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Abstract. In this paper, we consider the preservation of stability by using the notion of twisted
stability. As applications, (1) we show that moduli spaces of stable sheaves on K3 and abelian
surfaces are irreducible and (2) we compute Hodge polynomials of some moduli spaces of

stable sheaves on Enriques surfaces.

Mathematics Subject Classification (1991). 14D20.

Key words. Fourier-Mukai functor, moduli of sheaves.

0. Introduction

Let X be an Abelian surface or a K3 surface over C. Mukai introduced a lattice

structure h ; i on HevðX;ZÞ :¼
L

H 2iðX;ZÞ by

hx; yi :¼ �

Z
X

x_ ^ y

¼

Z
X

ðx1 ^ y1 � x0 ^ y2 � x2 ^ y0Þ; ð0:1Þ

where xi 2H 2iðX;ZÞ (resp. yi 2H 2iðX;ZÞ) is the 2ith component of x (resp. y) and

x_ ¼ x0 � x1 þ x2. It is now called the Mukai lattice. For a coherent sheaf E on

X, we can attach an element of HevðX;ZÞ called the Mukai vector vðE Þ :¼

chðE Þ
ffiffiffiffiffiffiffi
tdX

p
, where chðE Þ is the Chern character of E and tdX is the Todd class of

X. For a Mukai vector v2HevðX;ZÞ and an ample divisor H, let MHðvÞ be the moduli

space of stable sheaves E with the Mukai vector vðE Þ ¼ v and MHðvÞ the moduli

space of semi-stable sheaves. An ample divisor H is general with respect to v, if

the following condition holds:

ð\Þ for every m-semi-stable sheaf E with vðE Þ ¼ v, if F � E satisfies

ðc1ðF Þ;H Þ=rkF ¼ ðc1ðE Þ;H Þ=rkE;

then c1ðF Þ=rkF ¼ c1ðE Þ=rkE.

The preservation of the stability by the Fourier-Mukai transform on X was investi-

gated by many people (e.g. [BBH2, B-M, Mu5, Y4]). In [Y4], we introduced the

twisted degree of coherent sheaf E by degGðE Þ ¼ degðE  G_Þ ¼ ðc1ðE  G_Þ;H Þ,

where G is a vector bundle on X. Then we showed that the Fourier–Mukai transform
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preserves Gieseker semi-stability, if the twisted degree is 0 and the polarization H is

general. In this paper, we shall generalize our results to the case where H is not

general. In this case, the Fourier-Mukai transform does not preserve Gieseker

semi-stability. This fact is closely related to the following fact: If H is not general,

then Gieseker semi-stability is not preserved by the twisting E 7!E  L, where L is

a line bundle. Thus Gieseker semi-stability depends on the choice of L. In order

to understand this phenomenon, Matsuki and Wentworth [M-W] (also by Ellingsrud

and Göttsche [E-G] and Friedman and Qin [F-Q]) introduced the notion of L-twisted

semi-stability, where L is a Q-line bundle. Hence we shall propose a formulation

for our problem by using the twisted semi-stability. In Section 2, we shall show that

the Fourier-Mukai transform preserves a suitable twisted semi-stability, if X is an

Abelian surface (Theorem 2.3).

In [Y4], we showed that MHðvÞ is deformation equivalent to a moduli space of

torsion free sheaves of rank 1, if v is primitive and the polarization H is general.

In Section 3, we shall give another proof of this result by using results proved in

Section 2. Moreover we shall show the following.

THEOREM 0.1. Let X be an Abelian surface or a K3 surface. Let v2HevðX;ZÞ be a

Mukai vector of rk v>0. Then MHðvÞ is a normal variety, if hv2i>0 and H is general

with respect to v.

In Section 4, we shall consider the Fourier–Mukai transform on an Enriques

surface associated to ð�1Þ-reflection. In particular, we shall show a similar result

to Theorem 2.3 (Proposition 4.3). As an application, we shall compute the Hodge

polynomials of some moduli spaces (Theorem 4.6).

This paper is the first half part of [Y5].

1. Preliminaries

1.1. TWISTED STABILITY FOR TORSION FREE SHEAVES

Let X be a smooth projective surface and KðX Þ the Grothendieck group of X. We fix

an ample divisor H on X. For G2KðX Þ  Q with rkG>0, we define the G-twisted

rank, degree, and Euler characteristic of x2KðX Þ  Q by

rkGðxÞ :¼ rkðG_  xÞ;

degGðxÞ :¼ ðc1ðG
_  xÞ;H Þ;

wGðxÞ :¼ wðG_  xÞ:

ð1:1Þ

For t2Q>0, we get

degGðxÞ

rkGðxÞ
¼

degtGðxÞ

rktGðxÞ
;

wGðxÞ

rkGðxÞ
¼

wtGðxÞ

rktGðxÞ
: ð1:2Þ

We shall define the G-twisted stability.
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DEFINITION 1.1. Let E be a torsion free sheaf on X. E is G-twisted semi-stable

(resp. stable) with respect to H, if

wGðFðnH ÞÞ

rkGðF Þ
4

wGðEðnH ÞÞ

rkGðE Þ
; n � 0 ð1:3Þ

for 0�
=====
F�

=====
E (resp. the inequality is strict).

For a Q-divisor a, we define the a-twisted stability as the OXðaÞ-twisted stability.

This is nothing but the twisted stability introduced by Matsuki and Wentworth

[M-W]. It is easy to see that the G-twisted stability is determined by a ¼ detðGÞ=

rkG. Hence the G-twisted stability is the same as Matsuki-Wentworth stability.

DEFINITION 1.2. For x2KðX Þ, we set

gðxÞ :¼ ðrk x; c1ðxÞ; wðxÞÞ2Z � NSðX Þ � Z: ð1:4Þ

LetMG
HðgÞss be the moduli stack of G-twisted semi-stable sheaves E with gðE Þ¼g and

MG
HðgÞs the open substack consisting of G-twisted stable sheaves. For usual stability,

i.e., G¼OX, we denote MOX

H ðgÞss by MHðgÞss.

Remark 1:1: We take a sufficiently large integer m so that

(i) H 0 X;EðmH Þð Þ  OX ! EðmÞ is surjective for all E2MG
HðgÞss,

(ii) Hi X;EðmH Þð Þ ¼ 0, i>0 for all E2MG
HðgÞss.

We set N :¼ dimH 0 X;EðmH Þð Þ, E2MG
HðgÞss. We shall consider the quot scheme

Q :¼ QuotgOXð�mH Þ
�N=X=C

parametrizing all quotients OXð�mH Þ
�N

! E with

gðE Þ ¼ g. Let Qss be an open subscheme of Q consisting of all quotients

OXð�mH Þ
�N

! E such that

(i) E is a G-twisted semi-stable sheaf with respect to H with gðE Þ ¼ g,
(ii) H 0ðX;O�N

X Þ ! H 0 X;EðmH Þð Þ is isomorphic.

Then MG
HðgÞss is a quotient stack of Qss by the natural action of GLðN Þ on Qss:

MG
HðgÞss ¼ ½Qss=GLðN Þ�: ð1:5Þ

Remark 1:2: Let c1ðGÞ=rkG ¼ aH þ b, a2Q; b2H? be the orthogonal decom-

position. Then the twisted semi-stability condition only depends on b, i.e.,MG
HðgÞss ¼

Mb
HðgÞss.

THEOREM 1.1 ½M-W � ðalso see ½E-G �Þ:

ðiÞ There is a coarse moduli scheme M
G

HðgÞ of S-equivalence classes of G-twisted

semi-stable sheaves.

ðiiÞ M
G

HðgÞ is projective.
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ðiiiÞ For different G;G0, the relation between M
G

HðgÞ and M
G0

H ðgÞ is described as

Mumford–Thaddeus type flips:

M
G1

H ðgÞ M
G2

H ðgÞ M
Gn

H ðgÞ
& . & � � � .

M
G1;2

H ðgÞ M
G2;3

H ðgÞ
ð1:6Þ

where G ¼ G1, G0 ¼ Gn.

DEFINITION 1.3. MG
HðgÞ is the open subscheme of M

G

HðgÞ consisting of G-twisted

stable sheaves and MHðgÞm�s the open subscheme consisting of m-stable sheaves.

Usually we denote M
OX

H ðgÞ by MHðgÞ and MOX

H ðgÞ by MHðgÞ.

Since m-stability does not depend on G, MHðgÞm�s is a subscheme of M
G

HðgÞ for all G.

DEFINITION 1.4. For a pair ðH;GÞ of an ample divisor H and an element

G2KðX Þ  Q, ðH;GÞ is general with respect to g, if the following condition holds

for every E2MG
HðgÞss:

For 0�
=====
F�

=====
E,

wGðFðnH ÞÞ

rkGðF Þ
¼

wGðEðnH ÞÞ

rkGðE Þ
; n � 0 ð1:7Þ

implies that gðF Þ=rkF ¼ gðE Þ=rkE.

The following is easy (cf. [M-W]).

LEMMA 1.2. For an ample divisor H and g2Z � NSðX Þ � Z, there is a general

ðH;GÞ.

2. Fourier–Mukai Transform on Abelian and K3 Surfaces

2.1. FOURIER–MUKAI TRANSFORM

Let X be a K3 surface or an Abelian surface. Let E be a coherent sheaf on X. Let

vðE Þ :¼ chðE Þ
ffiffiffiffiffiffiffi
tdX

p
¼ rkðE Þ þ c1ðE Þ þ ðwðE Þ � ErkðE ÞÞRX 2HevðX;ZÞ ð2:1Þ

be the Mukai vector of E, where E ¼ 0; 1 according as X is an Abelian surface or a

K3 surface and RX is the fundamental class of X, i.e,
R

X rX ¼ 1. For these surfaces, it

is common to use the Mukai vector of E instead of using gðE Þ. Hence we use the

Mukai vector in this Section. For a Mukai vector v, we define MG
HðvÞss, M

G

HðvÞ, . . .

as in Section 1.
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Let v1 :¼ r1 þ c1 þ a1RX; r1>0; c12NSðX Þ be a primitive isotropic Mukai vector

on X. We take a general ample divisor H with respect to v1. We set Y :¼ MHðv1Þ.

Then Y is an Abelian surface (resp. a K3 surface), if X is an Abelian surface (resp.

a K3 surface).

