu is cohomologous to a constant;

(III) λu(m) ∈ Iu and φs is cohomologous to a constant;
(IV) λu(m) /∈ Iu and λs(m) /∈ Is .

For case (I), as in [5, Lemma 4], one can prove that there exists (p, q) ∈ R
2 so that

m = νp,q . For cases (II) and (III), following the proof of [5, Lemmas 5 and 6], one can
also show that m = νp,q for some (p, q) ∈ R

2. For the last case, one can show that: (1)
λu(m) = λmin

u and λs(m) = λmax
s ; (2) there exists ν ∈ E(f |�) such that

λu(ν) = λu(m), λs(ν) = λs(m) and hν(f ) = hm(f ).

This completes the proof of equation (3.12).
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