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§ 1. Introductory.

Linear interpolation between two values of a function ua and ub

can be performed, as is well known, in either of two ways. If the

divided difference (uh — ua)l(b — a), which is usually denoted by

u (a, b) or u (b, a), is provided, or its equivalent in tables at unit

interval (the ordinary difference), we should generally prefer to use

the formula
ux = ua + (x — a) u (a, b), (1.1)

which is the linear case of Newton's fundamental formula for

interpolation by divided differences. If differences are not given,

but a machine is available, then the use of proportional parts in the

form of the weighted average

u-c = [(b — x)ua4- (x — a)ub]/(b — a), (1.2)

the linear case of Lagrange's formula, is actually more convenient,

since it involves no clearing of the product dials until the final result

is read. In the usual case of data tabled at unit intervals the

method of (1.2) is particularly simple, since the divisor b — a is then

unity or some small integer, and the division can be performed

mentally. Even in the case of unequal intervals the process is

convenient for machine, for the secondary dial which registers the

turns, if it possesses " tens' transmission," will automatically add the

multipliers b — x and x — a in (1.2), and will thus show the proper

divisor b — a, which can then be used in division upon the product-

sum as registered by the product dials.

For example, a linear interpolate M0.es3 can be computed from
•u0 and Mi as

uo.m= 0-317 MO +0-683 M,;
from Mo and us as

uo.m = (2-317 M0 + 0-683 «3)/3;
from Mi and M8 as

uQ 683 = (2-317 M, — 0-317 M3)/2, and so on.
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It was without doubt the simplicity and ease of this operation
by machine which led Ch. Jordan to use the results as the basis of
a new method of interpolation. He suggested (Metron, 7 (1928),
47-51Y that instead of applying Bessel's or Everett's formula to a
set of data .. . . , w_5, w_i; uk, uh . . . . it is advantageous, if a machine
is available, to take as the basis of further computation the results
of linear interpolations for ux on the symmetrically disposed pairs of
tabular values «_^ and u^\ w_» and us; u_s and u-,, and so on, and to
apply to these results a special formula of interpolation which uses
even differences only.

The experience of computers has proved that Jordan's method is
very rapid and effective, particularly when no tabular differences
are provided. In the present paper we carry his idea still further
by dispensing altogether with differencing and with the use of tables
of interpolating coefficients, and we propose to carry out the whole
process by iteration of the operation of proportional parts. Special
attention is drawn to § 3, in which the rapid and powerful operation
of extrapolation by quadratic proportional parts is developed, and to
the applications to double interpolation, and to inverse interpolation.

§ 2. The Non-Symmetrical Case: Iteration of the Gregory-Newton
Type.

Consider first non-symmetrical interpolation. For vividness the
data will be taken as equidistant, namely u0, uu u2, u3 but the
demonstration will cover the more general case c-f ua, uh, uc, ud, . . . .
The routine is as follows. The first step is to interpolate for ux by
proportional parts, as in § 1, between u0 and v,i\ then between u0 and
M2; then between u0 and us, and so on. We shall write the results as

-,,0) ,/(!) yd) (I) 1\

where the increase of suffix is to be noted, leaving the variable x to
be tacitly understood. Thus for example

u^ (x) = u^ = (1 — x) u0 + xult

w(
2
J) (x) — w(

2
1} = [(2 — x) u0 -f xu2]/2, a n d so on .

1 For investigations of Jordan's formula, and of an allied formula suggested by the
present writer where an odd number of tabular values are used, see articles in the
Mathematical Gazette, 16 (1932), U-25.
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The second step is to treat the set (2.1) as data from which uf is
to be estimated by the proportional part process, using tile initial
datum uf combined with each of the rest in turn. Let this sequence

be written
uf, uf, uf, . . . . (2.2)

again with an increase in suffixes. For example,

uf = (2-x) uf - (1 - x) uf,

uf = [(3 - x) uf ~(l-x) uf]/2, and so on.

The third step is similar; to interpolate linearly for uf from the
set (2.2), using the initial uf combined with each of the rest in turn,
leading to values uf, uf, and so on: and later steps follow the
same routine.

We shall prove that uf, as found by the above method, is
identical with the value of «,, as found by ordinary polynomial
interpolation, with data u0, uu u2 ur-i, us. In particular the
initial iterate of the rth sequence, uf, gives the value of ur determined
polynomially from u0, uu w2, . . . . , ur.