If X is an Abelian surface, then Y consists of m-stable vector bundles. By the proof

of [Y3, Lem. 2.1], the following Lemma holds.

LEMMA 2.1. Assume that H is general with respect to v1.

ðiÞ If Y contains a non-locally free sheaf, then there is an exceptional vector bundle

E0 and v1 ¼ rkðE0ÞvðE0Þ � RX. Moreover Y ffi X and a universal family is given by

E :¼ kerðE0 oE_
0 ! ODÞ: ð2:2Þ

ðiiÞ If Y consists of locally free sheaves, then they are m-stable.

Assume that there is a universal family E on X � Y. Let pX: X � Y ! X (resp.

pY: X � Y ! Y ) be the projection. We define FE: DðX Þ ! DðY Þ by

FEðxÞ :¼ RpY�ðE  p�
XðxÞÞ; x2DðX Þ; ð2:3Þ

and F̂E: DðY Þ ! DðX Þ by

F̂EðyÞ :¼ RHompX
ðE; p�

YðyÞÞ; y2DðY Þ; ð2:4Þ

where HompX
ð�;�Þ ¼ pX�HomOX�Y

ð�;�Þ is the sheaf of relative homomorphisms.

Bridgeland [Br] showed that FE is an equivalence of categories and the inverse

is given by F̂E ½2�. FE is now called the Fourier–Mukai functor. We denote the ith

cohomology sheaf HiðFEðxÞÞ by F i
EðxÞ.

FE induces an isomorphism KðX Þ ! KðY Þ and an isometry of Mukai lattice

FE :H
evðX;ZÞ ! HevðY;ZÞ. We also have a commutative diagram:

DðX Þ FE
!

DðY Þ

! !

KðX Þ FE
!

KðY Þ

v! ! v

HevðX;ZÞ FE
!

HevðY;ZÞ:

ð2:5Þ

For our purpose, the usual Fourier–Mukai functor FE is not sufficient. As in [Y4],

we introduce a functor HE: DðX Þ ! DðY Þop which is a composite of FE with the

taking dual functor DX: DðX Þ ! DðX Þop:

HEðxÞ :¼ FE � DXðxÞ

¼ RHompY
ðp�

XðxÞ; EÞ; x2DðX Þ:
ð2:6Þ

By the Grothendieck–Serre duality,

HEðxÞ ¼ FE � DXðxÞ ¼ DYðRHompY
ðE; p�

XðxÞÞÞ½�2�: ð2:7Þ
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Hence HE gives an equivalence of categories and the inverse is given by

bHEð yÞ :¼ RHompX
ð p�

Yð yÞ; E Þ; y2DðY Þop: ð2:8Þ

HE induces an isomorphism KðX Þ ! KðY Þ and an isometry HevðX;ZÞ ! HevðY;ZÞ.

We denote them by HE . We denote the ith cohomology sheaf HiðHEðxÞÞ by Hi
EðxÞ.

2.2. PRESERVATION OF STABILITY

In [Y4], we considered the preservation of stability under HE . By using the twisted

stability introduced by Matsuki and Wentworth [M-W], we shall generalize

[Y4, Sect. 8.2]. In order to state our theorem (Theorem 2.3), we prepare some nota-

tion. We set w1 :¼ vðEjfxg�YÞ ¼ r1 þ ~c1 þ ~a1RY, x2X. We have an isomorphism

NSðX Þ  Q ! v?1 \ R?
X by sending D2NSðX Þ  Q to D þ 1

r1
ðD; c1ÞRX 2v?1 \ R?

X .

Since HE is an isometry of Mukai lattice, we get an isomorphism v?1 \ R?
X !

w?
1 \ R?

Y . Thus we have an isomorphism d: NSðX Þ  Q ! NSðY Þ  Q given by

d
�
c1ðLÞ

�
¼ c1 pY� chE

ffiffiffiffiffiffiffi
tdX

p
p�

X c1ðLÞ þ
1

r1

�
c1ðLÞ; c1

�
RX

� �_	 
� �
: ð2:9Þ

For a Q-line bundle L2PicðX Þ  Q, we choose a Q-line bundle L̂ on Y such that

d
�
c1ðLÞ

�
¼ c1ðL̂Þ. By a result of Li [Li] (or [BBH2]) and [Y4, Lem. 7.1], Ĥ is ample,

if Y consists of m-stable vector bundles. By [Y3, Lem. 2.1], Y consists of m-stable
vector bundles unless E is given by (2.2). In this case, a direct computation (or [Li])

shows that Ĥ is ample.

We consider the following two conditions.

(#1) Ĥ is general with respect to w1.

(#2) Ejfxg�Y is stable with respect to Ĥ.

Remark 2:1: If X is Abelian or Y consists of nonlocally free sheaves, then the

assumption ð#1; 2Þ holds for all general H. For another example, see [BBH1].

PROBLEM [Y4]. Is Ejfxg�Y always stable with respect to Ĥ ?

For a coherent sheaf E on X (resp. F on Y ), we set degðE Þ :¼
�
c1ðE Þ;H

� �
resp:

degðF Þ :¼
�
c1ðF Þ; Ĥ

��
. We consider the twisted degree degG1

ðE Þ and degG2
ðF Þ,

where G1 :¼ EjX�fyg and G2 :¼ Ejfxg�Y. We also define the twisted degree of a Mukai

vector v by degG1
ðvÞ :¼ degG1

ðE Þ, where E2KðX Þ satisfies vðE Þ ¼ v.

LEMMA 2.2 [Y4, Lem. 8.3]. degG1
ðvÞ ¼ degG2

�
HEðvÞ

�
.

Every Mukai vector v can be uniquely written as

v ¼ lv1 � aRX þ d H þ
1

r1
ðH; c1ÞRX

	 

þ D þ

1

r1
ðD; c1ÞRX

	 

; ð2:10Þ
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where l; a; d2Q, and D2NSðX Þ  Q \ H?.

It is easy to see that l ¼ �hv; RXi=r1, a ¼ hv; v1i=r1 and d ¼ degG1
ðvÞ=

�
r1ðH

2Þ
�
.

DEFINITION 2.1. For a Mukai vector v, we set lðvÞ :¼ �hv; RXi=rk v1, aðvÞ :¼

hv; v1i=rk v1.

Since HEðv1Þ ¼ RY and bHEðw1Þ ¼ RX, we get

HE lv1 � aRX þ dH þ D þ
1

r1
ðdH þ D; c1ÞRX

	 
� �
¼ lRY � aw1 þ dĤ þ D̂ þ

1

r1
ðdĤ þ D̂; ~c1ÞRY

	 

ð2:11Þ

where D̂2NSðX Þ  Q \ Ĥ?. We can now state our theorem.

THEOREM 2.3. We assume the condition ð#1; 2Þ holds. Assume that degG1
ðvÞ ¼ 0 and

lðvÞ; aðvÞ>0. Let e be an element of KðX Þ  Q such that vðeÞ2v?1 \ R?
X, jhvðeÞ2ij " 1

and ðH; c1ðeÞÞ ¼ 0. Then we have an isomorphism:

MG1þe
H ðvÞss ! MG2þê

Ĥ
ð�HEðvÞÞ

ss; ð2:12Þ

where ê ¼ HEðeÞ. In particular, if c1ðG1Þ2QH, then c1ðG2Þ2QĤ and we have an

isomorphism MHðvÞss ! MĤð�HEðvÞÞ
ss.

Remark 2:2: If hv2i>0, then we see that aðvÞ>0.

The proof of Theorem 2.3 is almost the same as that in [Y4, Thm. 8.2]. Before

proving Theorem 2.3, we prepare three Lemmas.

LEMMA 2.4. Assume that degG1
ðvÞ < 0, or degG1

ðvÞ ¼ 0 and aðvÞ>0. Then

HomðEjX�fyg;E Þ ¼ 0 for all y2Y and E2MG1

H ðvÞss.

Proof. Obviously the claim holds, if degG1
ðvÞ < 0. Hence, we assume that

degG1
ðvÞ ¼ 0 and aðvÞ>0. Since H is general with respect to v1, EjX�fyg is G1-twisted

stable. Since E is G1-twisted semi-stable, it is sufficient to show that �aðEjX�fygÞ=

lðEjX�fygÞ>�aðvÞ=lðvÞ. Since vðEjX�fygÞ ¼ v1, we get

�aðEjX�fygÞ

lðEjX�fygÞ
�

�aðvÞ

lðvÞ
¼

aðvÞ

lðvÞ
>0: ð2:13Þ

&

LEMMA 2.5. For a m-semi-stable sheaf E with degG1
ðE Þ5 0, there is a finite subset

S � Y such that

HomðE; EjX�fygÞ ¼ 0 ð2:14Þ

for all y2YnS.
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Proof. If degG1
ðE Þ>0, then HomðE; EjX�fygÞ ¼ 0 for all y2Y. We assume that

degG1
ðE Þ ¼ 0. Considering the Jordan–Hölder filtration of E with respect to

m-stability, we may assume that E is m-stable. If EjX�fyg is locally free, then by

Lemma 2.1, EjX�fyg is m-stable, and hence E__ ffi EjX�fyg. Therefore y is uniquely

determined by E. Next we assume that EjX�fyg is not locally free. Under the notation

of (2.2), if E__ 6¼ E0, then clearly HomðE;E0Þ ¼ 0. Hence HomðE; EjX�fygÞ ¼ 0 for all

y2Y. If E__ ¼ E0, then HomðE; EjX�fygÞ ¼ 0 for y2YnSuppðE__=E Þ. &

LEMMA 2.6. Let E be a coherent sheaf on X. Assume that

ðiÞ HomðE; EjX�fygÞ ¼ 0 except for a finite number of points y2Y,

ðiiÞ Ext2ðE; EjX�fygÞ ¼ 0 for all y2Y.

Then WIT1 holds for E, that is, Hi
EðE Þ ¼ 0 for i 6¼ 1, and H1

EðE Þ is torsion free.

