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Abstract

Let 2T be a normal base of a Tychonoff space X and w(3t) (v(3C)) denote the Wallman-type
(real-) compactification of X generated by 3t. This Wallman-type compactification is known to
associate with a unique proximity S. A 3. -filter &• is round if for each F £ ^ there is a n F G £ ^ such
that F0E(X - F). A subset A of (o(3t) is called a round subset of <u(2T) iff for each Z e 2, if C l ^ Z
contains A, then it is a neighborhood of A. Properties of round 3?-filters and round sets of a>(2?) are
introduced. We also prove that the intersection of all the free 2T-ultrafilters is 9 =
{Z e Z: C\X(X - Z) is compact} iff o>(S)- X is a round subset of &>(2T); if 3T is a separating nest
generated intersection ring with property (a) then w(S)- v(3?) is a round subset of u>(2).

1. Introduction

Let 3[ be a normal base for a Tycbonoff space X. Recently, the Wallman-
type (real-) compactification <w(3T), (v(2£) respectively) has been studied. (See
Alo and Shapiro (1968), Gagrat and Naimpally (1973), Njastad (1966), Steiner
and Steiner (1970), Su (1975).) Mandelker (1969) studied the round z -filters and
round subsets of jSX. Njastad (1966) proved that for each normal base there is a
unique proximity corresponding to w(3T). This enables us to study round
3T-filters and round subsets in o>(3T) in this note. In Section One and Two, we
will give some properties of round 3T-filters and round subsets of a>{2£). In
Section Three, we will prove that 5F = {ZE.3£: C\X{X — Z) is compact} is
exactly the intersection of all the free ST-ultrafilters iff a>(2£)-X is a round
subset of «(2f) and some other results related to round subsets and

The topological spaces are always Tychonoff spaces. A normal base 3E of a
space X is a base for closed subsets of X which satisfies the following conditions:
(i) 3£ is a ring (i.e., closed under finite unions and intersections), (ii) 2f is

* This was presented at the International Congress of Mathematicians, August, 1974.
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disjunctive (i.e., if x is not contained in the closed subset A of X, then there is a
Z E 2£ such that xEZCX-A), (iii) 2t is normal (i.e., A, B E 2£ and A n B =
0 , then there exist sets C,DE3? such that A C X - C , BcX-D and
C U D = X (See Alo and Shapiro (1968), Gagrat and Naimpally (1973), Njastad
(1966), Steiner and Steiner (1970) and Su (1975).) Let 2T be a family of closed
subsets of X. 3H is called an intersection (or delta) ring if it is a ring which is also
closed under countable intersections. 3f is called an intersecting normal base iff 3?
is a normal base which is also an intersection ring. A sequence {Zn} of sets in 3T is
called a nest in 2E if there is a sequence {Hn\ in 2t such that X - Hn+i CZn+1 C
X - Hn C Zn for n = 1,2, • • •. 2T is nesf generated if for each member Z of 3E
there is a nest {Zn} in 3? such that Z = fl{Zn: n E N}. (See Alo and Shapiro
(1968), Alo, Shapiro and Weir, Steiner (1966) and Steiner and Steiner (1970).) 2£
is said to be complement generated if for each Z E 3? there is a sequence {Zn} of
3? such that Z = n {X - Zn: n E N}. 3T is a strong delta normal base of X if it is
a normal base that is a delta ring and complement generated (see Alo and
Shapiro (1969), Alo, Shapiro and Weir). 2E is said to be separating if for each
closed set A in X and x £ A there are disjoint sets Z,, Z2 in 3T with Z ,DA and
x E Z2. It is easy to show that a family of closed subsets of a space X is a
separating nest generated intersection ring (see Steiner (1966)) iff it is a strong
delta normal base (see Alo, Shapiro and Weir). Let % be a normal base and let
<o(2£) be the set of all 2T-ultra-filters. a>{2£) with topology defined as usual (see
Alo and Shapiro (1968) and Gagrat and Naimpally (1973)) is called a Wallman-
type compactification. If in addition 2£ is an intersection ring then v{2£) denotes
the subspace of «(3f) which consists of all ST-ultrafilters with the countable
intersection property and v{3£) is called a Wallman-type real-compactification.
A separated proximity on X is a binary relation 8 satisfying the following
conditions (8 denotes the negation of 5): (PI) if A8B, then B8A; (P2)
(A U B)8C iff A8C or B8C; (P3) {x}8{y} iff x = y_; (P4) <f>8X; and (P5) if A8B,
then there are sets C, D such that X = C U D, A8C and BSD. (See Naimpally
and Warrack (1970), Njastad (1966), and Smirnov (1964).) A set X with a
proximity 8 on it is a proximity space, denoted by (X, 8). The topology which 5
induces on X is defined by the closure operation A = C\ A = {x E X: {x}8A}.
We will write A<£B and read A is strongly contained in B, if A8(X — B). A
family 33 of subsets of X is a base for the proximity 8 iff (B.I) for every two
disjoint sets A, B of S3, ASB; and (B.2) for every two subsets A,B CX with
A8B are separated by sets of 38, i.e., there are sets C,DG$} such that A C C,
B C D and C8D. (See Naimpally and Warrack (1970) and Njastad (1966).)

