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Contributions towards a conjecture of Erdős on

perfect powers in arithmetic progression

N. Saradha and T. N. Shorey

Abstract

Let n, d, k � 2, b, y and � � 3 be positive integers with the greatest prime factor of b not
exceeding k. It is proved that the equation n(n+d) · · · (n+(k−1)d) = by� has no solution
if d exceeds d1, where d1 equals 30 if � = 3; 950 if � = 4; 5× 104 if � = 5 or 6; 108 if � = 7,
8, 9 or 10; 1015 if � � 11. This confirms a conjecture of Erdős on the above equation for
a large number of values of d.

1. Introduction

For an integer ν > 1, we define P (ν) to be the greatest prime factor of ν and we write P (1) = 1.
In this paper, we consider the equation

∆ = ∆(n, d, k) = n(n + d) · · · (n + (k − 1)d) = by� (1.1)

in positive integers n, d, k, b, y and �, where d � 1, k � 2, � � 2, P (b) � k, gcd(n, d) = 1 and b is
�-free. We observe that (1.1) has infinitely many solutions if k = 2. Therefore, we always suppose
that k � 3. Furthermore, Erdős and Selfridge [ES75] have completely solved (1.1) with d = 1 for
P (b) < k, Saradha [Sar97] has completely solved (1.1) for P (b) = k with k � 4 and Győry [Győ98]
has completely solved (1.1) for P (b) = k with k = 3, � > 2. In the case k = 3, � = 2 the only solutions
of (1.1) are given by n = 1, 2, 48 as a consequence of some old Diophantine results, see [Sar98] for
a history.

From now onwards we assume that d > 1. Then we always suppose that (n, d, k) �= (2, 7, 3) so
that P (∆) > k by a result of Shorey and Tijdeman [ST90]. Erdős conjectured that (1.1) implies
that k is bounded by an absolute constant. Shorey [Sho00] showed that the above conjecture for
� � 4 is a consequence of the abc-conjecture. A stronger conjecture states the following.

Conjecture 1. Equation (1.1) implies that (k, �) = (3, 3), (4, 2) or (3, 2).

On the other hand, it is known that (1.1) has infinitely many solutions if (k, �) = (3, 3), (4, 2)
or (3, 2), see Tijdeman [Tij89]. It was conjectured by Tijdeman that the number of triples (n, d, k)
satisfying (1.1) with k > 2, � > 1, k + � > 6 is finite. Let b = 1. Then Darmon and Granville [DG95]
conjectured that (1.1) implies that (k, �) = (3, 2), in which case we get parametric solutions given
by (n, d) ∈ {((t2 +2tu−u2)2, 4tu(u2− t2)), (2(t2−u2)2, 6t2u2− t4−u4)} with gcd(t, u) = 1 and t+u
odd. The cases (k, �) = (3, 3), (4, 2) are impossible by an old result of Euler, see [DG95]. When d is
fixed, Marszalek [Mar85] confirmed Erdős conjecture. When � = 2, it has been proved that d � 23,
d � 31 and d � 105 in Saradha [Sar98], Filakovszky and Hajdu [FH01] and Saradha and Shorey
[SS03], respectively. From now onwards we assume that � � 3. Saradha [Sar97] showed that d � 7
unless d = 5, k = 3. Furthermore, Saradha and Shorey [SS01] showed that (1.1) with k � 4 does

Received 15 July 2003, accepted in final form 14 April 2004, published online 21 April 2005.
2000 Mathematics Subject Classification Primary 11D61.
Keywords: arithmetic progressions, Diophantine equations, elliptic equations.
This journal is c© Foundation Compositio Mathematica 2005.

https://doi.org/10.1112/S0010437X04001125 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X04001125


N. Saradha and T. N. Shorey

not hold if d is of the form 2a3b5c, where a, b, c are non-negative integers. Let d1 be given by

d1 =




30 if � = 3;
950 if � = 4;
5 × 104 if � = 5, 6;
108 if � = 7, 8, 9, 10;
1015 if � � 11.

(1.2)

We prove the following theorem.

Theorem 1. Assume (1.1) and k � 4 if � > 3. Then d > d1.

We have not been able to prove Theorem 1 for k = 3 whenever � > 3. From now onwards, we
suppose that k � 4 whenever � > 3. Theorem 1 confirms Conjecture 1 for a large number of values
of d. For a survey of results on (1.1), we refer the reader to Shorey [Sho00, Sho02a, Sho02b]. We now
give a plan of the proof of Theorem 1. We assume (1.1) with d � d1. Furthermore, by Lemma 1,
there is no loss of generality in assuming that the following hypothesis holds.

Hypothesis A. We have d � d1 and either k is prime or k = 4 if � > 3.

The proof depends on giving a good lower bound for

δ =
n + (k − 1)d

kl+1
, (1.3)

say δ > δ1. We achieve this by means of an iterative procedure in Lemma 3. On the other hand, we
obtain an upper bound

δ < δ2 (1.4)
by Lemmas 6 and 12. Furthermore, we compare the lower and upper bounds of δ in Lemma 13 to
bound � and k. Let � and k be fixed. By (1.3) and (1.4), we have

δ1k
�+1 < n + (k − 1)d < δ2k

�+1. (1.5)

Let � > 3. Then we use Algorithm 1 (see § 8) to see that (1.1) is not satisfied for all values of n
given by (1.5). For � = 3, we use Algorithm 2 (see § 10). The iterative procedure referred above has
its origin in [SS01, Lemma 3] and [SS03, Lemma 6]. Algorithm 2 is a refinement and an extension
of the algorithm given in [SS01]. Algorithm 1 is a new contribution in this paper. Algorithms 1
and 2 provide a method for solving (1.1) whenever the variables n, d, k, � are bounded. The bound
d1 we have given in Theorem 1 is not optimal. Increasing the value of d1 would result in heavier
computation. All of our computations are carried out with MATHEMATICA and we use SIMATH
for solving certain elliptic equations in integers.

2. Notation and preliminaries

Let q1 < q2 < · · · be the sequence of all primes coprime to d and let p1 < p2 < · · · be the sequence
of all primes. We write πd(x) for the number of primes �x and coprime to d, π(x) for the number
of primes �x. We use the estimates

qi � pi � i log i for i � 1; πd(x) � π(x) � x

log x
+

1.5x
log2x

for x � 1; π(x) >
x

log x
for x > 17.

(2.1)
See [RS62, p. 69] for the above inequalities. For an integer x > 0, we write qi(x) = qπd(x)+i with
i � 1. We set β = β(d, k) =

∏
p|d p−ordp(k−1)! and

β1 = β1(d, k) = (k − 1)!β. (2.2)
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For s > 0 and h � 0, we define

β2(s, h) = β2(d, k, �, s, h) = k − (k − 1) log(k − 1) + log β

� log(k − 1) + log s − log 2
− πd(k) − h, (2.3)

β3(s, h) = max (1, [β2(s, h)] + 1), (2.4)

β4(s, h) = β4(d, k, �, s, h) = k − (k − 1) log(k − 1) + log β

(� + 1) log(k − 1) + log s − log 2
− πd(k) − h (2.5)

and
β5(s, h) = max(1, [β4(s, h)] + 1). (2.6)

Since the left-hand side of (1.1) is divisible by a prime exceeding k and P (b) � k, we have n+(k−1)
d > k�. For k � 4, we see from [SS01, Theorem 4′] and [SST02, Theorem 1] that ∆ is divisible by
at least χ0 = [15π(k)] + 2 primes exceeding k, except when (n, d, k) equals one of the tuples (1, 5, 4),
(2, 7, 4), (3, 5, 4), (1, 2, 5), (2, 7, 5), (4, 7, 5), (4, 23, 5). We check that these values of (n, d, k) do not
satisfy (1.1). Thus, for k � 4 we conclude that ∆ is always divisible by at least χ0 primes > k.
Therefore, we see from (1.1) that

n + (k − 1)d � q�
χ0

(k) for k � 4. (2.7)

Hence, from (1.3), we get δ > 1/k. Furthermore, we derive from (1.1) that

n + id = aix
�
i , P (ai) � k, ai is �th power free for 0 � i < k (2.8)

and

n + id = AiX
�
i , P (Ai) � k, gcd

(∏
p,Xi

)
= 1 for 0 � i < k (2.9)

where the product
∏

p is taken over all primes p with p � k.
We say that an integer N � 1 has Property P0 if all the prime factors of N which are greater

than k divide it to an order ≡ 0 (mod �). From (2.8) and (2.9), we see that every term of ∆ has
Property P0. Suppose that N1 and N2 are integers satisfying 0 < N1 < N2. Let r � 1 and t be
integers. We set

Mr,t = Mr,t(N1, N2) = N1

(
1 − t

r

)
+ N2

t

r
. (2.10)

We say that the triple (N1, N2, r) has Property P1 if (i) or (ii) given below holds according as r > 1
or r = 1, respectively.

(i) Let r > 1. Then (N2−N1)/r is an integer and Mr,t has Property P0 for every t with 0 � t � r.
(ii) Let r = 1. Then either M1,t with 0 � t � [k2 ] has Property P0 or M1,t with −[k2 ] � t � 0 has

Property P0.

Suppose that N1 = n + id, N2 = n + jd with 0 � i < j < k, then (N2 − N1)/(j − i) = d and
Mj−i,t with 0 � t � j − i is a term of the product ∆ and hence has Property P0. Therefore (i) is
satisfied. Similarly (ii) is also satisfied. Thus, the triple (N1, N2, j− i) has Property P1. We say that
the triple (N1, N2, r) has Property P2 if (N2 − N1)/r is an integer and is divisible by a prime ≡ 1
(mod �′) for every odd prime �′ dividing �. By Lemma 9, we see that if k � 4 and N1 = n + id,
N2 = n + jd with 0 � i < j < k, then the triple (N1, N2, j − i) has Property P2.

Let S = {A0, . . . , Ak−1} and T = {a0, . . . , ak−1}. Furthermore, let I = {µ | Xµ �= 1 with
0 � µ < k} and let S1 be the set of Aµ ∈ S with µ ∈ I. As already mentioned, we assume that
|I| � 1. Suppose that m1 � 1 and m2 � 0 are integers such that m1 + m2 � π(k). Now we state
some counting functions, which were first introduced in Erdős and Selfridge [ES75, pp. 297–299]
for the case of consecutive integers. Let H(d, k,m1,m2) denote the number of distinct ai in T that
are composed only of q1, . . . , qm1 and divisible by at most one of the primes qm1+1, . . . , qm1+m2
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that divides at most to the first power. In particular, when m2 = 0, we see that H(d, k,m1, 0)
denotes the number of distinct ai in T that are composed only of q1, . . . , qm1 . It can be seen that

H(d, k,m1,m2) � |T | −
π(k)∑

i=m1+m2+1

([
k

qi

]
+ ε′i

)
−

∑
m1+1�j�h�m1+m2

([
k

qjqh

]
+ ε′jh

)
(2.11)

where ε′i = 0 if qi | k or qi > k, ε′i = 1 otherwise and ε′jh = 1 if qjqh � k and qj, qh � k, ε′jh = 0
otherwise. We define εi = 0 if pi | k and εi = 1 otherwise; εjh = 0 if pjph|k and εjh = 1 otherwise.
Then we find that [

k

qi

]
+ ε′i �

[
k

pi

]
+ εi and

[
k

qjqh

]
+ ε′jh �

[
k

pjph

]
+ εjh.

For showing the first inequality, we may assume that ε′i = 1, εi = 0 implying that qi > pi, pi|k and
the assertion follows. The proof for the second inequality is similar. Hence we get from (2.11) that

H(d, k,m1,m2) � H ′
0(k,m1,m2) (2.12)

where

H ′
0(k,m1,m2) = |T | −

π(k)∑
i=m1+m2+1

([
k

pi

]
+ εi

)
−

∑
m1+1�j�h�m1+m2

([
k

pjph

]
+ εjh

)
. (2.13)

In particular, we have

H(d, k,m1, 0) � H ′
0(k,m1, 0) = |T | −

π(k)∑
i=m1+1

([
k

pi

]
+ εi

)
. (2.14)

We use the above inequality for k � 2957. If k > 2957, we use H(d, k,m1,m2) and H ′
0(k,m1,m2)

with m2 > 0. When m2 > 0, we take m1 and m2 such that p1 < · · · < pm1 � k3/10 < pm1+1 < · · · <
pm1+m2 �

√
k. From (2.13) we then derive that

H ′
0(k,m1,m2) � H ′′

0 (k,m1,m2) (2.15)

where

H ′′
0 (k,m1,m2) := |T |−

∑
√

k<p�k

([
k

p

]
+ 1

)
− k

2

( m2∑
i=1

1
p2

m1+i

+
( m2∑

i=1

1
pm1+i

)2)
−

(
m2 + 1

2

)
. (2.16)

By combining (2.12) and (2.15), we get

H(d, k,m1,m2) � H ′′
0 (k,m1,m2). (2.17)

Let |T | = k, i.e. all ai are distinct. In Table 1, we display a lower bound H1(m1) for H ′
0(k,m1, 0)

given by (2.14) when k varies over an interval and m1 is suitably chosen. In Table 2, we display
a lower bound H2(m1,m2) for H ′′

0 (k,m1,m2) given by (2.16) when k varies over an interval and
m1,m2 are suitably chosen.

By Table 1 and (2.14), we have H(d, k,m1, 0) � 4 for k = 23, 24. We sharpen this as H(d, k,m1, 0)
� 5 for k = 23, 24. Let k = 24. Suppose that H(d, k,m1, 0) = 4. This means that the number
of ai that the primes 23, 19, 17, 13, 11, 7, 5 divide is given by 2, 2, 2, 2, 3, 4, 5, respectively, and no
two primes divide the same ai. This implies that 23 divides a0, a23. Then it is impossible that
11 divides three different ai. The argument for k = 23 is similar. For m1 > 0 and αi > 0 with
1 � i � m1, we also need the following counting function. Let G(d, k,m1, α1, . . . , αm1) denote the
number of Aj in S that are composed of q1, . . . , qm1 and ordqi(Aj) � αi − 1 for 1 � i � m1.
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Table 1.

m1 Range of k H1 (m1) m1 Range of k H1 (m1)

2 4 � k � 10 4 5 286 � k � 600 27
2 11 � k � 22 5 6 601 � k � 1097 45
2 23, 24 4 7 1098 � k � 1669 77
3 25 � k � 90 10 8 1670 � k � 2478 132
4 91 � k � 285 16 9 2479 � k � 2957 227

Table 2.

m1 m2 Range of k H2 (m1, m2) m1 m2 Range of k H2 (m1, m2)

4 12 2958–2960 271 6 15 5329–6240 832
5 11 2961–3480 420 6 16 6241–6888 917
5 12 3481–3720 465 6 17 6889–7920 986
5 13 3721–4488 494 6 18 7921–9408 1071
5 14 4489–5040 545 6 19 9409–10200 1171
5 15 5041–5165 582 6 20 10 201–10608 1237
6 14 5166–5328 792 6 21 10 609–11379 1285

Then G(d, k,m1, α1, . . . , αm1) � G0(k,m1, α1, . . . , αm1) where

G0 = G0(k,m1, α1, . . . , αm1) = |S| −
m1∑
i=1

([
k

pαi
i

]
+ ε′′i

)
−

π(k)∑
i=m1+1

([
k

pi

]
+ εi

)
(2.18)

with εi as defined earlier and ε′′i = 0 if pαi
i | k, ε′′i = 1 otherwise.

We conclude this section with a lemma which is useful for computation.

Lemma 1. Suppose that k1 and k2 are two consecutive primes and let k′ be an integer with k1 <
k′ < k2. Suppose that (1.1) does not hold for k = k1. Then (1.1) does not hold for k = k′.

Proof. Suppose that (1.1) holds for k = k′. Since k1 < k′ < k2 and k1, k2 are consecutive primes,
P (b) � k′ implies that P (b) � k1. Let k′ = k1+h. By deleting the terms n+(k′−1)d, . . . , n+(k′−h)d,
we see from (2.8) that

n(n + d) · · · (n + (k1 − 1)d) = b′y�
1, P (b′) � k1

for some positive integers b′ and y1. Thus (1.1) holds with k = k1, a contradiction.

For the proof of Theorem 1, we see from Lemma 1 that it suffices to show that (1.1) does not
hold under Hypothesis A.

3. An iterative procedure to improve the lower bound for n + (k − 1)d

In this section, we give an iterative procedure in Lemma 3 by which we improve the lower bound
for n+(k−1)d given by (2.7) and [SS01, Lemma 3]. This procedure is an analogue of that given for
the case � = 2 in [SS03]. We first give a lemma in which we estimate the number of elements of I.

Lemma 2. Let k � 4. Then (1.1) implies that

|I| > k − (k − 1) log(k − 1) + log β

log d + log(k − 1)
− πd(k) − 1 (3.1)
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and

|I| > k − (k − 1) log(k − 1) + log β

log n0
− πd(k) − φ (3.2)

where n0 = max(n, 3), φ = 1 if n = 1, 2 and φ = 0 if n > 2.

The proof is similar to [SS03, Lemma 3]. We require πd(k) instead of πd(k−1) in [SS03, Lemma 3]
since we now have P (Ai) � k. In the next lemma, we describe the iterative procedure.

Lemma 3. Assume (1.1) such that all Aj given by (2.9) are distinct. Then the following assertions
hold.

(i) We have

n + (k − 1)d � max(β3(1, η1)p�
π(k)+1, p

�
π(k)+β3(1,η1))

where η1 = 0 if d < k�−1/2 and η1 = 1 otherwise.

(ii) Let n + (k − 1)d � G1k
�+1 with G1 � 1/k. For i � 2, define

gik
�+1 � β5(Gi−1, ηi)p�

π(k)+1, Gi = max(Gi−1, gi)

where ηi = 0 if d < Gi−1k
�/2 and ηi = 1 otherwise. Then n + (k − 1)d � Gik

�+1.

(iii) Let i0 be fixed with n + (k − 1)d � Gi0k
�+1 and ηi0+1 = η′1. Let

h1 =
β5(Gi0 , ηi0+1)

k
, h′′ < h1, v1 �

([h′′k] + 1)p�
h1k−[h′′k]+π(k)

k�+1
.

Then n + (k − 1)d � V1k
�+1 where V1 = max(Gi0 , v1).

(iv) For i � 2, we define

vi �
([h′′k] + 1)p�

hik−[h′′k]+π(k)

k�+1
, Vi = max(Vi−1, vi)

where

hi =
β5(Vi−1, η

′
i)

k
with η′i =

{
0 if d < Vi−1k

�/2
1 otherwise.

Then n + (k − 1)d � Vik
�+1.

Proof. (i) Suppose that d � k�−1/2. Then we use (3.1) to estimate |I|. If d < k�−1/2, then we
use (2.7) to find n > k�/2, which we use in (3.2) to estimate |I|. Thus we get |I| > β2(1, η1),
which, together with |I| � 1, implies that |I| � β3(1, η1). We arrange all the Xj with j ∈ I
in increasing order. Since these Xj are all distinct, we have n + (k − 1)d � p�

π(k)+β3(1,η1). Since
Aj are distinct, we have |S1| = |I| � β3(1, η1). Now we arrange these Aj in S1 in increasing
order and observe that each of the corresponding Xj has a prime factor greater than k. This gives
n + (k − 1)d � β3(1, η1)p�

π(k)+1, which proves (i).

(ii) Let n + (k − 1)d � G1k
�+1. Note that n + (k − 1)d � G1k

�+1 with G1 = 1/k is satisfied
by (2.7). We prove the assertion for i = 2. We use (3.1) if d � G1k

�/2 and if otherwise, we
see that n � G1k

�+1/2 and we use (3.2) to estimate |I|. Hence |S1| = |I| � β5(G1, η2), which
implies that n + (k − 1)d � g2k

�+1. Thus n + (k − 1)d � G2k
�+1. The assertion for i � 3 follows

similarly.
(iii) Let n + (k − 1)d � Gi0k

�+1. We proceed as in (ii) to get |S1| � β5(Gi0 , ηi0+1). Thus there
are at least h1k distinct Aj with j ∈ I. We arrange them in increasing order and remove the first
[h′′k] of these Aj . Thus we are left with h1k − [h′′k] � 1 of the Aj each of which exceeds [h′′k] + 1
and the largest Xj is divisible by a prime greater than or equal to ph1k−[h′′k]+π(k). Now the assertion
follows immediately.
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(iv) We have n+(k−1)d � V1k
�+1 by (iii). Hence we get |S1| � β5(V1, η

′
2). Thus there are at least

h2k distinct Aj with j ∈ I. Furthermore, β5(s, h) is a non-decreasing function of s. Hence h2 � h1.
Now we proceed as in (iii) to get n + (k − 1)d � ([h′′k] + 1)p�

h2k−[h′′k]+π(k). Hence n + (k − 1)d �
max(V1, v2)k�+1. This proves the assertion for i = 2. The assertion for i � 3 follows similarly.

We illustrate Lemma 3 by means of an example. In this example and at all places in the paper
where we compute δ, we take h′′ = 0.16 and we iterate four times. The value of h′′ is not optimal
for every k. Furthermore, in this example, we apply Lemma 3 with d � k�−1/2 so that ηi = η′i = 0
for 1 � i � 4.

Example. We show that

δ � 6.0048k�+1 for k � 173 and � � 3. (3.3)

We observe that the functions β3 and β5 given by (2.4) and (2.6) are non-decreasing functions of
� and k. Hence, while evaluating these functions in this example, it is enough to evaluate them at
k = 173 and � = 3. We first take k = 173. By using exact values of π(k), we find that β3(1, 0) � 73.
Now using exact values for pi, by Lemma 3(i) we get n + (k − 1)d � max(73 × 179�, 617�) �
0.4674 k�+1. In Lemma 3(ii), we take G1 = 0.4674. We compute g2 = 0.5570. Thus G2 = 0.5570.
Similarly we find G3 = G4 = 0.5634. In Lemma 3(iii), we take i0 = 4. We get h1 > 0.5 > 0.16 = h′′.
Hence v1 = 5.1160. Thus V1 = 5.1160. In Lemma 3(iv), we compute v2 = 5.8194. Hence V2 = 5.8194.
Similarly we find V3 = V4 = 6.0048. Thus we obtain (3.3).

Now let k � 3000. In Lemma 3 we use the approximate values for pi and π(k) given by (2.1).
We also use pπ(k)+1 > k. Thus we find by Lemma 3(i) that n + (k − 1)d � ρ1k

�+1 where

ρ1 = 1 − log(k − 1)
� log(k − 1) − log 2

− 1
log k

− 1.5
log2 k

− 1
k
.

We observe that ρ1 increases as k and � increase. We compute ρ1 at k = 3000 and � = 3 to get
n+(k−1)d � 0.5081k�+1. Thus n+(k−1)d � 0.5081k�+1 for all k � 3000 and � � 3. Next we apply
the iterative procedure of Lemma 3(ii). We take G1 = ρ1. Then for i � 2, we get n+(k−1)d � ρik

�+1

where

ρi = 1 − log(k − 1)
(� + 1) log(k − 1) + log ρi−1 − log 2

− 1
log k

− 1.5
log2 k

− 1
k

.

We observe that ρi is an increasing function of k and �. We compute ρ2 = 0.5901, ρ3 = ρ4 = 0.5914.
Thus n+(k−1)d � 0.5914k�+1 for all k � 3000 and � � 3. Finally, we apply the iterative procedure
of Lemma 3(iii), (iv). We take G4 = 0.5914 and h′′ = 0.16. We set ρ′0 = 0.5914. Then for i � 1 we
get n + (k − 1)d � ρ′ik

�+1 where

ρ′i = h′′(h′
i − h′′)�log�

(
h′

ik − h′′k +
k

log k

)
with

h′
i = 1 − log(k − 1)

(� + 1) log(k − 1) + log ρ′i−1 − log 2
− 1

log k
− 1.5

log2 k
− 1

k
.

We observe that ρ′i is an increasing function of � and k � 200 by noticing that h′
i > ρ1 and

(h′
i−h′′)log(h′

ik−h′′k+k/log k) > 1 for k � 200. We compute h′
1 = 0.5914, ρ′1 = 5.2507; h′

2 = 0.6086,
ρ′2 = 5.9770; h′

3 = 0.609 63, ρ′3 = 6.0191, h′
4 = 0.609 68, ρ′4 = 6.0213. Thus we obtain (3.3) for

k � 3000, l � 3. Now for k with 173 < k < 3000, we apply Lemma 3 with exact values of pi and
π(k) as in the case k = 173 to obtain (3.3). This completes the proof of (3.3).

It is clear from the example above that the lower bound given by Lemma 3 for δ is a non-
decreasing function of � and k. We use this fact without mentioning it in the following.
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4. Distinctness of Aj

A pre-requisite for the iterative procedure in Lemma 3 is that all Aj are distinct. In this section,
we show that when Aj are not all distinct, then we can bound from above n and k in terms of �
and d. These bounds are decreasing functions of � and 1/d (see (4.1)). Using these bounds we show
in Corollary 1 that Aj are distinct whenever (1.1) with Hypothesis A holds.

Lemma 4. Suppose that (1.1) holds with k � 4. Then either Aj with 0 � j < k are distinct or

k �
((

d

2�

)�/(�−1)

+
d

k1/(�−1)

)(�−1)/(�2−2�)

and n <

(
kd

2�

)�/(�−1)

. (4.1)

Proof. Suppose that there exist Ai, Aj with 0 � j < i < k such that

Ai = Aj . (4.2)

Then we see from (2.9) that Xi � Xj + 2 and

(k − 1)d � (i − j)d = (n + id) − (n + jd) = AiX
�
i − AjX

�
j � 2�AjX

�−1
j . (4.3)

Thus it follows that kd > 2�(AjX
�
j )

(�−1)/� � 2�n(�−1)/�. This gives the bound for n in (4.1).
Furthermore, we use (2.7) to get

k� < q�
χ0

(k) � n + (k − 1)d <

(
kd

2�

)�/(�−1)

+ kd, (4.4)

which gives the estimate for k in (4.1).

As a consequence of Lemma 4, we get the following.

Lemma 5. Assume (1.1) with Hypothesis A and k � 4. Suppose that Aj are all not distinct. Then{
� = 4, k = 4; � = 5, k � 7; � = 6, k = 4; � = 7, k � 11; � = 8, k � 7; � = 9, 10, k = 4;
� = 11, k � 19; � = 12, k � 13; � = 13, 14, k � 7; � = 15, k � 5; � = 16, 17, 18, k = 4.

(4.5)

Proof. Assume (1.1) with Hypothesis A and k � 4. Suppose that Aj are not all distinct. Then (4.1)
and (4.4) are valid. By (4.1), we see that k � 5 for � � 19, which we sharpen by (4.4) to k < 4
for � � 19. Therefore � � 18. Let � = 4. Then d � d1 = 950. We use (4.1) to get k � 13. Now for
5 � k � 13, we find that (4.4) is not valid. Thus k = 4. The bound for k in (4.5) for all other values
of � � 18 is found in a similar manner.

Now we proceed to exclude all of the values of � and k in (4.5). We show the following.

Corollary 1. Assume (1.1) with Hypothesis A and k � 4. Then Aj are distinct.

Proof. Assume (1.1) with Hypothesis A and k � 4. Suppose that Aj are not all distinct.
Then (4.1)–(4.5) are valid. We fix k, � where k, � are given by (4.5). From (4.4), we see that
n + (k − 1)d < δ3 where δ3 is a bounded positive number. Let 1 � r < k. We take U1(r) to
be the set of divisors of r. Let U2 be the set of all positive integers not exceeding δ

1/�
3 and having

the least prime factor greater than k. We always include 1 in U2. We form U3(r) to be the set of
pairs (hX�, hY �) with h ∈ U1(r) and X,Y in U2 with X < Y and gcd(X,Y ) = 1. Let U4 be the set
of triples (hX�, hY �, r) with (hX�, hY �) ∈ U3(r), 1 � r < k such that the triple (hX�, hY �, r) has
Property P1. From (4.2)–(4.4), we find that there exist 0 � j < i < k such that Ai = Aj , Aj |(i− j)
and Xi,Xj do not exceed δ

1/�
3 . Also gcd(Xi,Xj) = 1. Thus (AjX

�
j , AjX

�
i ) ∈ U3(r) with r = i − j.
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Furthermore, d = Aj(X�
i − X�

j )/(i − j), which, by (2.9) and (2.10), implies that

Mr,t(AjX
�
j , AjX

�
i ) = AjX

�
j

(
1 − t

r

)
+ AjX

�
i

t

r
= AjX

�
j + td = n + (j + t)d.

If 0 � t � r, we see that the left-hand side is a term of the product ∆ and hence has Property P0.
Suppose that r = 1. Then we take 0 � t � [k2 ] if 0 � j � [k2 ]− 1 and −[k2 ] � t � 0 if [k2 ] � j � k− 1.
Then j+t � k−1 in the former case and j+t � 0 in the latter case, implying that M1,t(AjX

�
j , AjX

�
i )

is a term of the product ∆ and therefore has Property P0. Thus the triple (AjX
�
j , AjX

�
i , r) has

Property P1. Hence (AjX
�
j , AjX

�
i , r) ∈ U4. On the other hand, given k, � as in (4.5), we check that

for any pair (hX�, hY �) ∈ U3(r) with 1 < r < k, Property P0 does not hold for Mr,1(hX�, hY �).
When r = 1, we check that M1,1(hX�, hY �) as well as M1,−1(hX�, hY �) do not have Property P0.
Thus, no triple (hX�, hY �, r) with (hX�, hY �) ∈ U3(r), 1 � r < k has Property P1. Hence U4 = ∅.
This yields a contradiction.

We illustrate the above procedure with an example. Let � = 11, k = 19. Then we have d � 1015

and n + (k − 1)d � 4 · 6 × 1016 by (4.4). We form the set U2 = {1, 23, 29, 31}. For each 1 � r < 19,
we construct U3(r). For instance, we have

U3(17) = {(1, 2311), (1, 2911), (1, 3111), (2311, 2911), (2311, 3111), (2911, 3111), (17, 17 · 2311)}.
We check that none of the triples (hX�, hY �, r) such that (hX�, hY �) ∈ U3(r) with h|r for every
1 � r < 19 has Property P1. Thus U4 = ∅, a contradiction. All other possibilities of � and k in (4.5)
are excluded similarly.

5. Upper bound for n + (k − 1)d when � is even

We use the method of Erdős [Erd39] to derive an upper bound for n + (k − 1)d. We also refer
thereafter to [SS03] for details.

Lemma 6. Suppose that (1.1) is satisfied with � � 4 even. Let h0 = h0(k) be a positive integer such
that h0 = 1 if 4 � k � 24; h0 = 2 if 25 � k � 74; h0 = 4 if 75 � k � 159; h0 = 5 if k � 160.
Then n < k2d2/(4h0).

Proof. Since � is even we may write

n + id = biz
2
i for 0 � i < k (5.1)

where bi are square free with P (bi) � k. Let R be the set of bi. Suppose that n � k2d2/(4h0).
First we show that |R| � min(k − 2h0 + 3, k). We say that an element bj of R has multiplicity
rj if bj = bi for rj values of i. In particular, if bj has multiplicity 1, then it means that bj occurs
only once and bj is repeated only when it has multiplicity greater than 1. Suppose that |R| �
min(k − 2h0 + 2, k − 1). Then there are at least max(2, 2h0 − 1) of the bi counted with multiplicity
that are repeated. Thus there exist bi, bj such that bi = bj with 0 � i, j < k, i �= j. By (5.1) we
assume without loss of generality that zi > zj and

kd > (i − j)d � 2bj(zi − zj)zj � 2b1/2
j (zi − zj)(bjz

2
j )1/2 � 2b1/2

j (zi − zj)n1/2.

Hence n < k2d2/(4bj(zi − zj)2). Thus bj(zi − zj)2 < h0, implying that h0 > 1, bj = zi − zj = 1 if
h0 = 2, bj ∈ {1, 2, 3}, zi − zj = 1 if h0 = 4 and bj = 1, zi − zj = 1, 2; bj ∈ {2, 3}, zi − zj = 1
if h0 = 5, by noting that bj are square free. Therefore, there are at most 2h0 − 2 of the bj counted
with multiplicity that are repeated. This is a contradiction since max(2, 2h0 − 1) = 2h0 − 1 by
h0 > 1. Thus we have |R| � k − 2h0 + 3.
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Since bi are square free, we follow the argument of [SS03, (6.7), (6.9)] for k− 2h0 +3 � 63 to get

(1.5)k−2h0+3(k − 2h0 + 3)! �
k−2h0+4∏

i=0

bi � 52k8(k − 1)!(1.0731)k .

This implies that k � 260. Now we use the counting argument as in [SS03]. We explain with an
example. Let k = 260. Then h0 = 5 and |R| � k−7. We find that the number of distinct bi composed
of 2, 3, 5, 7, 11 is at least 37. On the other hand, since bi are square free, this number is at most 32.
This is a contradiction. Thus k �= 260. We exclude all k with 160 � k < 260 by the above argument.
When 75 � k � 159, we have |R| � k − 5 and we see that the number of distinct bi composed of 2,
3, 5, 7 exceed 16, which is a contradiction. Next, when 25 � k � 74, we have |R| � k−1 and we find
that the number of distinct bi composed of 2, 3, 5 exceed eight giving a contradiction. Finally, when
4 � k � 24, all bj are distinct and by counting the bi composed of 2, 3, we get k � 8. Let k = 8.
Then we see that b2, b3, b4, b5 are distinct and they are composed of 2 and 3. Therefore, these four bi

must take all the values of {1, 2, 3, 6}. Hence, the product of the corresponding terms in ∆ must be
a square. A result of Euler states that a product of four terms in an arithmetic progression is never
a square. Dickson [Dic52, p. 635] gave a historical reference to Euler’s result. We refer to [MS03]
for a proof. Thus k �= 8. Similarly, we see that k �= 4, 6. Let k = 7. We have either 5 dividing b0 and
b5 or 5 dividing b1 and b6. Suppose that 5 divides b0 and b5. Then 7 divides one of b1, b2, b3, b4 by
the result of Euler stated above. Suppose that 7 divides b2 or b3. Since ( b1

5 ) = ( b4
5 ) = ( b6

5 ), we find
that b1, b4, b6 take values from {1, 6} or {2, 3}, which is not possible since bi are distinct. Thus 7
divides b1 or b4. If 7 divides b1, then ( b2

7 ) = ( b3
7 ) and ( b4

7 ) = ( b6
7 ) implying that either b2, b3 ∈ {3, 6}

or b4, b6 ∈ {3, 6}, which is not possible. Likewise 7 dividing b4 is excluded. The argument for the
case 5 dividing b1, b6 is similar. Thus k �= 7. Let k = 5. Then 5 divides one of b1, b2, b3. Suppose that
5 | b2. Then b1, b3 ∈ {1, 6}, b0, b4 ∈ {2, 3} or b1, b3 ∈ {2, 3}, b0, b4 ∈ {1, 6}. This is not possible.
Thus 5 � b2. Let 5 | b1. Then (b0, b2, b3, b4) = (6, 1, 3, 2). Hence n ≡ 6 (mod 8) and n + 3d ≡ 3
(mod 8), which imply that d ≡ 7 (mod 8). Therefore n + 2d ≡ 4 (mod 8). When 5 | b3, we get
(b0, b1, b2, b4) = (2, 3, 1, 6) and n + 2d ≡ 4 (mod 8). We consider the case (b0, b2, b3, b4) = (6, 1, 3, 2).
We have 3 � z2. Suppose that 3 | z0z3. Then we see from n+2(n+3d) = 3(n+2d) that 2z2

0 +2z2
3 = z2

2 ,
which is impossible. Hence 3 � z0z3. Then we see from (2.8) that (a0, a2, a3, a4) = (6, 4, 3, 2). Thus

nd + 6d2 = (n + 2d)(n + 3d) − n(n + 4d) = 12((x2x3)� − (x0x4)�),

which implies that x2x3 > x0x4. Hence

nd + 6d2 > 12�(x0x4)�−1 = 121/��(12x�
0x

�
4)

(�−1)/� > 121/��n2(�−1)/�.

Thus

n(�−2)/� <
1

121/��

(
d +

6d2

n

)
<

1
121/��

(d + 1)

since n � 25d2/4. Thus n < d�/(�−2) � d2, a contradiction. The argument for the case (b0, b2, b3, b4) =
(2, 3, 1, 6) is similar.

6. Upper bound for n + (k − 1)d when � is odd

We assume in this section that � is odd and we write � = �e1
1 · · · �er

r where �i are distinct primes
and ei are positive integers. We find an upper bound for n + (k − 1)d in Lemma 12 below, which is
based on an extension of a result of Erdős and Selfridge on the distinctness of ai and their products.
See [ES75, Lemma 1] and [SS01, Lemmas 5 and 6]. We use the following well-known result on
cyclotomic polynomials in this extension (see [Ste75]).
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Lemma 7. For any integer m > 2 and relatively prime integers X,Y with X > Y > 0, let φm(X,Y )
denote the mth cyclotomic polynomial. Then the prime divisors of φm(X,Y ) are congruent to 1
(mod m) except possibly P (m) dividing it at most to the first power.

As a consequence of Lemma 7, we get the following.

Lemma 8. Suppose that Z1 > Z2 > 0 are integers with gcd(Z1, Z2) = 1 and

Φ�(Z1, Z2) =
Z�

1 − Z�
2

Z1 − Z2
.

Then every prime factor p of Φ�(Z1, Z2) is either congruent to 1 (mod �i) for some i with 1 � i � r
or p = �j for some j with 1 � j � r. Furthermore, in the latter case, �

ej

j ‖ Φ�(Z1, Z2) provided �j is
not congruent to 1 (mod �i) for any �i with 1 � i � r, i �= j.

Proof. First, we consider the case when � is a prime power, i.e. � = qα for some prime q and α > 0.
Then

Φqα(Z1, Z2) =
Zqα

1 − Zqα

2

Z1 − Z2
= φq(Z1, Z2)φq(Z

q
1 , Zq

2) · · · φq(Z
qα−1

1 , Zqα−1

2 ).

Hence, by Lemma 7, we see that every prime factor of Φqα(Z1, Z2) is congruent to 1 (mod q) except
perhaps q. When q divides any of the above cyclotomic polynomials, it divides each of them to the
first power. Hence qα ‖ Φqα(Z1, Z2).

Now we consider any �. We put Z1,0 = Z1; Z2,0 = Z2; for i � 1, Z1,i = Z
�
ei
i

1,i−1, Z2,i = Z
�
ei
i

2,i−1.
Then we have

Φ�(Z1, Z2) = Φ�er
r

(Z1,r−1, Z2,r−1)Φ�
er−1
r−1

(Z1,r−2, Z2,r−2) · · ·Φ�
e1
1

(Z1,0, Z2,0).

Now the assertion follows by the case � = qα from the previous paragraph. We note here that if
�i divides Φ�

ei
i

(Z1,i−1, Z2,i−1) then �ei
i ‖ Φ�

ei
i

(Z1,i−1, Z2,i−1) and �i does not divide any other factor
whenever �i is not congruent to 1 (mod �j) for any j with 1 � j � r, j �= i. Hence in that case,
�ei
i ‖ Φ�(Z1, Z2).

Now we turn to an extension of a result of Erdős and Selfridge on the distinctness of ai and their
products. We write d = D1D2 where D1 is the maximal divisor of d such that every prime divisor
of D1 is congruent to 1 (mod �i) for some �i | �. Thus every prime divisor of D2 is incongruent to 1
(mod �i) for any �i | �. We observe that D1 and D2 defined here agree with the definitions of D1

and D2 in [SS01] when � is an odd prime. The following has been shown in [SS01].

Lemma 9. Let � be an odd prime. Then (1.1) with k � 4 implies that

D1 > 1. (6.1)

For i � 1, we set θi = 1/�
min(ei,ord�i

D2)

i and

θ = θ1 · · · θr. (6.2)

We observe that θ = 1 if gcd(�, d) = 1. We show the following.

Lemma 10. Suppose that (1.1) holds. Let �′ be an integer with 1 � �′ < �. Furthermore, let

D1 � �θ

k�′
n(�−�′)/�. (6.3)

Then for no distinct �′-tuples (i1, . . . , i�′) and (j1, . . . , j�′) with i1 � · · · � i�′ and j1 � · · · � j�′ ,
the ratio of the two products ai1 · · · ai�′ and aj1 · · · aj�′ is an �th power of a rational number.

551

https://doi.org/10.1112/S0010437X04001125 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001125


N. Saradha and T. N. Shorey

Furthermore, for integers m1 � 1,m2 � 0 with m1 + m2 � π(k), we have(
H(d, k,m1,m2) + �′ − 1

�′

)
� �m1

(
�′ + m2

�′

)
(6.4)

where the left-hand side is zero if H(d, k,m1,m2) < 1.

Proof. We follow the argument of [SS01, