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Abstract

Let Z be a normal base of a Tychonoff space X and w (%) (v(Z)) denote the Wallman-type
(real-) compactification of X generated by #. This Wallman-type compactification is known to
associate with a unique proximity 8. A Z-filter % is round if for each F € & there is an F; € ¥ such
that F,8(X — F). A subset A of (%) is called a round subset of w(Z) iff for each Z € %, if C1,,4,Z
contains A, then if is a neighborhood of A. Properties of round Z -filters and round sets of w (%) are
introduced. We also prove that the intersection of all the free Z-ultrafilters is F =
{ZeZ: C1x(X — Z) is compact} iff w(Z)— X is a round subset of w(Z); if Z is a separating nest
generated intersection ring with property (a) then o(%)— v(&) is a round subset of w(Z%).

1. Introduction

Let & be a normal base for a Tychonoff space X. Recently, the Wallman-
type (real-) compactification w(Z), (v(Z) respectively) has been studied. (See
Alo and Shapiro (1968), Gagrat and Naimpally (1973), Njastad (1966), Steiner
and Steiner (1970), Su (1975).) Mandelker (1969) studied the round z-filters and
round subsets of BX. Njstad (1966) proved that for each normal base there is a
unique proximity corresponding to w(Z). This enables us to study round
Z -filters and round subsets in w (%) in this note. In Section One and Two, we
will give some properties of round Z-filters and round subsets of w(Z). In
Section Three, we will prove that F ={Z € Z%: C1x(X — Z) is compact} is
exactly the intersection of all the free Z -ultrafilters iff (Z)— X is a round
subset of w(Z) and some other results related to round subsets and w(%)—
v(Z).

The topological spaces are always Tychonoff spaces. A normal base Z of a
space X is a base for closed subsets of X which satisfies the following conditions:
(i) % is a ring (i.e., closed under finite unions and intersections), (i) & is
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disjunctive (i.e., if x is not contained in the closed subset A of X, then there is a
ZE% suchthat x EZCX — A), (iii) ¥ is normal (i.e., ABEZand ANB=
¢, then there exist sets C,DEZ such that ACX—-C, BCX—-D and
C UD = X (See Alo and Shapiro (1968), Gagrat and Naimpally (1973), Njastad
(1966), Steiner and Steiner (1970) and Su (1975).) Let & be a family of closed
subsets of X. ¥ is called an intersection (or delta) ring if it is a ring which is also
closed under countable intersections. & is called an intersecting normal base iff
is a normal base which is also an intersection ring. A sequence {Z.} of setsin Z is
called a nest in & if there is a sequence {H,} in & such that X~ H,.,CZ,.,,C
X—-H,CZ, for n=1,2,---. & is nest generated if for each member Z of &
there is a nest {Z,} in & such that Z = N{Z,: n € N}. (See Alo and Shapiro
(1968), Alo, Shapiro and Weir, Steiner (1966) and Steiner and Steiner (1970).) &
is said to be complement generated if for each Z € Z there is a sequence {Z,} of
& such that Z= N{X — Z,: n € N}. ¥ is a strong delta normal base of X if it is
a normal base that is a delta ring and complement generated (see Alo and
Shapiro (1969), Alo, Shapiro and Weir). Z is said to be separating if for each
closed set A in X and x& A there are disjoint sets Z,, Z, in & with Z,D A and
X € Z,. It is easy to show that a family of closed subsets of a space X is a
separating nest generated intersection ring (see Steiner (1966)) iff it is a strong
delta normal base (see Alo, Shapiro and Weir). Let & be a normal base and let
w(Z) be the set of all Z-ultra-filters. w(Z) with topology defined as usual (see
Alo and Shapiro (1968) and Gagrat and Naimpally (1973)) is called a Wallman-
type compactification. If in addition & is an intersection ring then »(Z) denotes
the subspace of w(%Z) which consists of all Z-ultrafilters with the countable
intersection property and v(Z) is called a Wallman-type real-compactification.
A separated proximity on X is a binary relation & satisfying the following
conditions (5 denotes the negation of 8): (P1) if ASB, then BSA; (P2)
(A U B)8C iff ASC or BSC; (P3) {x}8{y}iff x = y; (P4) ¢$6X; and (PS) if ASB,
then there are sets C, D such that X = C U D, A8C and B&D. (See Naimpally
and Warrack (1970), Njastad (1966), and Smirnov (1964).) A set X with a
proximity & on it is a proximity space, denoted by (X, 8). The topology which &
induces on X is defined by the closure operation A = C1 A ={x € X: {x}6A}.
We will write A € B and read A is strongly contained in B, if A§(X — B). A
family 9 of subsets of X is a base for the proximity & iff (B.1) for every two
disjoint sets A, B of 8B, A8B; and (B.2) for every two subsets A, B CX with
ABB are separated by sets of B, i.e., there are sets C, D € B such that A CC,
B CD and C8D. (See Naimpally and Warrack (1970) and Njistad (1966).)
Njastad (1966) showed that for each normal base Z of X there is a
proximity 8 corresponding to the Wallman-type compactification « (%) which is
defined by the statement that for subsets A and B of X, A8B iff the closure of A
in (%) intersects the closure of B in w(%), i.e. ANYB#J. X with this
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proximity & is a proximity subspace of the space w(Z) with the proximity (aléo
denoted by 8) defined by the statement that for subsets A and B of w (%), ASB
iff A N'B# . Throughout the sequel, any proximity theoretic statement will be
understood to be with respect to these special proximities on X or on w(%). In
this setting, & -is a proximity base of  on X and Z = {¥: & € Z} is a proximity
base of § on w(Z). Note that in w(Z) an open set G contains a closed set A iff
A EG.