Njastad (1966) showed that for each normal base & of X there is a
proximity 8 corresponding to the Wallman-type compactification <u(3f) which is
defined by the statement that for subsets A and B of X, A8B iff the closure of A
in w(S') intersects the closure of B in w(2T), i.e. A f l B ^ 0 . X with this
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proximity S is a proximity subspace of the space <t>(3?) with the proximity (also
denoted by S) defined by the statement that for subsets A and B of to(2t), ASB
iff A C\B/ 0. Throughout the sequel, any proximity theoretic statement will be
understood to be with respect to these special proximities on X or on w(3f). In
this setting, 2£ is a proximity base of S on X and S = {&: 3£ G 2E} is a proximity
base of S on w(3T). Note that in a>(2£) an open set G contains a closed set A iff
A<sG.

2. Round ^-filters

In this section we will give some basic properties of round 2£ -filters, where ?£
will always stand for a normal base of X.

DEFINITION. A ^-filter SF is round iff for each F G & there is anF0E. 3F such
that Fo <s F.

LEMMA 2.1. In a proximity space (X, St), if 33 is a base for the proximity Su

then for A,BCX such that A <g B there is Bo G 53 such that A ^B0^B.

PROOF. It is easy, using (P5), to show that there is a CCX such that
A <g C <E B. Thus AS,(X - C) and CSiX - B. Since S3 is a base for 5,, there are
Bt,B2,B3 and B4 in 98 such that AcBu X-CCB2, BxE^, CCB,, X-BC
B4 and B^.Bi. Thus, A CBtmX - B2CC CB3<£ X - B4CB. Let Bo = B3.
Then Bo is as desired.

In light of Lemma 2.1, we know that a 3f -filter 9 is round iff for each F e f
there is a Z G 2. and F0G & such that Fo C X - Z C F. For, if ^ is round, then
for each FG & there is a n F 0 E f such that Fo<§ F. But Fo<g F iff F0S(X - F).
Since 2£ is a proximity base for 5 on X, there are Zu Z2E.2£ such that Z, D Fo,
Z j D X - F with ZX8Z2. Thus F 0 C Z , g Z - Z 2 C F . Conversely, if for each
F £ f there is a ZGSf and F 0 G ^ such that F 0 C X - Z C F , then since
Fo, Z G 3T, F o i X - Z C F . (Compare with the definition in §3 of Mandelker
(1969)).

LEMMA 2.2. Fora 2£-filter &, define &° = {F <E %: F W Fo for some Fo E 9).
Then & is round iff & = &°

PROOF. It is easy to show that 9° is a 2t-filter. To see that 3F° is round, let
F £ &°. Then there is a n F 0 £ f such that Fo<gF. By Lemma 2.1, since 2T is a
proximity base, there is a Z G 3T such that Fo <g Z <s F. Thus Z G &° and Z <g F.
That is, 3F° is round. The last part is clear.