Proof. Since p�
XðE Þ and E are flat over Y, there is a complex of locally free sheaves

on Y

0 ! V 0!
f
V1!

g
V2 ! 0 ð2:15Þ

which is quasi-isomorphic to HEðE Þ. By our assumptions, (a) fy is injective except

for a finite number of points y2Y and (b) g is surjective. Hence ker f ¼ coker g ¼ 0,

which implies that WIT1 holds. Since ker g is locally free, (a) implies that H1
EðE Þ ¼

cokerðV 0 ! ker gÞ is torsion free. &

Proof of Theorem 2:3: We shall first treat the case where e ¼ 0. By the symmetry

of the condition, it is sufficient to show that WIT1 holds for E2MG1

H ðvÞss (i.e.,

Hi
EðE Þ ¼ 0, i 6¼ 1) and H1

EðE Þ is G2-twisted semi-stable with respect to L̂. By Lemma

2.4, 2.5 and 2.6, WIT1 holds for E and H1
EðE Þ is torsion free. We shall show that

H1
EðE Þ is G2-twisted semi-stable.

(I) H1
EðE Þ is m-semi-stable: Assume that H1

EðE Þ is not m-semi-stable. Let

0 �F1�F2�����Fs ¼H1
EðEÞ be the Harder-Narasimhan filtration of H1

EðE Þ with

respect to m-semi-stability. We shall choose the integer k which satisfies

degG2
ðFi=Fi�1Þ5 0; i4 k and degG2

ðFi=Fi�1Þ < 0; i>k. We claim that bH0
EðFkÞ¼0

and bH2
EðH1

EðE Þ=FkÞ ¼ 0. Indeed since Fi=Fi�1, i4 k are m-semi-stable sheaves with

degG2
ðFi=Fi�1Þ5 0, Lemma 2.5 implies that bH0

EðFi=Fi�1Þ; i4 k are of dimension 0.

Since bH0
EðFi=Fi�1Þ are torsion free, bH0

EðFi=Fi�1Þ ¼ 0; i4 k. Hence bH0
EðFkÞ ¼ 0. On

the other hand, by Lemma 2.4, we also see that bH2
EðFi=Fi�1Þ ¼ 0; i>k. Hence we con-

clude that bH2
EðH1

EðE Þ=FkÞ ¼ 0. So Fk andH1
EðE Þ=Fk satisfy WIT1 and we get an exact

sequence

0 ! bH1
E
�
H1

EðE Þ=Fk

�
! E ! bH1

EðFkÞ ! 0: ð2:16Þ

By (2.11), degG1

� bH1
EðFkÞ

�
¼ � degG2

ðFkÞ < 0. This means that E is not m-semi-stable

with respect to L. Therefore H1
EðE Þ is m-semi-stable with respect to L.
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(II) H1
EðE Þ is G2-twisted semi-stable: Assume that H1

EðE Þ is not G2-twisted semi-

stable. Then there is an exact sequence

0 ! F1 ! H1
EðE Þ ! F2 ! 0 ð2:17Þ

such that (i) F2 is G2-twisted stable and (ii) �aðF2Þ=lðF2Þ < �a
�
H1

EðE Þ
�
=l
�
H1

EðE Þ
�

¼

�lðvÞ=aðvÞ, where

vðF2Þ ¼ lðF2Þw1 � aðF2ÞRY þ

�
D2 þ

ðD2; ~c1Þ

r1
RY

�
; D22NSðY Þ  Q \ Ĥ?:

Since �aðF2Þ=lðF2Þ < �lðvÞ=aðvÞ < 0, Lemmas 2.4, 2.5 and 2.6 imply that bH0
EðF2Þ ¼

bH2
EðF2Þ ¼ 0. We also obtain that bH0

EðF1Þ ¼ 0. Hence, we have an exact sequence

0 ! bH1
EðF2Þ ! E ! bH1

EðF1Þ ! 0: ð2:18Þ

Since bH1
EðH1

EðE ÞÞ ¼ E, bH2
EðF1Þ ¼ 0. Thus WIT1 also holds for F1. By (ii), we see that

�aðvÞ

lðvÞ
�

�aðbH1
EðF2ÞÞ

lðbH1
EðF2ÞÞ

¼
�aðvÞ

lðvÞ
þ

lðF2Þ

aðF2Þ

¼
�aðvÞaðF2Þ þ lðvÞlðF2Þ

lðvÞaðF2Þ
< 0: ð2:19Þ

This means that E is not G1-twisted semi-stable. Therefore H1
EðE Þ is G2-twisted

semi-stable.

We next treat general cases. Since jhvðeÞ2ij " 1, we have an inclusion MG1þe
H ðvÞss �

MG1

H ðvÞss and the complement consists of E which fits in an exact sequence:

0 ! E1 ! E ! E2 ! 0 ð2:20Þ

where E1 is a G1-twisted semi-stable sheaf such that vðE1Þ ¼ l1v1 � a1RX þ d1, d1 2

v?1 \ R?
X \ H?, a1=l1 ¼ aðvÞ=lðvÞ and �hvðE1Þ; v1 þ ei=l1>�hv; v1 þ ei=lðvÞ. Then we

see that �hd1; ei=l1>�hd; ei=lðvÞ, where d :¼ v � ðlðvÞv1 � aðvÞRX Þ2v?1 \ R?
X \ H?.

Applying H1
E to the exact sequence (2.20), we get an exact sequence

0 ! H1
EðE2Þ ! H1

EðE Þ ! H1
EðE1Þ ! 0: ð2:21Þ

Since �hHEðd1Þ;HEðeÞi=a1>�hHEðdÞ;HEðeÞi=aðvÞ, we get that

�hv
�
H1

EðE1Þ
�
;HEðeÞi=a1 < �hv

�
H1

EðE Þ
�
;HEðeÞi=aðvÞ: ð2:22Þ

Therefore H1
EðE Þ is not

�
G2 þ HEðeÞ

�
-twisted semi-stable. &

PROPOSITION 2.7. Assume that MHðvÞm�s is an open dense subscheme of MHðvÞ.

If degG1
ðvÞ ¼ 0, then HE induces a birational map MHðvÞ � � � ! MHðHEðvÞÞ which is

described as Mumford–Thaddeus type flips:

M
a1
H ðvÞ M

a2
H ðvÞ M

an

Ĥ
ðHEðvÞÞ

& . & � � � .

M
a1;2
H ðvÞ M

a2;3
H ðvÞ

ð2:23Þ
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where ai; ai;iþ12NSðX Þ  Q and a1¼an ¼0.

Proof. By Theorem 1.1, we have Mumford–Thaddeus type flips MHðvÞ � � � !

M
G1

H ðvÞ and M
G2

Ĥ
ðHEðvÞÞ � � � ! MĤðHEðvÞÞ. By the proof of Theorem 2.3, we see that

HE preserves S-equivalence classes of twisted semi-stable sheaves, and hence we have

an isomorphism M
G1

H ðvÞ ffi M
G2

Ĥ
ðHEðvÞÞ. Therefore we get our claim. &

EXAMPLE 2:1. Let X be a K3 surface and H an ample divisor on X. Assume that

H? ¼ ZD and ðD2Þ ¼ �2n, n>2. We set v ¼ 2 þ ð1 � 2nÞRX. Then there is a non-

trivial extension

0 ! IxðDÞ ! E ! OXð�DÞ ! 0; ð2:24Þ

where x2X. We can easily show that E is a stable sheaf with vðE Þ ¼ v. We consider

the Fourier–Mukai transform defined by E ¼ ID  p�
XOXðDÞ. Since Ext2ðE; ExÞ ¼

Hom ðEx;E Þ
_

6¼ 0, E does not satisfy WIT1 with respect to HE . In this case, we

get the following diagram

MHðvÞ � � � ! M
D

HðvÞ ffi MHðHEðvÞÞ
& .

M
tD

H ðvÞ

ð2:25Þ

where t ¼ 1=4n.

Remark 2:3. Let ðX;H Þ be a polarized K3 surface which has a divisor ‘ such that

ðH 2Þ ¼ 2; ð‘2Þ ¼ �12; ðH; ‘Þ ¼ 0 ð2:26Þ

and H 0
�
X;OXð‘ þ 2H Þ

�
¼ 0. Then Y :¼ MHð2 þ ‘ � 3RX Þ is isomorphic to X and

there is a universal family E on X � Y. In [B-M], Bruzzo and Maciocia showed that

the Fourier–Mukai transform FE gives an isomorphism

MH

�
1 þ ð1 � nÞRX

�ss
ffi MĤ

�
ð1 þ 2nÞ � n‘̂ þ ð1 � 3nÞRY

�ss
: ð2:27Þ

Moreover every element E of MĤ

�
ð1 þ 2nÞ � n‘̂ þ ð1 � 3nÞRY

�
fits in a non-trivial

extension

0 ! E 0 ! E ! OY ! 0 ð2:28Þ

where E 0 2MĤ

�
nð2 � ‘̂ � 3RY Þ

�ss
. Then we can show that E 7!E_ induces an iso-

morphismMĤ

�
ð1 þ 2nÞ � n‘̂ þ ð1 � 3nÞRY

�ss
! M‘̂=2

Ĥ

�
ð1 þ 2nÞ þ n‘̂ þ ð1 � 3nÞRY

�ss
.

Thus we get an isomorphism

MH

�
1 þ ð1 � nÞRX

�ss
ffi M‘̂=2

Ĥ

�
ð1 þ 2nÞ þ n‘̂ þ ð1 � 3nÞRY

�ss
; ð2:29Þ

which is nothing but the isomorphism given by HE_ .
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3. Irreducibility of MHðvvvvvÞ

3.1. A SPECIAL CASE OF THEOREM 2.3

We shall give an application of Theorem 2.3. Let X be an Abelian surface or a K3

surface such that NSðX Þ ¼ Ze � Zf, ðe2Þ ¼ ð f 2Þ ¼ 0 and ðe; f Þ ¼ 1.

COROLLARY 3.1. Assume that ð1Þ X is an Abelian surface, Y is the dual Abelian

surface and E is the Poincaré line bundle on X � Y, or ð2Þ X is a K3 surface, Y ¼ X and

E is the ideal sheaf of the diagonal D � X � X. Assume that e þ kf is an ample divisor.

We set D :¼ e � kf. Then HE induces an isomorphism of stacks

Meþkf ðr þ cD � aRX Þ
ss

! M
êþkf̂

ða � cD̂ � rRY Þ
ss; ð3:1Þ

where r; a>0 and c5 0. Moreover, if k is a sufficiently large integer depending on

r and hðr þ cD � aRX Þ
2
i, then

Meþnf ðr þ cD � aRX Þ
ss

ffi M
êþnf̂

ða � cD̂ � rRY Þ
ss

ð3:2Þ

if 0 < n � k " 1, where n 2 Q.