To prove this, let ua, ub, uc, ud, for example, be a set of data.
Denote the linear polynomial determined by ua and ub by uUi b, the
arbitrary variable x being tacitly understood—very much in the
way that a straight line through points A and B is denoted by AB;

denote the quadratic determined by ua, uh and uc by ua>hi,.; and so on.
Then Newton's fundamental formula gives two identical results,

ua b, c, d = ua,bi c + {x — a) (x — b) {x — c) u {a, b, c, d), (2.3)

= uaib:d + (x-a)(x-b){x-d) u{a,b,c,d), (2.4)

where u (a, b, c, d) denotes the divided difference of the third order
arising from u,,, ub, uc, ud. Eliminating the last terms in (2.3) and
(2.4) by multiplying by d — x and x — c respectively and adding,

we have
ua, b, c, d = [(d- x) «„, 6i „ + (x - c) ua, 6, d]/(d - c ) . (2.5)

But this is merely the use of proportional parts, as if we were inter-
polating linearly for ua< 6 ,. from ua> b,«. and ua> b, d, regarded as functions
of x = c and x = d. The algorithm of iteration consists now in the
repeated use of the identity (2.5). For example what was denoted
by uf is seen to be the same as w0 1; while uf is the same as u0 2; so
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that, in virtue of (2.5), w|2) is the same as u0 1 2 ; and similarly for
every other entry. It follows at once that all entries in the sequence
M(r) are interpolates for ux corresponding to some polynomial of the
r"1 degree, and so are correct to rtb differences.

This last remark has a practical bearing, for since the iterated
sequences are closer and closer approximations to the desired value,
their earlier and more important significant digits tend to become the
same throughout the sequence, so that only the later different ones
need to be copied down and used in forming the weighted averages at
subsequent stages.

In practice one begins this process early by dropping figures
common to all the original u's: e.g. most of the 5's in the table
below.

Even though the present non-symmetrical method of iteration
will be passed over in nearly all practical cases, except that of
inverse interpolation, considered in § 7, in favour of the quadratic
extrapolative process of the next sections, which is from two to
three times as rapid, it may be interesting to see the features just
mentioned coming out in a numerical example. We shall take the
first six values of the Digamma function, d\oge (x\)/dx, retaining eight
places of the twelve-place values given in the B. A. Tables (London,

1931), p. 42, for x = "00, -01 -05, and we shall interpolate for
x = -0268327. The values are all negative, but we shall work with
the positive sign, prefixing a minus to the result. The following is
the most convenient arrangement:

u.
5772 1566
5608 8546
5447 8931

5289 2109
5132 748S
4978 4499

w(1) M( 2 ) M(8) «W Parts.
-2-68327

5333 9732 —168327
..37 1133 39 2588 —068327

.40 1987 . . 2128 2274 0-31673

.43 2307 . . 1675 . . . 6 . . 3 131673

.46 2107 . . 1230 . . . 9 . . 3 231673

Hence we have ux = — 0'5339 2273.

The appropriate multipliers in the operations of proportional
parts are shown in the column on the right. If we imagine the
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values of the u's and the u^'s as being ordinates, all entries in the
same row having the same abscissa or value of x, then these multi-
pliers are seen to be the distances of the ordinates corresponding to
suffixes 0, 1, 2, . . from the desired ordinate with suffix x, and, further,
they are used in pairs in ordinary cross-multiplication upon entries in
their rows.

For example, the first entry in the column u(l) is given by

2-68327 X 56088546 - 1-68327 x 57721566,

the secondary dial registering 1-00000. The last entry in the same
column is given by

(2-68327 X 49784499 + 2-31673 X 57721566)/5,

the secondary dial recording the divisor 5-00000. Again, the first
entry in the column u{2) is given by

1-68327 X 371133 - 0-68327 x 339732,

while the last entry in the same column is given by

(1-68327 x 462107 + 2-31673 x 339732)/4, and so on.

The entry 2274 in the column «<3> is given by 0-68327 x 2128 +
0-31673 x 2588. As fewer and fewer digits are retained it becomes
pointless, of course, to retain all the digits in the multipliers. Visual
help is given if a horizontal datum line, with arrowhead as indicated,
be drawn across the table in a position which will approximately
represent the desired ordinate of interpolation, for then the sign
and magnitude of the distance-ratios which are used as multipliers
are made manifest. Finally the fact that the decimal parts of all
multipliers involve two numbers only, namely 0-68327 and its com-
plement 0-31673, renders the process uniform and congenial.

We pass now to the symmetrical case, which possesses all of the
above advantages in an enhanced form.

§ 3. Quadratic Extrapolation for an Even Number oj Data.

We consider this time a set of 2n symmetrically disposed data,
not necessarily equidistant, but such as u.c, u^b, u_a, ua, uh, uc.
These determine a polynomial of degree 2n — 1, which we shall
denote by u±a, ±&, ±« the variable x being again tacitly understood.
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We shall obtain this polynomial by iterating upon an initial sequence
u±v, u±b, u±c, that is, upon the symmetrical linear interpolates which
Jordan used. Writing down the value of the linear polynomial
w±a, namely

u±a = [(a + x) ua + (a - x)u_a]/2a, (3.1)

we observe that it is unchanged by writing — a for a. Hence it is an
even function of its argument a, and so might be denoted by f(x; a2).
We also note that if in it we put a = x, we obtain ux. Hence ux is
the same as f(x; x2). I t follows at once that we can interpolate for
ux from the values f(x: a2), or w±a, by the formula 2.5 of §2, but with
squared variables, obtaining the fundamental formula of iteration,

M±«, ±6l ±c = [(c- - x2) «±ai ±6 + (x2 - b2) «±a, ±c]/(c
2 - 62), (3.2)

which can evidently be extended to any even number of symmetrically
placed data.