DEFINITION. For a 3?-filter 2F, we let 0(&) denote the set of all cluster points of
& in w(2£). That is, 0(&) = (1{Z: ZG &}, where Z = C l ^ Z . Now Cl»(X)Z =
{M G a>(2E): Z G s4}. (See Alo and Shapiro (1968) and Gagrat and Naimpally
(1973).) We further define, for each p G w{2£), M" = {Z £ %: p G Z} and 6" =
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{ZE.&-.Z is a neighborhood of p}. It follows easily that 6(9) =
{M G co(S): 9 C si} = {p G a>(%): & CM"). In particular, if% = 2E(X), the fam-
ily of all zero-sets on X, then 3? is a normal base and <u(3T) = /3X, the Stone-Cech
compactification of X, and in this case the above notations reduce to the customary
ones, as follows. Each si G /3X is a %(X)-ultrafilter, M* =
{Z G 2E(X): si £ C\pxZ} = {Z6 2f (X): si £ Z} and 0* = {Z E 2T(X): Clpx3f
is a neighborhood of si}. (See Chapter 7 of Gillman and Jerison (1960) and
Mandelker (1969)).

Now, it is easy to show that if 9U9 are two 2£ -filters and 9XC9, then
9(f)Cfl(f,). Moreover, since 5 = {Z:ZG3f} is a normal base for closed
subsets in w(S'), (see Alo and Shapiro (1968), Gagrat and Naimpally (1973) and
Njastad (1966)), each closed subset A of <jt(2£) is of the form 6(9) for some
3t-filter. Namely, 9 = {Z G 3f: A C Z} which clearly is a 2C-filter and 0(&) = A.

LEMMA 2.3. // 9 is a 3t-filter and ZoGST, then Z , § 9 ( ^ ) iff there is a
WE& such that W D Zo.

PROOF. " => " Consider the family ^ = {C\mi3-,Z = Z: Z G ^ } . It is clear
that 0 (^ )= (~l^^0 is an intersection of compact subsets of «(3f). Since
ZoS) 6(9) there is an open set G of (o(%) such that Z0S G 3) 6(9)= D #.
Hence there are FUF2, • -,Fn in 9 such that HT-IFJ CG. (See 5F of Kelley
(1955)). But since (!?,,£< is closed Hr-iP) S G. Let W = Hr-iF,. Then we have
VV C Hr^F- @ G <§ Zo. " <= " is obvious, as 6(9) = C\Z^Z CWmZ0.

THEOREM 2.4. If 9 is a Z-filter, then the following are equivalent.
(a) 9 is a round %-filter.
(b) For every Z E9, there is We. 9>uch that Z^W.
(c) For any p G <a(2C), if 9 CM" then 9 C€".
(d) For every Z G 9, Z => 6(9).

PROOF, (a) <» (b) Since Z G 9, there is a WG9 such that W m Z, i.e.,
WSX - Z. By the property of proximity W8X - Z iff WSX - Z. (See (2.8) of
Naimpally and Warrack (1970)). Now since X = ( X - Z ) U Z , then w(3f) =
C W , ( X - Z) U C1.(*)Z = X - ZU Z and so X - ZD <o(2E)-Z. Thus W5X -
Z iff W8w(3?)-Z iff Z=> W.

(b) >̂ (c) Suppose 9 C M". From (b) for each Z 6 f there i s . a W 6 f such
that W m Z. But 9 CM" which is a 2T-ultrafilter. Thus l V 6 i < l ' , a n d i p £ W ' g
Z. But M" = p. {p} m Z, i.e., Z G 0". Hence F C <5"\

(c) => (d) Suppose pG6(9). Then p = M, a 3?-ultrafilter. J ^ G
H ze*Z implies Z E i for each Z G f or ^ C ^ = ^C. And (c) says
that 9 C 0". Thus, for each Z G 9, Z is a neighborhood of p, for each p G
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This implies Z is a neighborhood of 0(&) which is a closed subset of
Hence Z §> 0(3?).

(d) <=> (b) This follows immediately from Lemma 2.3.
If A g Z , then we shall call Z a S-neighborhood of A.

LEMMA 2.5. For a closed subset A in u)(2t), there is a base of S-
neighborhoods of the form Z, where Z G 2E.

PROOF. Let G be an open neighborhood of A in w(2T). Then G 3> A. By
Lemma 2.1, there i s a Z e f such that AmZ^G.

THEOREM 2.6. Lcr A be any closed subset of a>{3£). For any 2£-filter 2F, we
have 6(9^) = A iff f ) peA0r C&c D p£AM".

PROOF. "£> " Suppose 9(&) = A, and Z e r\p£A0p. Then Z is a neighbor-
hood of 0(^) which is closed and we have Z §> fl(^). By Lemma 2.3, there is a
W e f such that ZSJVV. Thus Z 3) W and Z e ^ C ^ " for each p E A.
Conversely, suppose f is a 2f-filter with C\pt,A0" d&cC\p&AMp. Then

Ai(p) = A C « ( f ) . However, in light of Lemma 2.5, we have
ACip)= A. Moreover C\peA€p C&, d(&)Cd(C\pziA€'')= A. Hence

= A.

The following is a characterization of a round S"-filter in terms of 3T-filters
of the form €".

THEOREM 2.7. For any %-filter &, &° = npe(,(»)C
p.

PROOF. Z £ ^° iff there is a W G ̂  such that W <£ Z. As shown in
Theorem 2.4, (a) <» (b), W i Z i f f IVgZ.On the other hand, Z, G Dpee^)0

p

iff Zi is a neighborhood of d(SF). Since 0(^) is closed, Z, is a neighborhood of
iff Z, §) 0(^). This, by Lemma 2.3, is equivalent to that there is a WE&
^ Z , . Thus, ^ ° = C\pe<,iSF)6".

THEOREM 2.8. / / & is a round $E-filter, then 9' = H p<Eec*)6p- Conversely
if A is a nonempty closed subset of a> (3?), then C\pEAC'p is a round 3?-filter and for
distinct closed subsets A, r\peA6p are distinct.

PROOF. The first part follows immediately from Lemma 2.2 and Theorem
2.7. Let A be a nonempty closed subset of &>(3f), and 3F = C\p(=A€p. By Theorem
2.6, O(^) = A and hence for each Z e ^ w e have Z is a neighborhood of A
which is closed. Thus, ZWA = d(&) and from (a) O (d) of Theorem 2.4, 9 is a
round 3f-filter. Finally, let A] and A2 be closed subsets of a>(2£), and A, ^ A2.
Then, there is an a G A , - A2 (or A j - A ^ . Suppose that a G A i - A 2 . Then
aSA2 or A2 (g X - {a}. By Lemma 2.1, there i s a Z e f such that A2 <g Z <s X -
{a}. Thus Z G np6A2(?p - r\peAl0

p. Similarly, for a EA2-At.
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COROLLARY 2.9. The correspondence A —* C\peAC is a one-to-one order-
reversing map between the nonempty closed subsets of o>(3T) and the round
S-filters.

If <3> is a prime Z-filter, (i.e., Z, U Z2 G 9 implies Z, G 3> or Z2 G 0>), then
= n z 6 3 . Z = { p ( = ^ ) G w ( 2 r ) : ! ^ C ^ } is just one point. For if st^^E.
and ^ , ^ sd2, then there are Z,, Z2 G 3f such that Z, G jrf, and Z, D Z2 =

0 . It follows that Z!5Z2 and there are subsets A, B of X such that A U B = X
with Z,SA and Z28B. Since 31 is a proximity base, there are A,,A2,Bt and
B2 G 3T such that Z,CA,,A CA2, AjSA;.; Z2CB,,B CB2 and B,5B2. Z, C A, <g
X - A 2 C X - A CB CB2 d X - B, CX - Z2. Now, A2UB2 DA UB =XG0>.
This implies A2 G Ŝ  C Mt or B2 G Ŝ  C st2. Then, we have Z, E .stf, and Z, C X -
A2 so A2£SP. But also Z2G ^ 2 and Z2 C X - B2 so B 2 ^ 0>. This is a contradic-
tion.

3. Round subsets of <o(3f)

A remote point in /3R is a point not in the closure of any discrete subset of R.
In this section we will generalize the characterization of remote points, and
obtain a class of subsets of w(2T) which is related to a class of round 2£-filters.

DEFINITION. A subset A of ui(Z) is called a round subset ofw(2£) if for any
Z G % if Z contains A, then Z is a neighborhood of A.

From the definition, we have the following properties of round subsets in

THEOREM 3.1. Let A Cw(2E). Then
(a) A is a round subset of w(2T) iff DpeAMp = C\peA0p.
(b) / / C l ^ j A is a round subset of o)(2£), then so is A.
(c) Every open subset G in «(3f) is round.
(d) Any union of round subsets of a>(2E) is also round.

PROOF, (a) Note that J p = { Z £ f : p e Z } = { Z e f : Z e i = p}, and
C ={Z£f :{p}gZ} . Now, A is a round set iff each Z&& with A CZ
implies Z is a neighborhood of A. Hence C\P^AMP = DpSA{Z G3T: p 6Z} =
{ZG3T: A CZ} = {ZG3f: Z is a neighborhood of A}= DpEA{Z:{p}CZ} =
n p e A C iff A is round.

(b) Let Ai = Cl^xyA. Then since A, is round and closed each Z G 3f with
ZDA, implies Z is a neighborhood of A,. Thus Z 3 A , implies first ZW> A,
and then Z § AiD A.

(c) and (d) are straightforward from the definitions.

THEOREM 3.2. For any nonempty closed subset A of OJ(3?) the following are
equivalent.
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(a) A is a round subset of a>(!Z).
(b) f\peAM" is a round %-filter.
(c) npeAMp = npeAop.
(d) There is a unique ^-filter & such that 0(&) = A.

PROOF, (a) => (b) Since A is a round closed subset of <o(2!), each ZG3T
with ZDA implies Z D A. Consider $F = DP^AMP = {Z G 3T: A CZ}. 9 is a
2T -filter and 6(&) = {q G w(2T): S? C^"} . But p G A i S l ' D ^ iff p G 0(^)
(by definition of B(&))). Thus 0(^) = A i Z . It follows from Theorem 2.4,
(d) => (a), that ^ is a round 3T-filter.

(b) => (c) is trivial from Theorem 2.8.
(c) <t> (d) is Theorem 2.6; and (c) => (a) is Theorem 3.1, (a).

4. The free ^T-uItrafilter and round subsets

In this section we will see a more general result (Theorem 4.1) of a known
theorem: The intersection of all the free maximal ideals in C(X), the ring of all
continuous real-valued functions, is the family CK(X) of all functions with
compact support iff [}X - X is a round subset of /3X. (See 7E of Gillman and
Jerison (I960)). We will also generalize the results of Mandelker (1969).

THEOREM 4.1. For any normal base % the intersection of all the free
%-ultrafilters is & = {Z£%: C\X(X - Z) is compact) iff u>{%)- X is a round
subset of u>{2£).

PROOF. It is easy to show that 3* thus defined is a 2t-filter. Let A =
w{3£)-X. Then by Theorem 3.1, (a), A is a round subset of a>(&) iff
r\peAM" = r\p<EAC. However, if we can show that 9 = r\p£AOp, then A
is a round subset iff V\P<EAMP = 9. For each Z e &, C1X(X - Z) is compact
in X so it is compact in w(2T) which is Hausdorff. Thus C 1 X ( X - Z ) is
closed in a(2) and C1X(X-Z)= C W , ( X - Z ) . Since X = Z U ( X - Z ) ,
then w(f) = C l ^ j X = C L m Z U CL(2)(X - Z) = Z U C1X(X - Z) and so
<o(3r ) -ZCClx(X-Z)CX. We then have A = a>(%)-X Co(%)-
C 1 X ( X - Z ) C Z and since w(3T)- C1 X (X- Z) is open in.w(3f) then A <£ Z.
Thus Z G C\peAOp and so 9 C C\P^AGP. Conversely, if Z £ C\p(=AGp, then Z is a
neighborhood of A. That is, there is an open set G such that A =
(o(g)-XCGCZ. so w(3?)-ZCw(3?)-GCX. It follows that C1 . ( I )

co(2?)-Z)C«(3r)-GCX. Therefore X - Z = X - Z Ca>(%)-Z CC1U(I )

w(3?)-Z)CX and so C1 X (X- Z)CC1»( 2 ,(X- Z)CCl«,m(w(3f)-Z)CX
Since CUo-Xw^) - Z) is compact in X then so is C1X(X - Z) and thus Z G 3T.
Therefore S*D C\p(=A6p. Consequently, 9= C\peAO".

If, in particular, 3E = Z(X), then we have the result stated above.
Before we state the next result, let us recall Q-closedness. A subset A of X
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is O-closed in X if for each p G X — A there is a Ga-set containing p and
disjoint from A. (See Mrowka (1957)).

THEOREM 4.2. Let 3C be a separating nest generated intersection ring. Then
the following.are equivalent.

(a) X is 2t-realcompact, i.e., every 3£ -ultrafilter with the countable intersection
property is fixed.

(b) (o(St!)— X is a union of zero-sets in w(3f).
(c) o)(3t)- X is a union of Ge-sets in <o(2£).

PROOF, (a) => (b) Since X is 2L-realcompact, X = v{2£). In Steiner and
Steiner (1970), v(2£) is proved to be realcompact by showing for each p G
u>(3£)- v(2£) there is a zero-set ZGZ[w( f ) ] containing p and disjoint from
v{2[). (See Steiner and Steiner (1970), Theorem 3.2.) Thus o»(3?)- v(%) =
u>(3£)-X is a union of zero-sets of w(3T).

(b) >̂ (c) is obvious. •
(c) => (a) Since w(££)- X is a union of G6-sets in a>{2£), X is Q-closed in

w(3f). Since 3. is an intersecting normal base of X, Theorem 4 of Alo and
Shapiro (1969) states that v(2C) is a subset of X°, the Q-closure of X in w(2T).
Thus X C v(2E) C X° = X. This implies X = v(3E). Hence X is 3T-realcompact.

Let H£ be a normal base of X. Then 3f is said to have property (a) if for
every C-embedded closed subset S of X (i.e., every continuous real-valued
function on S has a continuous extension on X) which is disjoint from a member
Z of S. there are Z,, Z2 G 2T such that Z, D S, Z2 D Z and Z, n Z2 = 0 .

THEOREM 4.3. Lef % be a normal base of X which has property (a) . Then
any zero-set Zo of <o{2£) contained in w(2T) —X is a round subset of

PROOF. Since Zo is a zero-set in w(3T), let / G C(<o(3f)) such that Z(J) = Zo.
To show that Zo is a round set, let Z G S£ be arbitrary such that Z D Zo. We need
to show that Z is a neighborhood of Zo. Let T = w(3T)- Zo. Then TDX. Define
h(t)=\lf(t) for each ( £ 1 Then /i is a continuous function on T. Suppose
Zo D C1»(S)(X - Z) ^ 0 . Then /i would be unbounded on X - Z. Thus X - Z
contains a noncompact closed subset S which is C-embedded in T. (See Gillman
and Jerison (1960; 1.20). Thus S is closed in X and disjoint from Z, and by
hypothesis there are disjoint sets Z,, Z2GS such that Z, D S and Z2D Z. Hence
C1.,»)S n Cl .d)Z C Cl.(i)Zi h Cl.(i)Z2 = 0 . But S is a noncompact closed
subset in T. We must have q G C W J S - T. Hence q G Zo but qg Z = Cl»iX)Z.
This is a contradiction. It follows Z o n C l » ( J | ( X - Z ) = 0 , i.e.,
Z0C&)(ar)-Cla,,2)(X-Z)CZ. This shows that Z is a neighborhood of Zo.

COROLLARY 4.4. Let 2£ be a separating nest generated intersection ring which
has property (a). Then aj(3f)- v{2£) is a round subset of
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P R O O F . A s s h o w n in T h e o r e m 3.2 of S te iner and Ste iner (1970) , for e a c h 
p G <o(3t) — v(2f) there is a zero-se t z e r o - s e t of a>(St) conta in ing p and miss ing 
v(St). T h u s <o(St) — v(St) is a un ion of z ero - se t s of a>{St). U s e an argument 
similar t o the o n e in the proof of T h e o r e m 4.3 to s h o w that each zero-se t of w(St) 
disjo int f rom v{St) is a r o u n d subse t in w{St). T h u s by T h e o r e m 3 .1 , (d), 
CJ (St) — v{St) is a r o u n d subse t . 