Remark 3:1: Semi-stability with respect to e þ nf, n 2 Q is defined by H ¼

mðe þ nf Þ 2 NSðX Þ, m>0. We also remark that ê þ nf̂, 0 < n � k " 1 is general with

respect to a � cD̂ � rRY.

Remark 3:2: The assumption a>0 is very weak, because of the inequality

ðD2Þ < 0.

Proof. By Theorem 2.3, we get the first claim. We next show the second claim. We

note that ðD2Þ ¼ �2k " 0. By Lemma 5.2 in Appendix, e þ kf is a general polari-

zation with respect to r þ cD � aRX. The same is true for e þ nf, n>k. Hence,

Meþkf ðr þ cD � aRXÞ
ss

ffi Meþnf ðr þ cD � aRXÞ
ss. In order to prove our claim, it

suffices to show that M
êþnf̂

ða � cD̂ � rRYÞ
ss

¼ M
êþkf̂

ða � cD̂ � rRYÞ
ss. We first show

that M
êþkf̂

ða� cD̂� rRYÞ
ss

�M
êþnf̂

ða� cD̂� rRYÞ
ss. For E2Meþkf ðr þ cD � aRXÞ

ss,

assume that H1
EðE Þ2M

êþkf̂
ða � cD̂ � rRYÞ

ss
nM

êþnf̂
ða � cD̂ � rRYÞ

ss. Then there is

an exact sequence

0 ! F1 ! H1
EðE Þ ! F2 ! 0 ð3:3Þ

such that F2 is semi-stable with respect to ê þ nf̂ and

ðiÞ

�
c1
�
H1

EðE Þ
�
; ê þ nf̂

�
rkH1

EðE Þ
>

�
c1ðF2Þ; ê þ nf̂

�
rkF2

ð3:4Þ
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or

ðiiÞ
ðc1
�
H1

EðE Þ
�
; ê þ nf̂ Þ

rkH1
EðE Þ

¼

�
c1ðF2Þ; ê þ nf̂

�
rkF2

;
w
�
H1

EðE Þ
�

rkH1
EðE Þ

>
wðF2Þ

rkF2
: ð3:5Þ

Since 0 < n � k " 1, (i) or (ii) implies that F1 and F2 are m-semi-stable with respect to

ê þ kf̂ with ðc1ðF1Þ;êþkf̂ Þ¼
�
c1ðF2Þ;êþkf̂

�
¼0. Hence, HomðF1;ExÞ¼HomðF2;ExÞ¼0

except for a finite number of points of X.

If (i) holds, then Ext2ðF2; EjX�fygÞ ¼ HomðEjX�fyg;F2Þ
_

¼ 0 for all y2Y, because

EjX�fyg, y2Y is a stable sheaf with respect to e þ nf with c1ðEjX�fygÞ ¼ 0 and

ðc1ðF2Þ; ê þ nf̂ Þ=rkF2 < ð�cD̂; ê þ nf̂ Þ=rkH1
EðE Þ ¼ �cðn � kÞ=rkH1

EðE Þ4 0. There-

fore F1 and F2 satisfies WIT1 and we get an exact sequence

0 ! bH1
EðF2Þ ! E ! bH1

EðF1Þ ! 0: ð3:6Þ

By Lemma 2.2,

ð0 <Þ

�
c1ðE Þ; e þ nf

�
rkH1

EðE Þ
<

ðc1
�bH1

EðF2Þ
�
; e þ nf Þ

rkF2
: ð3:7Þ

Since E is semi-stable with respect to e þ kf and
�
c1
�bH1

EðF2Þ
�
; e þ kf

�
¼ 0, �rkðF2Þ=

rk bH1
EðF2Þ4�rkH1

EðE Þ=rkE. Hence we see that�
c1ðE Þ; e þ nf

�
rkE

<

�
c1
�bH1

EðF2Þ
�
; e þ nf

�
rk bH1

EðF2Þ
: ð3:8Þ

This implies that E is not semi-stable with respect to e þ nf. Therefore (i) does not

occur. If (ii) holds, then

c1ðH1
EðE ÞÞ

rkH1
EðE Þ

¼
c1ðF2Þ

rkF2
:

Then by (3.5), H1
EðE Þ is not semi-stable with respect to ê þ kf̂, which is a contra-

diction. Thus M
êþkf̂

ða � cD̂ � rRYÞ
ss

� M
êþnf̂

ða � cD̂ � rRYÞ
ss.

We next show that M
êþnf̂

ða � cD̂ � rRYÞ
ss

� M
êþkf̂

ða � cD̂ � rRYÞ
ss. Assume that

there is an element F2M
êþnf̂

ða � cD̂ � rRYÞ
ss
nM

êþkf̂
ða � cD̂ � rRY Þ

ss. Then we see

that there is an exact sequence

0 ! F1 ! F ! F2 ! 0 ð3:9Þ

such that (i)
�
c1ðF Þ; ê þ nf̂

�
=rkF4

�
c1ðF2Þ; ê þ nf̂

�
=rkF2, (ii)

�
c1ðF Þ; ê þ kf̂

�
=rkF ¼�

c1ðF2Þ; ê þ kf̂
�
=rkF2, (iii) wðF Þ=rkF>wðF2Þ=rkF2 and (iv) F2 is semi-stable with

respect to ê þ kf̂. We set E ¼ 0; 1 according as X is an Abelian surface or a K3 surface

as in Section 2. We note that

(a) Ejfxg�Y, x2X is stable with respect to ê þ nf̂ with
�
c1ðEjfxg�YÞ; wðEjfxg�YÞ

�
¼ ð0; EÞ,

(b) F is semi-stable with respect to ê þ nf̂ with
�
c1ðF Þ; ê þ nf̂

�
4 0 and wðF Þ=rkF ¼

E � r=a < E.
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By (a) and (b), we get Ext2ðF; Ejfxg�YÞ ¼ HomðEjfxg�Y;F Þ
_

¼ 0 for all x2X. By (iii)

and (iv), we see that Ext2ðF2; Ejfxg�YÞ ¼ 0 for all x2X. Since F1 and F2 are m-semi-

stable sheaves of degree 0 with respect to ê þ kf̂, HomðF1; Ejfxg�YÞ ¼

HomðF2; Ejfxg�YÞ ¼ 0 except for a finite number of points x2X. Lemma 2.6 implies

that WIT1 holds for F1, F2 and F with respect to bHE and we have an exact sequence

0 ! bH1
EðF2Þ ! bH1

EðF Þ ! bH1
EðF1Þ ! 0: ð3:10Þ

In the same way as in the proof of Theorem 2.3, we see that E :¼ bH1
EðF Þ is m-semi-

stable with respect to e þ kf. Since e þ kf is general, we get c1
� bH1

EðF2Þ
�
=rkbH1

EðF2Þ ¼

c1
� bH1

EðF Þ
�
=rkbH1

EðF Þ. On the other hand, (i) implies that�
c1ðE Þ; e þ nf

�
rkF

5
ðc1
�bH1

EðF2Þ
�
; e þ nf Þ

rkF2
: ð3:11Þ

By using (iii), we see that�
c1ðE Þ; e þ nf

�
rkE

>
ðc1
�bH1

EðF2Þ
�
; e þ nf Þ

rk bH1
EðF2Þ

; ð3:12Þ

which is a contradiction. Therefore our claim holds. &

Remark 3:3: If e þ kf is general with respect to r þ cD � aRX and c>0, then

HomðE; ExÞ ¼ 0 for all x2X and E2Meþkf ðr þ cD � aRX Þ
ss. Hence, H1

EðE Þ is locally

free.

Remark 3:4: In general, ê þ kf̂ is not a general polarization with respect to

a � cD̂ � rRY. Indeed, let E be a nonlocally free m-stable sheaf with vðE Þ ¼

r þ cD � aRX on X. Assume that E__=E ¼ Cx, x2X and a>1. Then we get an exact

sequence

0 ! H1
EðE

__Þ ! H1
EðE Þ ! H2

EðCxÞ ! 0: ð3:13Þ

It is easy to see that H2
EðCxÞ ffi Ex. Hence, ê þ kf̂ is not general with respect to

a � cD̂ � rRY, if c>0.

3.2. APPLICATION TO THE DEFORMATION TYPE OF MHðvÞ.

Let X be an Abelian surface or a K3 surface.

DEFINITION 3.1. Let v be a Mukai vector of rk v>0. Then we can write it as

v ¼ mðvÞvp, where mðvÞ2Z and vp is a primitive Mukai vector of rk vp>0.

In [Y4], we showed that MHðvÞ is deformation equivalent to a moduli space of

rank 1 torsion free sheaves, if v is primitive. Here we assume that rk v>0 and H is

general. We shall give a slightly different proof of this result, that is, we shall use

O’Grady’s arguments [O1, sect. 2]. One of the benefit of O’Grady’s arguments is that

we do not need to use algebraic space. This enables us to treat cases with non-

primitive Mukai vector. For this purpose, we need the following proposition.
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PROPOSITION 3.2. Let X1 and X2 be Abelian ðor K3Þ surfaces, and let v1 :¼

lðr þ x1Þ þ a1RX1
2HevðX1;ZÞ and v2 :¼ lðr þ x2Þ þ a2RX2

2HevðX2;ZÞ be primitive

Mukai vectors such that ð1Þ l; r>0, ð2Þ gcdðr; x1Þ ¼ gcdðr; x2Þ ¼ 1, ð3Þ hv21i ¼

hv22i ¼ 2s, and ð4Þ a1 % a2 mod l. Then MH1
ðv1Þ and MH2

ðv2Þ are deformation equivalent,

where Hi, i ¼ 1; 2 are general ample divisors on Xi with respect to vi.

The proof is due to O’Grady. For the convenience of the reader, we give an outline

of the proof.

Proof. We first assume that rðXiÞ5 2, i ¼ 1; 2. We note that the equivalence class

ai mod l does not change under the operation vi 7!vi chLi, Li 2NSðXiÞ. Replacing vi

by vi chLi, we may assume that (i) xi is primitive, (ii) H 0
i :¼ xi is ample (iii) ðx2i Þ ¼ 2ki>

ðlrÞ2
�
hv2i i þ 2ðlrÞ2

�
=4 and (iv) xi belongs to the same chamber as Hi belongs. Then

MHi
ðviÞ ¼ MH 0

i
ðviÞ. Replacing Hi by H 0

i , we assume that vi ¼ lðr þ HiÞ þ aiRXi
. Let X00

be an Abelian (or a K3) surface such that NSðX00Þ ¼ Ze � Zf with ðe2Þ ¼ ð f 2Þ ¼ 0

and ðe; f Þ ¼ 1. We may assume that H00
i :¼ e þ ki f is an ample divisor on X00. We note

that ðH00
i
2
Þ ¼ ðx2i Þ ¼ 2ki. SinceH00

i
?