By the repeated use of (3.2) we develop the method of iterated
quadratic extrapolation as follows. The first step is to compute the
Jordan interpolates w±o, u±b, w±« . . . . by ordinary linear proportional
parts, as in (3.1). The next step is to apply formula (3.2) to u±a and
u+i, obtaining u±a±b; then to u±a and u±c, obtaining u±ai ±c, and so
on. The third step is to apply (3.2) again to u±a< ±b and u±a> ±c,
obtaining u±a> ±bt ±o and so on. At the second step we obtain inter-
polates to third differences, at the third step to fifth differences, and
so on. The various sequences can be arranged in columns as in § 2,
though we shall see that the computation is best carried out by
building downwards in a triangular fashion, annexing rows as
required.

A valuable feature of the method is that the quadratic multi-
plier, for instance c2 — x2 in (3.2), is a product of c + x and c — x,
which have already been used as linear multipliers in the first Jordan
step. This is peculiarly useful in the case of equidistant data at
unit intervals; for then we have a = J, 6 = •§•, c = 4, and so on, so
that the quadratic multipliers to be used in the iterations are

4 X , -j- X , -j X , -^ X , . . . . ,

that is, 6, 2 + d, 6 + 6, 12 + 6, 20 + 6, 30 + 6, taking them as far as
would be required for interpolation to eleventh differences, where
6 = ( | + x) ( | — x). It is advisable therefore, before ever carrying
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out the first central Jordan interpolation, to compute and note
down for use—a matter of a few moments—the product of the linear
multipliers which are being used. The value of 6 thus obtained
recurs throughout the whole iteration, the integers 2, 6, 12, 20, . . . .
and their mutual differences being divisors.

By way of illustration of these various points we shall work
through an example given in the Introduction, pp. ix and x, to the
B.A. Tables of 1931, cited earlier. The problem is to interpolate for
Si(x), when x = 22-12742 983, from entries given (ibid.) in Table
VIII, p. 38. The intervals are of 0-2, the two central values, for
example, being

x Si (z).
22-0 1-61608 37366
22-2 1-61510 35866.

The central linear multipliers are therefore 0-63714 915, 0-36285 085,
and their product, the quadratic multiplier 8, is 0'23119 011065. We
read from the table the values of the function at widening ranges
about the central interval, set them up on the machine with the
proper linear multipliers, i.e. the above ones, with a unit added to
each each time, divide the results by 1, 3, 5, 7, . . . . , and enter the
Jordan sequence M(1) in the computing sheet. Actually all that is
written down on the sheet appears below:

w ™ w<3) it<5) w(7> w(9> Parts

1-61545 92348-6 0-23119 011065

1368 669074 1566 41322-0 2-23..

102107315-4 6 146854 6 561798 6-23..

0516 69644-1 5 75241-2 60659 6298-1 12-23..
59875 22727-9 5 23590-8 5915-4 7-5 9-0 20-23..

Thus we have Si (22-12742 983) = 1-61566 56299.

It is expedient to do the computation in the following order. The

first entry in the column it(3) is given by

(2-23119 . . x 545923486 — 0-23119 . . x 368669074)/2,

and the second entry by

(6-23119 . . X 545923486 - 0-23119 . . x 021073154)/6,
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the quadratic multipliers 0, 2 4- d, 6 + 0, being used in cross-
multiplication upon the entries in their rows, exactly as were the
linear multipliers of § 2. Since the results obtained at this stage
are by no means equal or nearly equal, we must proceed to higher
differences, and so we compute a third entry in column M(3) by

(12-23119 . . x 1545923486 - 0-23119 . . X 0516696441)/12.

From the three values in column w(3) we now calculate the two
first values in column «(5). Though much closer to equality, they are
not yet sufficiently near for our purpose. Hence we compute a
fourth entry in the column u{Z\ and by means of it a third entry in
the column w(5). The three entries in column u{;>) now give two (to
seventh differences) in the column u(1), and these are less than a unit
apart. Hence we proceed with assurance to the single entry in
column u{9\ the extrapolating ratio 20: —12, or 5 : —3, being
sufficient. Thus we build downwards in triangular fashion by
annexing rows, but only adding the apex at the very last step.

We adopt the above procedure, which is systematic and easy, in
order not to extend the columns unnecessarily, and yet to check the
final result. In the above example it has been necessary, for accuracy
to ten decimals, to go as far as the equivalent of ninth differences.
In common practice it will rarely be necessary to go beyond fifth
differences, and indeed, had the tables of Si(x) been entered at
interval 0-l instead of 0-2, a fair proportion of our work would have
been saved.