2. Round % -filters

In this section we will give some basic properties of round Z -filters, where &
will always stand for a normal base of X.

DEFINITION. A & -filter % is round iff for each F € F there is an F, € F such
that F,b € F.

LeMMA 2.1. In a proximity space (X, 8,), if B is a base for the proximity 8.,
then for A, B C X such that A € B there is B, € B such that A € B,€ B.

Proor. It is easy, using (P5), to show that there is a C CX such that
A € C € B. Thus A§,(X — C) and C§,X — B. Since @ is a base for &,, there are
B,, B,, B; and B, in @ such that A CB,, X~ CCB,, B,6,B,, CCB;,, X—-BC
B. and B,8,B,. Thus, ACB,EX~-B,CCCB,EX—-B,CB. Let B,=B,
Then B, is as desired.

In light of Lemma 2.1, we know that a & -filter & is round iff for each F €
thereisa Z € ¥ and F, € % such that F,C X — Z CF. For, if % is round, then
for each F € ¥ there is an F, € & such that F,€ F, But F, € F iff F08(X F).
Since & is a proximity base for 6 on X, there are Z,, Z, € & such that Z, D F,,
Z,D X —F with Z,6Z,. Thus F,CZ,€ Z~ Z,CF. Conversely, if for each
FEF there is a ZEZ and Fo€ % such that F,CX — Z CF, then since
Fo,Z€ %, F, € X — Z CF. (Compare with the definition in §3 of Mandelker
(1969)).

Lemma 2.2. Fora %- -filter %, define F°={F € Z: F 3 F, for some F, € F}.
Then ¥ is round iff ¥ = %°

Proor. It is easy to show that %° is a Z-filter. To see that F° is round, let
F € %°. Then there is an F, € ¥ such that F,€ F. By Lemma 2.1, since Z is a
proximity base, there isa Z € & such that F,EZ € F. Thus Z€ $°and Z EF.
That is, %° is round. The last part is clear.

DEeriNtTION. For a & -filter , we let 0(F) denote the set of all cluster points of

Fin w(Z). Thatis, 0(F)= N{Z: Z € F}, where Z = Cly@,Z. Now Cl,@2,\Z =
{HA € w(Z): Z € A). (See Alo and Shapiro. (1968) and Gagrat and Naimpally
(1973).) We further define, for each p € w(Z), M* ={Z EZ:p € Z} and 0° =
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{Z€%:Z is a neighborhood .of p}. It follows easily that 6(F)=
(A Ew(Z): FCAY={p € 0(Z): F CM"}. Inparticular, if X = X (X), the fam-
ily of all zero-sets on X, then % is a normal base and w (%) = BX, the Stone-Cech
compactification of X, and in this case the above notations reduce to the customary
ones, as follows. Each AEBX is a Z(X)ultrafilter, M* =
{ZEF(X): A ECIxZ}={ZEZ(X): A EZ} and 0% ={Z € Z(X): C1;x%
is a neighborhood of H}. (See Chapter 7 of Gillman and Jerison (1960) and
Mandelker (1969)).