¼ Zðe � ki f Þ and�
�
ðe � ki f Þ

2
�

¼ 2ki> ðlrÞ2
�
hv2iþ

2ðlrÞ2
�
=4, Lemma 5.2 implies that H00

i is a general polarization with respect to

v00i :¼ lðr þ H00
i Þ þ aiRX00 . Then we see that MHi

ðviÞ is deformation equivalent to MH00
i
ðv00i Þ

(cf. the proof of Proposition 3.6). We also note that there is no wall between H00
i

and f. Hence MH00
i
ðv00

i Þ ¼ Meþkf ðv
00
i Þ, k ¼ maxfk1; k2g. Since 2k1l

2 � 2lra1 ¼ 2k2l
2�

2lra2 ¼ 2s, we have k2 � k1 ¼ rða2 � a1Þ=l2Z. By our assumption a1 % a2 mod l,

there is a line bundle L with c1ðLÞ ¼ ða2 � a1Þ=l. Then v001chðLÞ ¼ v002, which implies

that Meþkf ðv
00
1Þ ¼ Meþkf ðv

00
2Þ. Therefore MH1

ðv1Þ is deformation equivalent to MH2
ðv2Þ.

In the moduli spaceMd of polarized K3 surfaces (or Abelian surfaces) ðX;H Þ with

ðH2Þ ¼ 2d, the locus fðX;H Þ2MdjrðX Þ5 2g consists of countably many hyper-

surfaces. By using Grothendieck’s boundedness theorem, we see that

Mn
d :¼ fðX;H Þ2Md j H is not general with respect to vig ð3:14Þ

is an algebraic subset of M. Hence if rðXiÞ ¼ 1, we can deform ðXi;HiÞ to ðX 0
i ;H

0
i Þ

such that rðX 0
i Þ5 2 and H 0

i is general with respect to vi. Therefore we can reduce our

problem to the first case. &

Now we consider deformation type of MHðvÞ for a primitive Mukai vector v. In

particular, we shall give another proof of [Y4]. For a Mukai vector v :¼ lðr þ c1Þþ

aRX1
2H�ðX1;ZÞ such that r>0, gcdðr; c1Þ ¼ 1 and gcdðl; aÞ ¼ 1, we set b ¼ �a þ ll,

k ¼ �ðc21Þ=2 þ rl, l � 0 so that e þ kf is ample. We consider X in the above nota-

tion. By Lemma 5.2, e þ nf, 0 < n � k " 1 is a general polarization with respect

to lðr þ ðe � kf ÞÞ � bRX (cf. Remark 3.1) Since �b % a mod l, Proposition 3.2 implies

that MHðlðr þ c1Þ þ aRX1
Þ is deformation equivalent to Meþnf ðlðr þ ðe � kf ÞÞ � bRX Þ,

where H is general with respect to v. By Corollary 3.1, we have an isomorphism

Meþnf ðlðr þ ðe � kf ÞÞ � bRX Þ ! M
êþnf̂

ðb � lðê � kf̂ Þ � lrRY Þ: ð3:15Þ
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Here we note that êþnf̂, 0<n�k"1 is also general with respect to b�lðê�kf̂Þ�lrRY.

Since ðb; l Þ ¼ 1, Proposition 3.2 implies that M
êþnf̂

ðb � lðê � kf̂ Þ � lrRY Þ is deforma-

tion equivalent to Meþn0f ðbþðe�k0fÞ�b0RX Þ, where b0 ¼ lr þ l0; k0 ¼ l 2k þ bl0; l0
� 0

and 0 < n0 � k0 " 1. Applying Corollary 3.1 again, we get an isomorphism

Meþn0f ðb þ ðe � k0f Þ � b0RX Þ ! M
êþn0 f̂

ðb0 � ðê � k0f̂ Þ � bRY Þ: ð3:16Þ

If l0 is sufficiently large, then M
êþn0 f̂

ðb0 � ðê � k0 f̂ Þ � bRY Þ is deformation equivalent

to Mêþn̂00f ðb
0 � ðê � k00 f̂ Þ � RY Þ and e þ k00f is ample, where k00 ¼ lrð1 � bÞ þ l 2k þ l0

and 0 < n00 � k00 " 1. Since k00 � 0, Corollary 3.1 implies that Meþn00f ð1 þ ðe � k00f Þ�

b00RX Þ is isomorphic to Mêþn̂00f ðb
0 � ðê � k00 f̂ Þ � RY Þ. Therefore MHðvÞ is deformation

equivalent to the moduli space of rank 1 torsion free sheaves.

We shall next treat cases with nonprimitive Mukai vector.

LEMMA 3.3. Let v be a Mukai vector of rk v>0 and hv2i>0. Let H be a general

ample divisor with rerspect to v. We set

MHðvÞ pss :¼ fE2MHðvÞss j E is properly semi-stableg: ð3:17Þ

Then dimMHðvÞ pss 4 hv2i. Moreover inequality is strict, unless mðvÞ ¼ 2 and hv2i ¼ 8.

For the proof, see [Y3, Lem. 1.7].

PROPOSITION 3.4. Under the same assumptions, MHðvÞss is a locally complete

intersection stack which contains MHðvÞs as an open dense substack and the singular

locus is at least of codimension 2. In particular MHðvÞss is normal.

Proof. In the notation of Remark 1.1, we shall prove that Qss is a locally complete

intersection scheme. The following argument is due to Li [Li]. We take a quotient

OXð�mH Þ
�N

! E2Qss and set K :¼ kerðOXð�mH Þ
�N

! E Þ. Then the Zariski

tangent space of Qss at this quotient is HomðK;E Þ and the obstruction class for an

infinitesimal lifting belongs to the kernel of the surjective homomorphism

Ext1ðK;E Þ ffi Ext2ðE;E Þ!
tr

H 2ðX;OX Þ ([Mu3]). In particular Qs is smooth of dim-

ension hv2i þ 1 þ N2, where Qs is the open subscheme of Qss parametrizing stable

quotient sheaves. By Lemma 3.3, the dimension of all irreducible components of Qss

are at most hv2i þ 1 þ N2. On the other hand, if we set s :¼ dimHomðK;E Þ and

t :¼ dimExt1ðK;E Þ � 1, then locally Qss is defined by t equations f1; . . . ; ft in a

smooth scheme of dimension s. Since s � t ¼ wðK;E Þ þ 1 ¼ N2 � wðE;E Þ þ 15
dimQss, f1; . . . ; ft is a regular sequence, which implies that Qss is a locally complete

intersection scheme.

If mðvÞ 6¼ 2 or hv2i>8, then dimMHðvÞ pss 4 hv2i � 1. Therefore the singular locus

is at least of codimension 2. If mðvÞ ¼ 2 and hv2i ¼ 8, then a general member of

MHðvÞ pss fits in a non-trivial extension.

0 ! E1 ! E ! E2 ! 0 ð3:18Þ
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where E1;E22MHðv=2Þss and E1 6¼ E2. Then E is simple, which implies that MHðvÞss

is smooth at E. Therefore the singular locus is at least of codimension 2. For the last

claim, we use Serre’s criterion. &

DEFINITION 3.2. Let Y1;Y2 be normal schemes. Then Y1 & Y2, if there is a

proper and flat morphism Y ! T over a smooth connected curve T such that every

fiber is normal and Yi ¼ Yti for some t1; t22T. Deformation equivalence is an

equivalence relation generated by &.

By the following lemma, the number of irreducible components is an invariant of

this equivalence relation.

LEMMA 3.5. Let T be a smooth curve and Y ! T a flat and proper morphism.

Assume that every fiber is normal. Then the number of irreducible components of Yt,

t2T is constant.

Proof. Since Yt is normal, every connected component is an integral scheme.

Hence the number of irreducible components of Yt is h0ðYt;OYt
Þ. By the upper-

semicontinuity of h0ðYt;OYt
Þ, the number of irreducible components of Yt is upper

semi-continuous. On the other hand, by Zariski’s connectivity theorem, the number

of connected components of Yt is lower semi-continuous. Therefore we get our

lemma. &

By the same proof, we can show the following.

PROPOSITION 3.6. Under the same assumption as in Lemma 3:3, MHðvÞ is defor-

mation equivalent to MHðmðvÞð1 � nRX ÞÞ, where n ¼ hv2pi=2. In particular the number of

irreducible components of MHðvÞ is determined by mðvÞ.

Proof. Let T be a smooth curve over C and j: ðX ;LÞ ! T be a family of

polarized abelian or K3 surfaces. For a family of Mukai vectors v2R�j�Z ¼S
t2T H �ðX t;ZÞ, let c : MLðvÞ ! T be the relative moduli space of semi-stable

sheaves on X t, t2T of Mukai vector vt and MLðvÞ the open subscheme consisting of

stable sheaves. Since T is defined over a field of characteristic 0,MLðvÞt ¼ MLt
ðvtÞ for

t2T, where MLt
ðvtÞ is the moduli space of semi-stable sheaves on X t (cf. [MFK,

Thm. 1.1]). Since cjMLðvÞ: MLðvÞ ! T is smooth [Mu3], it is flat. Assume that Lt is

general with respect to vt for all t2T. By Proposition 3.4,MLðvÞ is a dense subscheme

of MLðvÞ. Since T is a smooth curve, c is also flat. Therefore c: MLðvÞ ! T is a

proper and flat morphism. By Proposition 3.4, all MLt
ðvtÞ, t2T are deformation

equivalent. Then our claim follows from the same argument as in mðvÞ ¼ 1 case. &

3.3. IRREDUCIBILITY OF MHðvÞ

We shall show that MHðvÞ is irreducible. We may assume that X has an elliptic

fibration p: X ! C. We also assume that there is a section s of p and NSðX Þ ¼
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Zs � Zf, where f is a fiber of p. We note that ðs2Þ ¼ 0 or �2, according as X is an

Abelian surface or a K3 surface. By [Y4, Thm. 3.15], we have an isomorphism

Msþkf ðrð1 � nRX ÞÞ ffi Msþkf ðwÞ, where w ¼ rððs þ ðn þ EÞf Þ þ RX Þ. Hence, it is suffi-

cient to show that Msþkf ðwÞ is irreducible. From now on, we assume that r5 2.