It may be noted that the decimal part of all the quadratic multi-
pliers is the same, namely 0-23119 . . ; that all the divisors are integers,
shown on the secondary dial; that fewer and fewer digits are copied
down, or used in the multipliers, as the iteration proceeds, and with a
much better convergence than in the linear case of § 2; that whereas
tables of interpolating coefficients have to be restricted for reasons of
space to three-digit values of x between 0 and 1, in the present
method x is unrestricted both in range and in number of digits, so that
(i) the method can be employed close to the end of a table, (ii) there is
no necessity for calculating adjacent values and for sub-interpolating
upon them; finally, the convergence to the desired result is presented
to the eye of the computer throughout. These several features seem to
be advantageous in interpolation with machine aid.
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§ 4. Procedure for an Odd Number of Symmetrical Data.

The method described in § 3 has a certain analogy with the
Newton-Bessel (or with the ordinary Everett) formula, and gives
of course equivalent results. There is a similar iterative process,
analogous to the Newton-Stirling (or to the second Everett) formula,
which is applicable to an odd number of symmetrically placed data,
such as «_„, u-o, u^a, u0, ua, ub, uc. We write

ux = u0 + xv.,., (4.1)

so that vx is the divided difference u (0, x), and we iterate for vx instead
of ux, taking as data va, that is, u (0, a), and v_a, vb and v.b, and so
on, and forming from them a Jordan sequence v±a, v±b, v±c, . . . . , to
which we apply the formula (3.2) as before. When the iteration has
been carried far enough we complete the calculation by means
of (4.1).

The initial sequence r±o, v±b, v±c, . . . . can be computed in either
of two ways. One is to evaluate the divided differences u (0, a),
u (0, — a), and so on, which in the case of equidistant data at unit
interval means subtracting adjacent data from the central one and
dividing the result by 1, 2, 3, . . . . , and to interpolate on these by
proportional parts as if for u (0, x), so that we have

v±a = [(a + x)u (0, a) + (a - x) u (0, - a)]/2a. (4.2)

This is of course quite simple and rapid, but the writer personally
prefers to do the computation from the tabular data in one step on
the machine by the equivalent formula

v±a = [(a + x) ua — 2xu0 — (a — x) u.a]/2a2, (4.3)

the secondary dial showing a zero total. For seven equidistant data
this requires a division by 18, and for nine data one by 32, but these
can be done rapidly on the machine, if not mentally. It will probably
be better to compute the two outer terms in the bracket of (4.3) first,
and to subtract the 2xu0 last; indeed the 2xu0, which occurs in each
w±,, might be computed once and for all in readiness.

We now proceed to operate upon the v(1)'s just as we did upon
the M(1)'S in § 3, but we must note that in the equidistant case the
values of a, b, c, . . . . are now 1, 2, 3, . . . . instead of | , f, #, . . . . as
formerly, so that 9, the first quadratic multiplier, is 1 — a;2, and the
rest are

3 + 0, 8 + 0, 15 + 0, 24 + 6, and so on.
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48

40

29

45306-1
51679-3
46254-6
543378

54 88184
6308
3717

•6

•3

•5

9636
24

•2

•6
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It happens that 0 is again the product of the linear multipliers used in
(4.2) or (4.3), a fact that may be turned to the same advantage as
before.

By way of illustration we shall work again through the example
of § 3, taking Si (22-2) for central datum and reading the data up the
table in reverse order, so that x = 0-36285 085. We use (4.3) directly
on the machine, so that all that appears in the computing scheme is
as follows:

Linear multipliers for v™, 1-36285 085; 0-63714 915; 0-72570 170.

Product 0 = 0-86833 92607.

v(0 j;(3) ^(o) v(") Parts.

0-86833 92607
3-868 etc.
8-868..

50-9 15-868..

Hence ut = 1-61510 35866 + 0-36285 085 x 0-00154 896509
= 1-61566 56299.

For example, the three central values in the table of Si (x) being

u± = 1-61608 37366
M0 = 1-61510 35866
tt.i = 161238 32456,

we calculate the first entry in the column v(1~> by means of

l (1-36285085 X 60837366 — 063714915 X 23832456 - 072570170 X 51035866),

the next entry by

-1(2-36285 . . X u2 - 1-63714 . . x w_2 - 0-72570 . . x %)

and so on by (4.3), reading the values of ua from the tables.
Quadratic extrapolation is then carried out upon the values «(1) in
exactly the same way as in § 3, with multipliers 0, 3 + 0, 8 + 0, 15 + 0.

We have included this section for completeness of exposition,
but in many cases it may be thought easier not to interpolate in this
manner from 2» — 1 data, but to annex a further value and use the
method of § 3 for 2n data, which is more straightforward. On the
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other hand, the computation of the values v{l) on the machine by (4.3)
is nearly as easy, after a little practice, as the computation of the
values M(1) in § 3, and since the w(1)'s are of the order of first differences,
they have fewer digits than the M(1)'S, and consequently require fewer
digits in the quadratic multipliers. Our own experience is that there
is not much difference in speed between the two methods.