Now, it is easy to show that if %,, % are two ¥-filters and %, C %, then
0(F)C0(F,). Moreover, since £ ={Z: Z € Z} is a normal base for closed
subsets in w (%), (see Alo and Shapiro (1968), Gagrat and Naimpally (1973) and
Njastad (1966)), each closed subset A of w(%) is of the form (%) for some
% -filter. Namely, F = {Z € Z: A C Z} which clearly is a Z-filter and 6(F) = A.

Lemma 2.3. If F is a Z-filter and Z,E %, then ZoD 0(F) iff there is a
W € & such that W 3 Z,.

Proor. *“=" Consider the family F={Cl,eyZ=2:Z€ %F}. It is clear
that 6(F)= N F#D is an intersection of compact subsets of w(&Z). Since
Zo3 0(F) there is an open set G of (%) such that Z,3G 3 0(¥)= N %
Hence there are Fi, F,,---, F, in % such that N~ ,F, CG. (See 5F of Kelley
(1955)). But since M}, F; is closed (;.,F, € G. Let W = (V_,F.. Then we have
WCN",F.€ G €Z, “<&” is obvious, as 0(F)= N,esZ CW E Z,.

THEOREM 2.4. If % is a Z-filter, then the following are equivalent.
(a) % is a round Z-filter.

(b) For every Z € &, there.is W € F such that Z> W.

(c) For any p € (%), if F CM" then F CO”.

(d) For every ZE %, Z 3 0(%).

Proor. (a) & (b) Since Z € %, there is a WE F such that WE Z, i.e.,
WéX — Z. By the property of proximity WX — Z iff WsX — Z. (See (2.8) of
Naimpally and Warrack (1970)). Now since X =(X —Z)U Z, then «(Z)=
Cloay(X—2Z2)UCl, o Z = X—~ZUZ andso X — ZD w(Z)— Z. Thus WX —
Z iff Wew(Z)-Z iff ZDW.

(b) = (c) Suppose F C M”. From (b) for each Z € ¥ there isa W € F such
that W € Z. But ¥ C #” which is a Z -ultrafilter. Thus W € #?, and #* E W €
Z. But MP =p. {p}€ Z, i.e.,, Z € 0°. Hence F CO".

(¢) > (d) Suppose p€E0(¥). Then p=4d, a Z-ultrafilter o €
M e Z implies Z€ o for each ZEF or FCoA = M". And (c) says
that  C 0”. Thus, for each Z € %, Z is a neighborhood of p, for each p € 8(F).
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This implies Z is a neighborhood of (%) which is a closed subset of @ (Z).
Hence Z 3 0(F).

(d) © (b) This follows immediately from Lemma 2.3.

If A€ Z, then we shall call Z a é-neighborhood of A.

Lemma 2.5. For a closed subset A in w(%), there is a base of 6-
neighborhoods of the form Z, where Z € %.

Proor. Let G be an open neighborhood of A in w(%). Then G 3 A. By
Lemma 2.1, there is a Z€ % such that A EZ € G.

THEOREM 2.6. Let A be any closed subset of w(Z). For any Z-filter ¥, we
have 8(F)=A iff () ,c.0°CFC (), M".

PROOF. “> ” Suppose 8(F)= A, and Z € [),c.0". Then Z is a neighbor-
hood of 8(%) which is closed and we have V4 6(%). By Lemma 2.3, there is a
WEF such that ZD W. Thus Z5 W and Z € F CHM® for each p € A.
Conversely, suppose ¥ is a Z-filter with (1,c. 0" CF C(),ca M Then
0(M,catl?)= A CO(F). However, in light of Lemma 2.5, we have
0(M,ca0?)=A. Moreover [1,e.0° CF, 6(F)CO((),ca07)=A. Hence
0(F)= A.

The following is a characterization of a round Z -filter in terms of Z-filters
of the form 0”.

THEOREM 2.7. For any Z-filter %, F°= (1,050

Proor. Z € F° iff there is a WE F such that WE Z. As shown in
Theorem 2.4, (a) < (b), W € Z iff W € Z. On the other hand, Z, € f),co)0°
iff Z, is a neighborhood of (%). Since 8(F) is closed, Z, is a neighborhood of
0(97) iff Z, 3 6(F). This, by Lemma 2.3, is equivalent to that there isa W € ¥
with W € Z,. Thus, F°= (), cos0".

THEOREM 2.8. If F is a round %-filter, then F = [\ ,cos,0”. Conversely
if A is a nonempty closed subset of w(Z), then M ,cA0” is a round % -filter and for
distinct closed subsets A, »ca0? are distinct.

Proor. The first part follows immediately from Lemma 2.2 and Theorem
2.7.Let A be a nonempty closed subset of w (%), and F = (,c,0”. By Theorem
2.6, 6(%F)= A and hence for each Z € ¥ we have Z is a neighborhood of A
which is closed. Thus, Z 3 A = (%) and from (a) & (d) of Theorem 2.4, F is a
round & -filter. Finally, let A; and A, be closed subsets of w(Z), and A, # A,.
Then, there is an a € A,— A; (or A,— A,). Suppose that a € A, — A,. Then
abA,or A,€ X —{a}. By Lemma 2.1, thereisa Z € Z such that A,€EZ€ X —
{a}. Thus Z € M ,ea,0” — () ,c4,0". Similarly, for a € A,— A,.
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COROLLARY 2.9. The correspondence A — [),c.0" is a one-to-one order-
reversing map between the nonempty closed subsets of w(Z) and the round

% -filters.

If ? is a prime Z filter, (i.e., Z,U Z, € ? implies Z, € ? or Z,E€ P), then
0(P)= N ,eZ ={p(= A)E w(Z): P CA} is just one point. For if «,, #,€E
0(P?) and o, # A, then there are Z,,Z,€ & such that Z, € o, and Z, N Z, =
. 1t follows that Z,82Z, and there are subsets A, B of X suchthat AUB =X
with Z,8A and Z.8B. Since Z is a proximity base, there are A,, A, B, and
B,€ % such that Z, CA;, A CA,, A,6A,; Z,CB,,BCB,and B:6B,. Z,CA, €
X-A;CX-ACBCB;EX~-B,CX—-Z,,Now, A,UB,DAUB=X€E®.
This implies A, € P Cs; or B,E€ P CoA,. Then, we have Z, € f, and Z,C X —
A, s0 A,& P. But also Z, € of, and Z,C X — B, so B, & ®. This is a contradic-

tion.

3. Round subsets of w(Z)

A remote point in SR is a point not in the closure of any discrete subset of R.
In this section we will generalize the characterization of remote points, and
obtain a class of subsets of w (Z) which is related to a class of round & -filters.

DEFINITION. A subset A of o (%) is called a round subset of w (%) if for any
Z € X, if Z contains A, then Z is a neighborhood of A.

From the definition, we have the following properties of round subsets in
w(%).

THEOREM 3.1. Let A Cw(Z). Then

(@) A is a round subset of w(Z) iff (,eall? =), 0"
(b) If Cl.@)A is a round subset of w (%), then so is A.
(c) Every open subset G in w(¥) is round.

(d) Any union of round subsets of w (%) is also round.

Proor. (a) Note that MP ={ZE€ZX:pEZ}={ZE€ZF: ZE A =p}, and
C*={Z€Z:{p}€Z}). Now, A is a round set iff each Z€ F with ACZ
implies Z is a neighborhood of A. Hence (M, call? =, ci{ZEZX:pE Z}=
{ZeZ. ACZ}={Z€Z: Z is a neighborhood of A}=,.{Z: {p}€ Z}=
(),cA0” iff A is round.

(b) Let A, = Cl,,A. Then since A, is round and closed each Z € & with
Z D A, implies Z is a neighborhood of A,. Thus Z D A, implies first Z 3 A,
and then Z3 A, A.

(c) and (d) are straightforward from the definitions.

THEOREM 3.2. For any nonempty closed subset A of w(Z) the following are
equivalent.
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(@) A is a round subset of w(Z).

() M,catl® is a round Z-filter.

(©) Mpeatt” =),c0"

(d) There is a unique Z-filter ¥ such that (%)= A.

PrOOF. (a) > (b) Since A is a round closed subset of w(Z), each Z€Z
with ZD A implies Z 3 A. Consider F = (,caMl* ={ZEZ: A CZ} Fisa
% filter and 0(F)={q €E 0(Z): FCM*}. But pE A iff M? D F iff p € 0(F)
(by definition of 8(%))). Thus 8(F)=A € Z. It follows from Theorem 2.4,
(d) = (a), that F is a round Z-filter.

(b) = (c) is trivial from Theorem 2.8.

(c) © (d) is Theorem 2.6; and (c) = (a) is Theorem 3.1, (a).

4. Thefree Z -ultrafilter and round subsets

In this section we will see a more general result (Theorem 4.1) of a known
theorem: The intersection of all the free maximal ideals in C(X), the ring of all
continuous real-valued functions, is the family Ci(X) of all functions with
compact support iff X — X is a round subset of BX. (See 7E of Gillman and
Jerison (1960)). We will also generalize the results of Mandelker (1969).

THEOREM 41 For any normal base Z, the intersection of all the free
& -ultrafilters is F ={Z € Z: Clx(X — Z) is compact} iff o(Z)— X is a round
subset of w(Z).

Proor. It is easy to show that % thus defined is a Z-filter. Let A =
o(Z)—X. Then by Theorem 3.1, (a), A is a round subset of w(Z) iff
~np5A./“ ﬂ,,EA@ However, if we can show that % = ﬂ,eAO then A
is a round subset iff ﬂ,,e,wﬂt =% Foreach Z€ %, Clx(X - Z) is compact
in X so it is compact in w(Z) which is Hausdorﬂ. Thus Clx(X—-2Z) is
closed in w(Z) and Clx(X -2Z)=Cl,e(X —Z). Since X =Z U (X ~ Z),
then w(Z)= Clo@)X = CloayZ U Cl,a(X - 2Z)= Z UC1lx(X—2Z) and so
w(Z)-ZCClx(X-Z)CX. We then have =w(Z)- X Cw(Z)-
C1x(X — Z)CZ and since w(Z)— C1x(X — Z) is open in.w(Z) then A € €EZ
Thus Z € (,c.0” andso F C ) ,c.0%. Conversely, if Z € M,cA0% then Z isa
neighborhood of A. That is, there is an open set G such that A =
w(Z)-XCGCZ so w(Z)-ZCw(Z)-GCX. It follows that Cl,a,
o(Z)~Z)Cw(Z)— GCX. Therefore X-Z=X-ZCw(Z)-ZCClua
w(Z)~ Z)CX and so Clx(X = Z)CCloe(X — Z)CCloaef(w(Z)~ Z)CX
Since Cl,@(w(Z)— Z)is compact in X thensois C1x(X —Z)andthus Z€ Z.
Therefore F D (,c.0”. Consequently, F = [),c.0°".

If, in particular, & = Z(X), then we have the result stated above.

Before we state the next result, let us recall Q-closedness. A subset A of X
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is Q-closed in X if for each p € X — A there is a G;-set containing p and
disjoint from A. (See Mréwka (1957)).

THEOREM 4.2. Let & be a separating nest generated intersection ring. Then
the following are equivalent.

(@) Xis Z-realcompact, i.e., every & -ultrafilter with the countable intersection
property is fixed.

(b) w(Z)—- X is a union of zero-sets in w(%).

(c) o(Z)— X is a union of Gs-sets in o(Z).

Proor. (a) > (b) Since X is Z-realcompact, X = v(Z). In Steiner and
Steiner (1970), v(Z) is proved to be realcompact by showing for each p €
w(ff )— v(Z) there is a zero-set Z € Z[w(Z)] containing p and disjoint from
v(Z). (See Steiner and Steiner (1970), Theorem 3.2.) Thus w(Z)— v(Z)=
o(Z)— X is a union of zero-sets of w(Z).

(b) = (c) is obvious. .

(c) = (a) Since w(Z)— X is a union of G;-sets in w (%), X is Q-closed in
w(Z). Since & is an intersecting normal base of X, Theorem 4 of Alo and
Shapiro (1969) states that v(Z) is a subset of X, the Q-closure of X in w(Z).
Thus X Cv(Z)C X° = X This implies X = v(Z). Hence X is Z -realcompact.

Let & be a normal base of X. Then ¥ is said to have property (a) if for
every C-embedded closed subset S of X (i.e., every continuous real-valued
function on S has a continuous extension on X) which is disjoint from a member
Z of & there are Z,,Z,€ ¥ such that Z,0 S, Z,D0Z and Z,NZ,= .

THEOREM 4.3. Let Z be a normal base of X which has property (a). Then
any zero-set Z, of w(Z) contained in w(Z)— X is a round subset of w(Z).

ProoF. Since Z, is a zero-set in w (%), let f € C(w(&)) such that Z(f) = Z,.
To show that Z; is a round set, let Z € & be arbitrary such that Z D Zo,. We need
to show that Z is a neighborhood of Z,. Let T = w(%)— Zo. Then T D X. Definé
h(t)=1/f(t) for each t € T. Then h is a continuous function on T. Suppose
ZoN Clo@fX — Z)#D. Then h would be unbounded on X — Z. Thus X — Z
contains a noncompact closed subset S which is C-embedded in T. (See Gillman
and Jerison (1960;1.20). Thus S is closed in X and disjoint from Z, and by
hypothesis there are disjoint sets Z,, Z, € Z such that Z,D § and Z,D Z. Hence
Clu@S N Clu@Z CClu@Z: N Clu@,Z. = . But S is a noncompact closed
subset in T. We must have q € Cl.@)S — T. Hence g € Zobut & Z = Cl,«)Z.
This is a contradiction. It follows Z,NCl,e(X—-2Z)=, Iie.,
ZoCw(Z)— Clua(X — Z)C Z. This shows that Z is a neighborhood of Z,.

COROLLARY 4.4. Let Z be a separating nest generated intersection ring which
has property (a). Then w(%Z)— v(Z) is a round subset of o (Z).
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ProoF. As shown in Theorem 3.2 of Steiner and Steiner (1970), for each
P € o(¥)— v(Z) there is a zero-set zero—set of w(Z) containing p and missing
v(Z). Thus w(Z)— v(Z) is a union of zero-sets of w(Z). Use an argument
similar to the one in the proof of Theorem 4.3 to show that each zero-set of w(Z)
disjoint from v»(Z¥) is a round subset in w(Z). Thus by Theorem 3.1, (d),
w(Z)— v(Z) is a round subset,

CoOROLLARY 4.5. Let & be an intersecting normal base which has property
(a). Let n*(Z)={oA € w(Z): o4° has countable intersection property}, where o{°
is defined in Lemma 2.2. Then w(%)— n*(Z) is a round subset.

PrROOF. As shown in Theorem 1 of Su (1975), for each p € w(Z)— n*(Z)
there is a zero-set of w(Z) which contains p and is disjoint from n*(Z). Thus
@(Z)—n*(Z) is a union of zero-sets of w(Z). By Theorem 4.3 and Theorem
3.1, (d), w(Z)—n*(Z) is a round subset.

CoROLLARY 4.6. If X is Z-realcompact for a separating nest generated
intersection ring & which has property (« ), then w(Z)— X is a round subset and
hence the intersection of all the free Z-ultrafilters is F ={Z € Z: Clx(X - Z)is
compact}.

Proor. It follows from Corollary 4.4 and Theorem 4.1.

ReMARK. (1) If Z = Z(X), then ¥ is a separating nest generated intersec-
tion ring which has property (a).

(2) There is a separating nest generated intersection ring other than Z(X)
which has property (a). Let X be a non-Lindelof normal space. Since X is not
Lindelof, there is a filter ¥ of zero-sets which is closed under countable
intersectionbut NF =J. Let ¥ ={Z € Z(X):ZEForZN A = for some
A € F}. Itis easy to show that Z is a separating nest generated intersection ring
(see Lemma 3.5 in Steiner and Steiner (1970)). We need to show that & has
property (a). Let S be any closed subset disjoint from a Z € Z. Since X is a
normal space, there are Z, and Z,€ Z(X) such that Z,DS, Z,DZ and
Z,NZ,=. Now, since Z € %, we have either (i) Z € F or (ii) there is an
A € F such that A N Z =, If it is case (i), then it is clear by definition of %,
Z,€EFCX and thus Z,EZ. If it is case (ii), let Z,U A = Z,. Then since
ZNZ=0, ZNZ=(Z,UA)NZ=. Moreover, since Z,€ Z(X) and
ZoD A, Z,E Z. Thus Zyand Z € ¥ such that Z,D S, Z = Z and Z,N Z = &.

(3) Let X be a zero-dimensional T, space, i.e., it has a base consisting of
clopen (both closed and open) subsets of X, Let # be a family of clopen subsets
of X such that (i) & is a base for closed subsets of X, (ii) # is an intersection ring,
(i) X - FE ¥ for each F € &. Then it is clear & is a separating nest generated
intersection ring. Moreover, if S is any closed subset disjoint from a Z € &, then
S CX —Z which is in & (by (iii)). Thus we have Z and X — Z in & such that
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X—-2Z22S,Z>Z and ZN(X - Z)=. Hence Z has property (a). It turns
out that w (%) is a zero-dimensional Wallman-type compactification of X and
v(Z) is N-compact (see Su (1974), Theorem D).
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