C O R O L L A R Y 4 .5 . Let St be an intersecting normal base which has property 
( a ) . Let T) *(S() = {si G (o(3t): si0 has countable intersection property}, where s4a 

is defined in Lemma 2.2. Then w(St) — r\*(St) is a round subset. 

P R O O F . A s s h o w n in T h e o r e m 1 of S u (1975) , for e a c h p G w ( 2 f ) - TJ*{St) 
there is a z ero - se t of a)(St) which conta ins p and is disjoint from -q*(St). T h u s 
co(St)- i7*(£?F) is a u n i o n of z e r o - s e t s of co(St). B y T h e o r e m 4.3 and T h e o r e m 
3 . 1 , (d) , co(2t)-r)*{St) is a round subset . 

C O R O L L A R Y 4.6 . / / X is St-realcompact for a separating nest generated 
intersection ring St which has property (a), then u>(3t) — X is a round subset and 
hence the intersection of all the free St-ultrafilters is & = {Z G St: C 1 X ( X — Z) is 
compact}. 

P R O O F . It fo l lows from Corol lary 4 .4 a n d T h e o r e m 4 . 1 . 

R E M A R K . (1 ) If St = Z ( X ) , t h e n St is a separat ing nest g e n e r a t e d intersec­
t ion ring which has proper ty ( a ) . 

(2) T h e r e is a separat ing nest g e n e r a t e d intersect ion ring o ther than Z(X) 
which has proper ty ( a ) . Le t X b e a n o n - L i n d e l o f normal space . S ince X is not 
Lindelof , there is a filter & of zero - se t s wh ich is c lo sed under countab le 
in tersec t ion but n # = 0 . Le t 3? = { Z G Z ( X ) : Z G ^ o r Z D A = 0 for s o m e 
A G 9*}. It is easy t o s h o w that HE is a s eparat ing nest g e n e r a t e d intersect ion ring 
( see L e m m a 3.5 in S te iner and Ste iner (1970) ) . W e n e e d to s h o w that St has 
property ( a ) . Let 5 b e any c lo sed subse t d is jo int from a Z G St. S ince X is a 
normal s p a c e , there are Z i and Z 2 G Z ( X ) such that Z , D S , Z 2 D Z and 
Z , f l Z 2 = 0 . N o w , s i n c e Z & St, w e h a v e e i ther (i) Z £ f or (ii) there is an 
A G & such that A n Z = 0 . If it is c a s e (i) , t h e n it is c lear by def ini t ion of St, 
Z2E&CSt and thus Z , G 3 T . If it is case (ii), let Z , U A = Z 0 . T h e n s ince 
Z , D Z = 0 , Z„ n Z = ( Z , U A ) n Z = 0 . M o r e o v e r , s ince Z„ G Z ( X ) and 
Z„ D A , Z„ G St. T h u s Z 0 and ZGSt such that Z 0 D S, Z = Z and Z„ D Z = 0 . 

(3) L e t X b e a z e r o - d i m e n s i o n a l T, s p a c e , i .e . , it has a b a s e cons is t ing of 
c l o p e n ( b o t h c l o s e d and o p e n ) s u b s e t s of X. L e t St b e a family of c l o p e n subse t s 
of X such that (i) St is a base for c l o s e d subse t s of X, (ii) 9 is an intersect ion ring, 
(iii) X — F G St for each F G St. T h e n it is c lear St is a separat ing nest genera ted 
intersect ion ring. M o r e o v e r , if 5 is any c l o s e d subse t disjoint from a Z G f , then 
S C X — Z which is in St (by (iii)). T h u s w e have Z and X — Z in St such that 
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X- ZDS, ZDZ and Z (1(X-Z) = 0. Hence 3f has property (a). It turns
out that &>(££) is a zero-dimensional Wallman-type compactification of X and
v{2£) is N-compact (see Su (1974), Theorem D).
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