The quadratic multipliers 8, 3 + 8, 8 + 8, . . . . , which appear in
the present process of " mid-point " iteration occur naturally also in
the problem of interpolating from a symmetrical set of equidistant
data which lacks its middle entry, such as u_3, «_2, u_l, uu u2, us.
As an example we shall extract from the tables of the Digamma
function mentioned in § 2 the first seven values, to ten digits. We
shall delete the fourth value and try to recover it from the remaining
six by the present method. Here it happens that 8 = 1, so that the
quadratic multipliers are simply the square integers 1, 4, 9. The
ratios used are therefore as the squares of the ranges of interpolation
selected, so that our first quadratic approximation coincides with a
process which has been called by L. F. Richardson " ^-extrapolation."
[See, for example, The Deferred Approach to the Limit, by L. F.
Richardson and J. A. Gaunt, Phil. Trans. 226 A (1927), 299-361.]
Our linear interpolates «.(1) are here simply the averages of symmetri-
cally placed data. The work appears as follows:

u_s — 0-57721 56649

u^ Parts.
1
4

873 9

The required value is thus — 0-52892 10873, which agrees to the
last digit with the tabular value. A procedure of equal simplicity
and convenience for " interpolating to halves" from any even number
of symmetrically placed equidistant (or even not equidistant) data
can easily be arranged.

§ 5. Quadratic Extrapolation at the End of a Table.

Before we leave the subject of interpolation by these methods
for functions of one variable, we shall give a numerical example of
interpolation close to the end of a table. We shall interpolate

U. 2

W-l

Ut

u2

Ma

56088

54478

51327

49784

48262

54579

93105

48789

49913

59358

52903

936

992

20947

52246

08003-5

u^

892 10514

065
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upon the six values of the Digamma function given in § 2, for
x = 00031673. The central linear multipliers are therefore 2-68327,
— 1-68327, and their product 6 is — 4-5166679. The w(l>'s are calcu-
lated as before, from the two central values outward, and the
appearance of the computing scheme differs from the earlier examples
only in the fact that 6 is negative and numerically exceeds unity.

Hence

5714
17

21

9980
2908
8784

we have

•9

•7

•6

20

V,r =

1759-
74-

= - 0

6

8

•5720

M < 6 )

6 9 1

1769.

- 4

- 2
1

Parts.
•5166679
•5166679
•4833321

It appears therefore that quadratic extrapolation works just as
well, except, in general, for a somewhat less rapid convergence, when
the required interpolate does not lie within the central " panel ", but
at some distance away. This does away with the need for any
modification of formulae or procedure at the ends of a table.

§6. Interpolation for Functions of Two Variables.

The method of quadratic extrapolation can be applied, with
proportionate, but not disproportionate, increase of work, to the
problem of interpolation upon a function of two variables ux> y, the
basis of iteration being a preliminary calculation of interpolates
linear in x and also in y, that is, bilinear in both together, by a
double use of Jordan's process. It is assumed therefore that uXi y can
be approximately represented, not by a double polynomial in x and y
of degree n in both together, and so given by (n + 1) (n + 2)/2 values
disposed in triangular shape on a table of double entry, but by an
m-ic in x, n-ic in y type of polynomial. (Cf. Steffensen's Interpola-
tion, p. 203.)

In the simplest case the values of ux y will appear at points in a
rectangular lattice, in rows and columns. The rows and columns
about the central rectangle within which the desired interpolate lies
will be denoted by rowj, row_^ and coli, col^; those further out on
either side by row., row_j and colj, col_3; and so on. The first step
is to interpolate linearly for x between rowj and row.i for a few
values of y on either side of the central value, writing down the
results in a row; then similarly between rows and row_}, writing
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down the results in a row below the other; then between row;, and
row_j, and so on. On the rows so obtained linear interpolation is
then performed for y between coL. and col_j; coL and col_;.; and
so on. Thus the original 2r-by-2s lattice of data has been replaced
by an r-by-s lattice of bilinear interpolates for the desired value of
x and y, the procedure being easy to understand and carry out.

The values in each column are now subjected to quadratic
extrapolation, in the manner of § 3, for the same value of x and
consequently with the same values of the quadratic multipliers
8, 2 -f 8, 6 + #, etc., which are used over and over again. When the
convergence in each column is seen to be sufficient the resulting row
of values is subjected to quadratic extrapolation for y in the same
way. All that is required, for data equidistant in x and in y, in the
whole process is therefore the two complementary linear multipliers
for x and y, and their respective products 8 and <j>, the quadratic
multipliers.

As an example we shall take the 36 entries uXi,, given on p. 12 of
Tracts for Computers, No. Ill (Cambridge, 1920). The illustrative
example on page 11 of that work takes x = J, y = \, using what is
really a double Everett formula. We shall choose x = 0-479312,
y = 0-513621. The 18 values obtained by central linear interpolation
for x are then computed, by setting up from the table on to the
machine, as:

8 981904-2
923005-5
805087-8

925467-6
864220-6
741797-3

866954-9
803406-6
676590-9

806361-1
740568-7
609493-4

743687-4
675717-5
540534-3

678935-9
608866-2
469746-5.

From these by central linear interpolation for y we compute the
nine bilinear interpolates; and the rest of the work is as below.

88
87
86

88

35832

71131

42128

43906

43889

43915

•7
•7
•2

•5
•9

•8

33752-2

69113-2

402520

41818-2

41800-9

41827-9

2 + <f>
44176-6

29594-7

65080-1

36503-6

376453

37626-4

37655-9

44176-4

44176-7.

8 =

2 +
6 +

2 +
6 +

(/> =

0-2495720.

8.
8.

8.
8.

0-2498145.
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Hence «4? ,= 0-8844177, which is probably in defect of the true
value by two units in the last place, since the value found by Pearson
for ui: j , as computed by the double Everett formula, is in defect by
this amount.

Most of the time consumed in the above computation was taken
up in obtaining the nine bilinear interpolations, for which 27 opera-
tions, each involving the addition of two products, with possible
division by 3 or 5, were required. Once the bilinear basis is obtained
the double quadratic extrapolation is most rapidly set going. Hence
it becomes a question how to accelerate the calculation of the bilinear
interpolates. The writer found the following to be an effective
method. From the appropriate linear multipliers for x, as in the
present case 2 + £, 1 + £, £, x, 1 + x, 2 + x, where £ = 1 — x, and
those for y, namely 2 + -q, 1 + f], f], y, 1 + y, 2 + y, where rj = 1 — y,
construct a multiplication table showing the products of these. It is
seen at once that all of the entries in any row or column of this table
of bilinear multipliers are (apart from a change of sign in passing
from £ to x, and from 77 to y), in arithmetical progression, and so can be
computed from the first entry in that row or column by pure subtrac-
tion, that is, turning the handle of the machine and writing down the
answer. For example in the present case the table of bilinear multi-
pliers for sixteen central entries is

I+17 v y 1+2 /
l + £ 2-2603187 0-7396307 07810573 2-3017453

$ 0-7739397 0-2532517 0-2674363 0-7881243

x 0-7124393 0-2331273 0-2461847 0-7254967

1+x 2-1988183 0-7195063 0-7598057 2-2391177,

which are readily computed from the leading coefficient 2-2603187
alone, by subtraction, retaining an extra digit for accuracy, reading
"nines-complements" when we come to negative numbers, and filling
in the first row and column first. Indeed we can work spirally round
the table, if we prefer, clearing nothing on the product dials, adding
or subtracting as required, and finishing up at the centre. We use
these bilinear multipliers upon sets of four entries in the table of data
which form rectangles cenlrosymmetric with respect to the central rect-
angle, applying to each datum the corresponding multiplier in the
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table. For example the eight central values in the two central rows
of the table of ux^, namely ;

•8793305 -8728127 "8660736 "8591144
"9069039 -9017767 -8964557 "8909399,

give rise to the two bilinear interpolates,

•2532517 X -8728127 + -2674363 X -8660736 + -2331273 X -9017767
+ 2461847 X -8964557, or -8835833,

and
("7739397 X '8793305 + -7881243 x -8591144 + -7124393 X "9069039

+ -7254967 X -8909399)/3, or -8833752.

For values of x and y given to a few decimals only such a table
of bilinear multipliers can be prepared in a few minutes.

It is evident that we can similarly extend to two variables the
" mid-point" quadratic extrapolation process of §4, and also that we
can combine the methods, using one for x, say, on an even number of
rows, the other for y on an odd number of columns. It is probable
that the " mid-point" method, whether used for both variables or
only for one, will not prove to be as useful (unless interpolation as
far as second differences is sufficiently accurate for requirements) or
as easy to apply as the double use of the method of § 3 which has
just been exemplified, and we shall not delay to examine it in
detail.

One marked advantage of the method of double quadratic
iterative extrapolation has been observed in the illustrative example,
namely that the full and exact values of x and y can be used right
from the beginning, without any need for taking adjacent values to
three digits and sub-interpolating on the four or more results. Also,
as in the case of one variable, the ordinate of interpolation is not
restricted to lie within the central rectangle, but may possibly be
close to the edge of a table, the only effect being a somewhat slower
convergence of the iterates.

A final remark may be made. The interpolation upon 36 entries
which we have used for illustration is equivalent to the assumption
that the function uXi y can be represented over the range in question,
to the desired order of accuracy, by a double-quintic polynomial in
x and y. Had the interval of tabulation been reduced to one quarter,
let us say, of what it is in the table, a double cubic would probably
have been adequate, and this can be interpolated for on 16 points
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with » very considerable saving of time as compared with the 36-
point case, for the basis then consists of four bilinear interpolates
only, and quadratic extrapolation on these involves only three
operations.

§ 7. Application of Linear Iteration to Inverse Interpolation.

There is one case where quadratic extrapolation cannot be
applied because symmetry is never present, but where the linear
iteration of § 2 can be used very effectively. This is in inverse
interpolation. Here we have several values of a function y corre-
sponding to several adjacent, but not necessarily equidistant, values
of x, and we wish to find what value of x in the range corresponds to
some prescribed value of y. Under the usual assumptions of one-
valuedness of x in the range, and of expansion as a sufficiently
convergent Taylor series in y, we can interchange the variables and
proceed to interpolate by iteration of linear proportional parts as in
§ 2, the only difference now being that whereas before we performed
the divisions by small integers mentally, we now perform divisions
by numbers of several digits on the machine. The procedure will be
clear from an example, p. 61 of Whittaker and Robinson's Calculus of
Observations, the finding by inverse interpolation of the positive root
of the equation

y = z7 + 28z4 - 480 = 0,

from values of y given by z = 1-90, 1-91, 1-92, 1-93, 1-94. In this
case, since the desired value of z corresponds to y = 0, the given
values of y are the " distances of the ordinates " which were used as
rat ios in § 2, and so are themselves the linear multipliers. T h e c o m p u -
t a t ion is shown below.

y z z(1) z ( 2> z<3> zw

— 25-7140261 1-90

— 14-6254167 1 23189586

— 3-3074639 2 2952228 2882864

8-2439435 3 2716929 87312 84138

20-0329830 4 2483678 91702 17 53

Hence the value of z to 9 places of decimals is 1-922884153,
which is in agreement with the result given to 10 places in Whittaker
and Robinson.
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The process hardly calls for description. The values of y are
used in cross-multiplication1 on the entries of z in their rows. The
secondary dial records the differences, or sums, of these multipliers.
These are set up on the divisor dials, and division is performed on
the result shown on the product dials. The process demands no
calculation of differences, no formulae of interpolation by differences
and no awkward successive approximations, only the single operation
of cross-multiplication and division just described. It is highly
suited to machine work.

§ 8. Concluding Observations.

A few remarks of a desultory nature, which do not bear so
directly on the work of the earlier sections, may be appended.

(1) The process of cross-multiplication which was used in the
linear iterations of § 2 can be regarded as a way of arranging com-
putation by Lagrange's formula. Consider for example four data,
ua, ub, ue, ud. The linear multipliers are, with change of sign,
x — a, x — b, x — c, x — d. Inspection of the mode of cross-multipli-
cation shows that any datum, for example ub, is multiplied ultimately
by all the linear multipliers except the one in its own row, with corre-
sponding divisors. Hence the contribution it makes to the desired
interpolate is

ub (x — a)(x — c) (x — d)/(b — a) (b — c) (b — d),

and the sum of these for ua, uh, uc, ud is just Lagrange's formula.

(2) The following alternative justification of the linear iteration
of § 2 may be of interest:

Consider for example the cubic polynomial ux, or uai <,, c_ d, deter-
mined by ua, ub, uc, ud. By Newton's formula, we have

ua, (,, c — M», b + (x — a) {x — b)u (a, b, c ) , ( i )

Ua, b, d = «a , b + (x — a) (x — b)u (a, b, d ) ; (ii)

but we also have exactly

ua,b,c,d = «a,6 + (x — a) (x — b) u(a, b, x). (iii)

Now evidently u (a, b, x), being the divided difference of the
second order of a cubic, is linear in x. Hence it may be found

1 It is advisable to do the work well to the left of the machine, in order to leave
room for the division process, the divisor having several digits.
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exactly by proportional parts from u(a, b, c) and u (a, b, d), con-
sidered as functions of x — c and x = d. This gives at once, by (i)
and (ii), the result

ua, b, e, d = [(d — oc) ua> b> c + (x — c) ua> b,d]/(d — c), (iv)

that is, the fundamental identity (2.5).

(3) The linear iteration by proportional parts of § 2 has also a
geometrical meaning, and leads to a simple construction for
geometrical interpolation, different from Newton's mixed arithmetical
and geometrical construction. [See D. C. Fraser's Newton's Interpola-
tion Formulas (London, C. and E. Layton), p. 83, or J.I.A, 58 (1927),
83.] For example, let AP, BQ, CR, DS be given ordinates, not
necessarily equidistant, of the curve of a cubic polynomial, and
let it be required to find where the curve cuts some prescribed
ordinate XT.

v*

i

- - • * * - " ' •

s

A B X C D

Translating the argument of § 2 into geometrical terms, we carry out
the following constructions:

I. Join PQ and let the straight line PQ cut XT. From the
point of intersection draw a perpendicular to meet BQ in Qx.

Join PR to cut XT similarly, and from the point of intersection
let a perpendicular be drawn to meet CR in Ru
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'• Join PS and in exactly the same way determine a point Si in DS.

The heights of the ordinates BQU CRU D8± represent the first

linear interpolates «(1) of § 2.

II. Join Qi Rl to cut XT, and determine thereby a point R2 in
CR, just as before. Similarly join QiS^ to cut HX, and determine in
the same way a point S2 in DS.

The heights of ordinates CR2, DS2 are the next interpolates w<2).

III. Join R2 $2 and produce it to cut XT in a point Ts.

Then the ordinate XTS represents the cubic interpolate «(3) desired.

The mode of construction is general, and can be applied to find
(in theory) a desired ordinate of the polynomial curve determined by
n + 1 given ordinates.

(4) The question of remainder terms arises. In the case of one
variable the method of iteration, whether quadratic or linear, achieves
the effect of finding the polynomial ua> bt c< d, for example. Now it is
known (Cf. Steffensen, Interpolation, p. 24) that the remainder in such
a representation of ux is given by

R a , b , c , d = { x — a) (x — b ) ( x — c) (x — d ) u (x, a , b , c , d ) , (8.1)

and more conveniently for many applications, by

R a , b t C , d = {x - a){x -b){x- c){x- d)V-£>, (8.2)
4!

where £ is comprised between, or possibly coincides with one of, the
smallest and the largest of the numbers a, b, c, d, x. This test is not
always easy to apply, and in the iterative method proposed in this
paper the check by convergence to equality of two iterates will in
almost all cases be regarded as conclusive.

In interpolation upon two variables (Steffensen, ibid. pp. 206-212)
the general remainder formula can be remembered as a symbolic
product of two formulae like ;(8.2) above, written shortly as, e.g.,
a;(4)D|/4! for the case of x, and t/(6)Djj/6! for y, say. Such a remainder
term (for a cubic-quintic) would be

K v = *« D t l± ! + 2/(6)
DVQ1 + *(«2/(6)DlB°J(4! 6!), (8.3)

where the multiplication in the third term is of operators, and the
values of £ and r\ are not necessarily identical with those implied in
the first two terms of the formula. From this general formula the
limits to the error committed in using any particular set of values of
x and y in the lattice of data can be theoretically ascertained.
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/(> (5) Finally, it remains -a? qjjestiom for investigation . whether
the method of quadratic* extrapolation: may,i not be applied with
advantage to such interpolation on a large scale as is required by
subtabulation. I t is obvious, for example, that subtabulation to
a fifth or a tenth of the interval, as far as fifth differences, can be
achieved by extrapolation with appropriate values of 6 from three
linear sequences of subtabulates, but the question of the time of
copying down and checking remains. We reserve these considera-
tions for more detailed examination.

§9. Supplementary Remarks. [Added 12th February 1932.]

Further consideration of § 4 of the preceding paper shows that
the case of interpolation for ux upon an odd number of symmetrically
placed data u0, ua, u_a, ub, w_6, . . . . can be reduced to the simpler
even case of § 3 in various ways, which may be thought better than
those already proposed. One of these ways is to compute the linear
interpolates u^ a, uOi _a, u0> b, «„_ _h, ..., let us say, u%\ vPJa, «»>, u(% ...,
and to treat these as an even number of symmetrical data from
which u(p is to be determined just as in § 3, except that in the equi-
distant case the quadratic multipliers will be the 9,3 + 6,8 + 9,....
of § 4. Another way applicable only in the case of equidistant data
•UQ, UU I*2, us, . . . . , is to compute linear interpolates uOtlt uOia,u0t3,....,
that is, the u^, u$\ u(p, . . . . of § 2, and to interpolate upon
these for u^ in the manner of § 3, the multipliers being now the
rather more advantageous 9,2 + 6,6+9, . . . . of that section. Yet
another way is peculiarly useful when first derivatives of the tabular
values of the function ux are provided, as may sometimes be the case :
for example the normal frequency function is the derivative of the
error function or probability integral, and both functions have been
tabulated. In this case we can assign a meaning to uOiO) which is
readily seen to be u0 4- xu'o, and this value can be computed and
taken as leader of the Jordan interpolates u±a, u±b, . . . . . the
quadratic multipliers being — x2, a2 — x2, b2 — x2, . . . . in the general
case, and 9—1, 6, 3 + 6, 8 + 9, . . . . in the equidistant case corre-
sponding to § 4.

It is not proposed to go into detail over these variants, which
can easily be justified, or to give numerical examples, since no special
novelty of procedure is involved; but trial has proved that all of
them, and especially the last, are convenient and rapid.
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A final word may be hazarded on the question of tabulation.
At present it is customary, at least in many cases, to print in addition
to the functional values the central differences of even order, often as
far as sixth differences, and to advocate the use of Everett's formula
of interpolation, the coefficients of which have been computed and
tabulated for values of x from 0 to 1 at intervals of 0-001. If
interpolation is being carried out by arithmometer—and a machine
is almost a necessity if a considerable number of digits is retained,
whatever the process employed—then it would seem that the methods
described in this paper provide a simple, expeditious and easily
controlled algorithm for interpolation, which dispenses with differences.
Since the choice of a smaller interval in x almost always increases
the convergence of formulae of interpolation in a decided fashion, the
space devoted to the printing of differences might with advantage, in
our opinion, be devoted to printing the tabular values for smaller
intervals. This is especially the case in 2-variable interpolation,
where, if differences were omitted and if the data were given at the
proportionately closer intervals which this would allow, it might be
possible to base accurate interpolation on no more than 16, and
possibly on 12 or on 9 central values. It would also be of use to
have some indication, in default of differences, of what order of
polynomial interpolation—whether cubic, quartic, and so on, and
doubtless varying in different parts of a table—would ensure accuracy
to any desired number of places; not necessarily the full number
tabulated, since this is almost always in excess of practical require-
ments. Information of this kind might conveniently be inserted in
tables. At the same time it is true that the routine we have described
largely obviates the need for such a use of error terms, since the
successive closing up of the approximation is made evident in the
course of the calculations.
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