By Proposition 3.4, we shall show that Msþkf ðwÞ is irreducible.

DEFINITION 3.3. For a purely one-dimensional sheaf L on X, DivðLÞ is the divisor

on X which is defined by the fitting ideal of L.

We set x ¼ rðs þ ðn þ EÞf Þ. Let HilbxX be the Hilbert scheme of curves C on X

such that c1ðOXðCÞÞ ¼ x. There is a natural map j : Msþkf ðwÞ ! HilbxX sending

L2Msþkf ðwÞ to DivðLÞ. We want to estimate the dimension of locally closed subsets

of Msþkf ðwÞ:

N1 :¼ fL2Msþkf ðwÞjDivðLÞ is not irreducibleg;

N2 :¼ fL2Msþkf ðwÞjDivðLÞ is not reducedg:
ð3:19Þ

Estimate of dimN1. We prepare some lemmas.

LEMMA 3.7. Let Ci, i ¼ 1; 2 be irreducible curves of genus gðCiÞ5 2. Then

ðCi;CjÞ5 2.

Proof. If C1 � C2 or C2 � C1 is effective, then ðC1;C2Þ5 ðC2
2Þ5 2 or ðC1;C2Þ5

ðC2
1Þ5 2. If C1 � C2 and C2 � C1 are not effective, then 05wðOXðC1 � C2ÞÞ5

ðC1 � C2Þ
2=2. Hence we see that ðC1;C2Þ5 2. &

DEFINITION 3.4. For a Mukai vector v2HevðX;ZÞ, MðvÞ is the stack of coherent

sheaves E of vðE Þ ¼ v.

LEMMA 3.8. Let E be a purely one-dimensional sheaf such that SuppE consists of

genus g5 2 curves. Then dimMðvðE ÞÞ ¼ hvðE Þ
2
i þ 1 at E, if H is general.

Proof. We set v :¼ vðE Þ. Let M be an irreducible component of MðvÞ containing

E and let E 0 be a general point of M. We consider the Harder–Narasimhan filtration

of E 0:

0 � F1 � F2 � � � � � Fs ¼ E 0: ð3:20Þ

We set vi ¼ vðFi=Fi�1Þ. By our assumption, we may assume that SuppFi=Fi�1 consist

of curves of genus greater than 1.Hence, hv2i i>0.Moreover, byLemma3.7, hvi; vji5 2.

Let F 0ðv1; v2; . . . ; vsÞ be the stack of filtrations (3.20) such that HomðFi=Fi�1;

Fj=Fj�1Þ ¼ 0 for i < j. By [Y3, Lem. 5.2],

dimF 0ðv1; v2; . . . ; vsÞ ¼
Xs

i¼1

dimMsþkf ðviÞ
ss

þ
X
i<j

hvi; vji: ð3:21Þ
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Since hv2i i>0, we get dimMsþkf ðviÞ
ss

¼ hv2i i þ 1. Hence we see that

hv2i þ 1 � dimF 0ðv1; v2; . . . ; vsÞ ¼ hv2i þ 1 �
Xs

i¼1

ðhv2i i þ 1Þ þ
X
i<j

hvi; vji

 !
¼
X
i<j

hvi; vji � ðs � 1Þ>0: ð3:22Þ

Since dimMðvÞ5 hv2i þ 1, we get our claim. &

LEMMA 3.9. Assume that X is a K3 surface. Let E be a purely one-dimensional sheaf

of DivðE Þ ¼ rs. Then dimMðvðE ÞÞ ¼ hvðE Þ
2
i þ r2 ¼ �r2 at E.

Proof. We set v :¼ vðE Þ. Let M be an irreducible component of MðvÞ containing

E and let E 0 be a general point of M. We consider the Harder–Narasimhan filtration

of E 0:

0 � F1 � F2 � � � � � Fs ¼ E 0: ð3:23Þ

We set vi ¼ vðFi=Fi�1Þ. Then vi ¼ ris þ aiRX. It is easy to see that ai is divisible by ri

and Msþkf ðviÞ
ss

¼ fOsðai=ri�1Þ
�rig. Then dimMsþkf ðviÞ

ss
¼ �r2i . As in Lemma 3.8,

let F 0ðv1; v2; . . . ; vsÞ be the stack of filtrations (3.23) such that HomðFi=Fi�1;

Fj=Fj�1Þ ¼ 0 for i < j. By [Y3, Lem. 5.2],

dimF 0ðv1; v2; . . . ; vsÞ ¼
Xs

i¼1

dimMsþkf ðviÞ
ss

þ
X
i<j

hvi; vji

¼ �
Xs

i¼1

r2i �
X
i<j

2rirj ¼ �r2:

ð3:24Þ

Therefore we get our claim. &

LEMMA3.10. Let E be a purely one-dimensional sheaf on X such that vðE Þ ¼ rf þ aRX,

or vðE Þ ¼ rs þ aRX. Assume that hvðE Þ
2
i ¼ 0. Then dimMðvðE ÞÞ ¼ r at E.

Proof. We set v :¼ vðE Þ. Let M be an irreducible component of MðvÞ containing

E and let E 0 be a general point of M. We consider the Harder–Narasimhan filtration

of E 0:

0 � F1 � F2 � � � � � Fs ¼ E 0: ð3:25Þ

We set vi ¼ vðFi=Fi�1Þ. Then we see that hv2i i ¼ 0. As in the proof of Lemma 1.8 in

[Y3], we see that dimMsþkf ðviÞ
ss

¼ ri. By using [Y3, Lem. 5.2] again, we see that

dimF 0ðv1; v2; . . . ; vsÞ ¼
Xs

i¼1

dimMsþkf ðviÞ
ss

þ
X
i<j

hvi; vji ¼
Xs

i¼1

ri ¼ r: ð3:26Þ

Therefore we get our claim. &

For N1, we get the following.
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PROPOSITION 3.11. dimN1<dimMsþkf ðwÞ.

Proof. Assume that SuppðLÞ is not irreducible. Then there is a filtration

0 � F1 � F2 � F3 ¼ L ð3:27Þ

such that (i) DivðF1Þ ¼ r1s (ii) F2=F1 is a pure dimension 1 sheaf of DivðF2=F1Þ ¼ r2 f

and (iii) F3=F2 is a pure dimension 1 sheaf of DivðF3=F2Þ ¼ C3, where C3 consists of

curves of genus greater than 1. We set vi :¼ vðFi=Fi�1Þ, i ¼ 1; 2; 3. We note that the

set of wðF3=F2Þ and wðF2=F1Þ are bounded. Indeed, if DivðLÞ ¼ C [ D with

#ðC \ DÞ < 1, then wðLjCð�DÞ=TÞ=ðC; s þ kf Þ4wðLÞ=ðC þ D; s þ kf Þ, where T is

the 0-dimensional subsheaf of LjCð�DÞ. Hence wðLjC=TðDÞÞ is bounded above. Since

wðLjC=TðDÞÞ is bounded below, wðLjC=TðDÞÞ is bounded. Applying this fact to

wðF3=F2Þ and wðF3=F1Þ, we get our claim. By the proof of Lemma 3.8, we may assume

that F2 6¼ 0. We first note that Ext2ðFi=Fi�1;Fj=Fj�1Þ ¼ HomðFj=Fj�1;Fi=Fi�1Þ
_

¼ 0

for i 6¼ j.

(I) We first treat the case where X is a K3 surface. Assume that F2 6¼ F3. By

Lemmas 3.8, 3.9, 3.10, we see that

codimF 0ðv1;v2;v3Þ ¼ dimMsþkf ðwÞ
ss
�

�X
i

dimMsþkf ðviÞ
ss
þ
X
i<j

hvi;vji

�
¼hw2iþ1�

�
ðhv21iþ r21Þþ ðhv22iþ r2Þþ ðhv23iþ1Þþ

X
i<j

hvi;vji

�
¼
X
i<j

hvi;vji� r21 � r2

¼�r21 � r2 þðr1s;r2fþC3Þþ ðr2f;C3Þ: ð3:28Þ

By our assumption, ðc1ðwÞ; sÞ5 0. Hence ðr1s; r2f þ C3Þ5 2r21. By our assumption,

ð f;C3Þ>0. Therefore �r21 � r2 þ ðr1s; r2f þ C3Þ þ ðr2f;C3Þ5 r21>0. We next assume

that F2 ¼ F3. Then we see that

codim F 0ðv1; v2Þ ¼ �r21 � r2 þ 1 þ r1r2: ð3:29Þ

Since ðc1ðwÞ; sÞ5 0, r2 5 2r1. Then �r21 � r2 þ 1 þ r1r2 5 r1ðr1 � 2Þ þ 15 1, because

c1ðwÞ is not primitive. Therefore we get our claim.

(II) We next treat the case where X is an Abelian surface. Assume that F2 6¼ F3.

Then

codim F 0ðv1; v2; v3Þ ¼ �r1 � r2 þ ðr1s; r2 f þ C3Þ þ ðr2 f;C3Þ: ð3:30Þ

Since C3 consists of curves of genus greater that 1, ðs;C3Þ>1 and ð f;C3Þ>1. Then

ð�r1 � r2 þ ðr1s; r2f þ C3Þ þ ðr2f;C3ÞÞ>0. If F2 ¼ F3, then

codim F 0ðv1; v2Þ ¼ �r1 � r2 þ 1 þ r1r2: ð3:31Þ

Since c1ðwÞ is not primitive, ðr1 � 1Þðr2 � 1Þ>0. Therefore we get our claim. &
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Estimate of dimN2. For an integer l5 2, let HilbxXðlÞ be the locally closed subset

of HilbxX consisting of lC, where C is an integral curve. By Proposition 3.11, it is

sufficient to estimate the dimension of HilbxXðlÞ. Let C be an integral curve. For

D ¼ lC and w ¼ D þ rRX, we set

Msþkf ðw;DÞ :¼ fL2Msþkf ðwÞ jDivðLÞ ¼ Dg: ð3:32Þ

We fix a point x2C. We also set

Psþkf ðw;w þ RX;DÞ :¼ L � L0
L0 2Msþkf ðw þ RX Þ;DivðL0Þ ¼ D

L2Msþkf ðwÞ;L0=L ffi Cx

�����
( )

: ð3:33Þ

Let pw and pwþRX
be natural projections sending L � L0 to L and L0, respectively:

For L2Msþkf ðw;DÞ, �dimExt1ðCx;LÞþdimExt2ðCx;LÞ¼wðCx;LÞ¼0. Combining

the Serre duality, we see that dimExt1ðCx;LÞ ¼ dimExt2ðCx;LÞ ¼ dimHomðL;CxÞ.

By the following lemma, dim p�1
w ðLÞ4l � 1 and dim p�1

wþRX
ðL0Þ4l � 1.

LEMMA 3.12. Let x be a smooth point of C. Let L be a purely one-dimensional sheaf

such that DivðLÞ ¼ lC. Then dimL  Cx 4l.
Proof. Let C0 be a germ of a curve intersecting C at x transversely. Let OX;x be the

stalk of OX at x. We take a free resolution of L  OX;x:

0 ! O�n
X;x !

A O�n
X;x ! L  OX;x ! 0: ð3:35Þ

Then the local equation of DivðLÞ at x is given by detðAÞ. By restricting the sequence

to C0, we get a free resolution of L  OC0;x. Then dimðL  OC0;xÞ is given by the local

intersection number ðDivðDÞ;C0Þx ¼ l. Therefore we get our claim. &

LEMMA 3.13. dimMsþkf ðw þ RX;DÞ ¼ ðD2Þ=2 þ 1.

Proof. By [Y4, Thm. 3.15], Msþkf ðw þ RX Þ is isomorphic to Msþkf ðr þ f � rnRXÞ.

Since r þ f � rnRX is primitive, [Y4, Thms. 0.1 and 8.1] implies that it is irreducible.

For a smooth curve C2HilbxX, the fiber of Msþkf ðw þ RX Þ ! HilbxX is Picrþ1
ðCÞ. It is

easy to see that Picrþ1
ðCÞ is a Lagrangian subscheme of Msþkf ðw þ RXÞ. By

Matsushita [Mt], every fiber is of dimension ðx2Þ=2 þ 1. &

LEMMA 3.14. Let L be a stable sheaf of vðLÞ ¼ w and DivðLÞ ¼ D, and let L0 be a

coherent sheaf which fits in a nontrivial extension

0 ! L ! L0 ! Cx ! 0 ð3:36Þ

where x2D. Then L0 is stable.
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Proof. Assume that L0 is not of pure dimension 1 and let T be the zero-

dimensional subsheaf of L0. Then T ! L0 ! Cx must be injective. Hence, it is iso-

morphic, which implies that the exact sequence split. Therefore L0 is of pure

dimension 1. If L0 is not stable, then there is a subsheaf L1 of L0 such that wðL1Þ

l1
> wðL0Þ

l ,

where DivðL1Þ ¼ l1C. Hence 0 < wðL1Þl � wðL0Þl1 ¼ ðwðL1Þ � 1Þl � wðLÞl1 þ l � l1.
Since wðLÞ ¼ r is divisible by l and l � l1 < l, we get ðwðL1Þ � 1Þl � wðLÞl1 5 0.

Thus wðL1\LÞ

l1
5wðLÞ

l , which implies that L is not stable. Therefore L0 must be stable. &

COROLLARY 3.15. dim Msþkf ðw; DÞ 4 dim Psþkf ðw;w þ RX;DÞ4 dimMsþkf

ðw þ RX;DÞ þ ðl � 1Þ.

Proof. By Lemma 3.14, pw is surjective. Since dim p�1
wþRX

ðxÞ4l � 1 for

x 2 Msþkf ðw þ RX;DÞ, we get our inequality. &

Since l5 2, we get that 2l2 � ðl2 þ l þ 1Þ>0. Then

dim j�1ðHilbxXðlÞÞ4 ðC2Þ=2 þ 1 þ l2ðC2Þ=2 þ 1 þ ðl � 1Þ

< ðl2 þ l þ 1ÞðC2Þ=2 þ 2

< l2ðC2Þ þ 2 ¼ dimMsþkf ðwÞ: ð3:37Þ

Combining Proposition 3.11, we get the following proposition:

PROPOSITION 3.16. We set

Msþkf ðwÞ0 :¼ fL2Msþkf ðwÞjDivðLÞ is an integral curveg

¼ Msþkf ðwÞnðN1 [ N2Þ: ð3:38Þ

Then Msþkf ðwÞ0 is an open dense subscheme of Msþkf ðwÞ.

PROPOSITION 3.17. Msþkf ðwÞ is irreducible.

Proof. By Proposition 3.16, it is sufficient to show that Msþkf ðwÞ0 is irreducible.

Let C be an integral curve. Then j�1ðCÞ is the compactified Jacobian of C. By

[AIK], the compactified Jacobian of C is irreducible. Therefore Msþkf ðwÞ0 is

irreducible. &

Combining all our results, we get the following theorem.

THEOREM 3.18. Let X be an Abelian surface or a K3 surface and let v be a Mukai

vector of rk v>0 and hv2i>0. Let H be a general ample divisor with respect to v. Then

MHðvÞss is a normal and irreducible stack. In particular, MHðvÞ is a normal variety.

Remark 3:5. In [O2, O3], O’Grady studied the case where mðvÞ ¼ 2. In particular,

he constructed a symplectic desinguralization of MHðvÞ, if hv2i ¼ 8.
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4. Fourier–Mukai Transform on Enriques Surfaces

In this section, we consider the Fourier–Mukai transform on Enriques surface X. By

using the Fourier–Mukai transform, we shall compute the Hodge polynomials of

some moduli spaces of sheaves.

In our case, the Mukai vector vðxÞ of x2KðX Þ is defined as an element of

H �ðX;QÞ:

vðxÞ :¼ chðxÞ
ffiffiffiffiffiffiffi
tdX

p
¼ rkðxÞ þ c1ðxÞ þ

rkðxÞ

2
RX þ ch2ðxÞ

� �
2H �ðX;QÞ: ð4:1Þ

We also introduce Mukai’s pairing on H �ðX;QÞ by hx; yi :¼ �
R

X x_ ^ y. Then we

have an isomorphism of lattices:

ðvðKðX ÞÞ; h ; iÞ ffi
1 0
0 �1

� �
�

0 1
1 0

� �
� E8ð�1Þ: ð4:2Þ

DEFINITION 4.1. We call an element of vðKðX ÞÞ by the Mukai vector. A Mukai

vector v is primitive, if v is primitive as an element of vðKðX ÞÞ.

For a variety Y over C, the cohomology with compact support H �
c ðY;QÞ has a

natural mixed Hodge structure. Let ep;qðY Þ :¼
P

kð�1Þkhp;qðHk
c ðY ÞÞ be the virtual

Hodge number and eðY Þ :¼
P

p;q ep;qðY Þxpyq the virtual Hodge polynimial of Y.

By Remark 1.1, M a
HðvÞss is described as a quotient stack ½Qss=GLðN Þ�, where Qss

is a suitable open subscheme of QuotO�N
X =X. We define the virtual Hodge ‘polynimial’

of M a
HðvÞss by

eðM a
HðvÞssÞ ¼ eðQssÞ=eðGLðN ÞÞ2Qðx; yÞ: ð4:3Þ

It is easy to see that eðQssÞ=eðGLðN ÞÞ does not depend on the choice of Qss. The

following was essentially proved in [Y1, Sect. 3.2].

PROPOSITION 4.1. Let X be a surface such that KX is numerically trivial. Let ðH; aÞ
be a pair of ample divisor H and a Q-divisor a. Then eðM a

HðvÞssÞ does not depend on the

choice of H and a, if ðH;OðaÞÞ is general with respect to v ðcf. Defn. 1:4Þ.

PROPOSITION 4.2. Let v be a Mukai vector such that rkðvÞ is odd. Then MHðvÞs is

smooth of dimMHðvÞs ¼ hv2i þ 1.

Proof. For E2MHðvÞs, we get detðEðKX ÞÞ 6ffi detðE Þ. If there is a nonzero

homomorphism E ! EðKX Þ, then the stability condition implies that it is an

isomorphism. Hence, Ext2ðE;EÞ¼HomðE;EðKXÞÞ
_
¼0. Since �wðE;EÞ¼hvðEÞ;vðEÞi,

MHðvÞs is smooth of dimMHðvÞs ¼ hv2i þ 1. &

For a Mukai vector v, let L1;L2 ¼ L1ðKX Þ2 PicðX Þ be line bundles on X such that

c1ðL1Þð¼ c1ðL2ÞÞ ¼ c1ðvÞ. Then we have a decomposition

MHðvÞss ¼ MHðv;L1Þ
ss
a

MHðv;L2Þ
ss

ð4:4Þ
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where MHðv;LiÞ
ss, i ¼ 1; 2, is the substack of MHðvÞss consisting of E such that

detðE Þ ¼ Li. We also have a decomposition MHðvÞ ¼ MHðv;L1Þ
‘

MHðv;L2Þ, where

MHðv;LiÞ is the subscheme of MHðvÞ consisting of E such that detðE Þ ¼ Li.

We consider the Fourier-Mukai transform associated to ð�1Þ-reflection. Let

v0 :¼ r þ c1 � ðs=2ÞRX be a Mukai vector such that rkðv0Þ>0 and hv20i ¼ ðc21Þ þ

rs ¼ �1. Since ðc21Þ is even, r and s are odd. Let H be a general ample divisor with

respect to v0. Assume that there is a stable vector bundle E0 with respect to H such

that vðE0Þ ¼ v0 (cf. Corollary 4.7). Then we see that

HomðE0;E0Þ ¼ C; Ext1ðE0;E0Þ ¼ 0; Ext2ðE0;E0Þ ¼ 0: ð4:5Þ

Let

ev1: E_
0 oE0 ! OD; ev2: E0ðKX Þ

_ oE0ðKX Þ ! OD ð4:6Þ

be evaluation maps. We define a sheaf E on X � X by an exact sequence

0 ! E ! E_
0 oE0 � E0ðKX Þ

_ oE0ðKX Þ ����!
ðev1;ev2Þ OD ! 0: ð4:7Þ

Then Ejfxg�X (resp. EjX�fxg) is a stable sheaf with vðEjfxg�XÞ ¼ 2rkðE0ÞvðE0Þ � RX (resp.

vðEjX�fxgÞ ¼ 2rkðE0ÞvðE0Þ
_

� RX). Thus E is a flat family of stable sheaves with

vðEjfxg�XÞ ¼ 2rkðE0ÞvðE0Þ � RX. By the construction of E, Ejfxg�XðKX Þ ffi Ejfxg�X,

which implies that

Ext2ðEjfxg�X; Ejfxg�XÞ ¼ HomðEjfxg�X; Ejfxg�XðKX ÞÞ
_

ffi C: ð4:8Þ

Since hvðE0Þ
2
i ¼ �1, we see that hvðEjfxg�XÞ

2
i ¼ 0. Hence, the Zariski tangent space is

two-dimensional:

Ext1ðEjfxg�X; Ejfxg�XÞ ffi C
�2: ð4:9Þ

Therefore X is a connected component of MHðv1Þ, where v1 ¼ 2rkðE0ÞvðE0Þ � RX.

Then HE: DðX Þ ! DðX Þop is an equivalence of categories. As a corollary of this

fact, we get that MHðv1Þ ¼ X. By our construction of E, we see that

vðHEðxÞÞ ¼ �ðx_ þ 2vðE0Þ
_
hx; vðE0ÞiÞ: ð4:10Þ

If E0 ¼ OX and vðE Þ ¼ r þ c1 þ ðs=2ÞRX, then vðHEðE ÞÞ ¼ s þ c1 þ ðr=2ÞRX.

From now on, we assume that X is unnodal, i.e. there is no ð�2Þ-curve. Let s and

f be elliptic curves on X such that ðs; f Þ ¼ 1. Then

H2ðX;ZÞf ¼ ðZs � Zf Þ ? E8ð�1Þ ð4:11Þ

where H2ðX;ZÞf is the torsion free quotient of H2ðX;ZÞ.
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PROPOSITION 4.3. We set G1 :¼ Ejfxg�X and G2 :¼ EjX�fxg. Assume that

degG1
ðvÞ ¼ 0 and lðvÞ :¼ �hv; RXi=rk v1>0, aðvÞ :¼ hv; v1i=rk v1>0. Let e be an

element of KðX Þ  Q such that vðeÞ2v?1 \ R?
X, jhvðeÞ2ij " 1 and ðH; c1ðeÞÞ ¼ 0. Then

HE induces an isomorphism

MG1þe
H ðvÞss ! MG2þê

Ĥ
ð�HEðvÞÞ

ss; ð4:12Þ

where ê ¼ HEðeÞ.
Proof. Since H is general with respect to vðE0Þ, we see that Ejfxg�X is G1-twisted

stable. Then we see that Lemma 2.4 holds. We next show that Lemma 2.5 holds.

We may assume that E is m-stable. If E__ 6¼ E0;E0ðKX Þ, then HomðE;E0Þ ¼

HomðE;E0ðKX ÞÞ ¼ 0. If E__ ¼ E0;E0ðKX Þ, then HomðE; Ejfxg�XÞ ¼ 0 for x2X n

SuppðE_=E Þ. Thus Lemma 2.5 holds. Then the same proof of Theorem 2.3 works

and we get our claim. &

COROLLARY 4.4. MHðr � ð1=2ÞRX;OXÞ ffi Hilb
ðrþ1Þ=2
X for a general H with respect

to r � ð1=2ÞRX.

PROPOSITION 4.5. Assume that r; s>0. Then eðM a
Hðr þ c1 � ðs=2ÞRX ÞÞ ¼ eðM a

H

ðs�c1�ðr=2ÞRX ÞÞ for a general ðH;aÞ, if ðc21Þ<0, i.e., hv2i< rs, where v¼rþc1�ðs=2ÞRX.

In particular, if r>hv2i, then we get our claim.

Proof. If ðc21Þ < 0, then the Hodge index theorem implies that there is a divisor H

such that ðH; c1Þ ¼ 0 and ðH 2Þ>0. By the Riemann–Roch theorem, we may assume

that H is effective. Since X is unnodal, H is ample. If E0 ¼ OX, then vðEjfxg�XÞ ¼ 2.

Hence v satisfies assumptions of Proposition 4.3. Then we get an isomorphism

MOXþe
H ðr þ c1 � ðs=2ÞRX Þ ! MOXþe

H ðs � c1 � ðr=2ÞRX Þ; ð4:13Þ

where ðH;OX þ eÞ is general with respect to v. By Proposition 4.1, we get our

claim. &

THEOREM 4.6. Let v ¼ r þ c1 � ðs=2ÞRX 2H �ðX;QÞ be a primitive Mukai vector

such that r is odd. Then

eðMHðv;LÞÞ ¼ eðHilb
ðhv2iþ1Þ=2
X Þ ð4:14Þ

for a general H, where L2PicðX Þ satisfies c1ðLÞ ¼ c1. In particular,

ðiÞ MHðvÞ 6¼ ; for a general H if and only if hv2i5 �1.

ðiiÞ MHðv;LÞ is irreducible for a general H.

Proof. We first assume that c12E8ð�1Þ. We set l ¼ gcdðr; c1Þ. Replacing v by

v expðx1Þ, x12E8ð�1Þ, we may assume that c1=l is primitive and s> hv2i. Since v is

primitive, gcdðl; sÞ ¼ 1. By Proposition 4.5, we get

eðMHðr þ c1 � ðs=2ÞRXÞÞ ¼ eðMHðs � c1 � ðr=2ÞRXÞÞ: ð4:15Þ
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Replacing v ¼ r þ c1 � ðs=2ÞRX by v0 ¼ s�c1�ðr=2ÞRX, we may assume that r> hv2i.

By the same argument as above, we may assume that l ¼ 1 and c1 is primitive. We

set D ¼ s �
ðZ2Þ
2 f þ Z, where Z2E8ð�1Þ satisfies that 2ðZ; c1Þ ¼ s � 1. Then ðD2Þ ¼ 0

and �s þ 2ðc1;DÞ ¼ �1. Since vexpðDÞ ¼ rþðc1 þ rDÞ� 1=2RX, eðMHðvÞÞ ¼

eðMHðr þ ðc1 þ rDÞ � 1=2RX ÞÞ. Since r> hv2i, Proposition 4.5 implies that our claim

holds for this case.

We shall next treat the general case. We use induction on r. We set c1 :¼ d1sþ
d2f þ x. Replacing v by v expðksÞ, we may assume that 04 jd1j < r=2. We first

assume that d1 6¼ 0. We note that ðc1; f Þ ¼ d1. Replacing v by v expðZÞ, Z2E8ð�1Þ,

we may assume that s> hv2i. Then by Proposition 4.5, eðMHðvÞÞ ¼ eðMHðs � c1�

ðr=2ÞRX ÞÞ for a general H. We take an integer k such that 0 < r þ 2d1k < 2jd1j < r.

Then v expðkf Þ ¼ s þ ð�c1 þ skf Þ � r0=2RX, where r0 ¼ r þ 2d1k. Since s> hv2i,

Proposition 4.5, implies that eðMHðsþð�c1 þ skf Þ� r0=2RX ÞÞ ¼ eðMHðr0 þ ðc1 � skf Þ�

ðs=2ÞRX ÞÞ for a general H. By induction hypothesis, we get our claim.

If d1 ¼ 0, then we may assume that 04 jd2j < r=2. If jd2j>0, then we can apply

the same argument and get our claim. If d1 ¼ d2 ¼ 0, then c12E8ð�1Þ, so we get

our claim. &

COROLLARY 4.7. If hv2i ¼ �1, then there is a stable vector bundle E0 with respect

to H with vðE0Þ ¼ v.

Remark 4:1: By the proof, we also get the following: Let v be a primitive Mukai

vector such that rk v is odd. Then eðMHðmvÞssÞ ¼ eðMHðmð1 � ðn=2ÞRX ÞÞ
ss
Þ. where

n ¼ hv2i. &

5. Appendix

Let X be an Abelian (or a K3) surface. In this appendix, we give a sufficient condi-

tion on H to be general with respect to v ¼ r þ x þ aRX.

LEMMA 5.1. Assume that there is an exact sequence

0 ! E1 ! E ! E2 ! 0 ð5:1Þ

such that E1 and E2 are m-semi-stable sheaves with vðE1Þ ¼ r1 þ x1 þ a1RX and vðE2Þ ¼

r2 þ x2 þ a2RX respectively. Then

hv2i

r1r2
5 �

��
x1
r1

�
x2
r2

�2�
�

2r2

r1r2
E; ð5:2Þ

where E ¼ 0 or 1 according as X is an Abelian surface or a K3 surface.

Proof. We note that hv2i i=r
2
i ¼ ððxi=riÞ

2
Þ � 2ai=ri, i ¼ 1; 2. Then we see that
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hv2i

r1r2
¼

hv21i þ hv22i þ 2hv1; v2i

r1r2

¼
1

r1r2
hv21i þ

1

r1r2
hv22i þ 2

x1
r1

;
x2
r2

� �
� 2

a1
r1

þ
a2
r2

� �
¼ �

��
x1
r1

�
x2
r2

�2�
þ

r1 þ r2

r21r2
hv21i þ

r1 þ r2

r1r
2
2

hv22i

� �
: ð5:3Þ

By the Bogomolov inequality, we have hv2i i5 �2r2i E. Hence our claim holds. &

LEMMA 5.2. If

minf�ðD2ÞjD2NSðX Þ; ðD;H Þ ¼ 0;D 6¼ 0g> r2ðhv2i þ 2r2Þ=4; ð5:4Þ

then H is a general polarization with respect to v.

Proof. If H is not general with respect to v, then there is an exact sequence

0 ! E1 ! E ! E2 ! 0 ð5:5Þ

such that (i) E1 and E2 are m-semi-stable sheaves with vðE1Þ ¼ r1 þ x1 þ a1RX and

vðE2Þ ¼ r2 þ x2 þ a2RX respectively (ii) r2x1 � r1x2 6¼ 0 and (iii) ðr2x1 � r1x2;H Þ ¼ 0.

Since r1r2 4 r2=4, (5.2) implies that �ððr2x1 � r1x2Þ
2
Þ4 r2ðhv2i þ 2r2Þ=4, which is a

contradiction. &
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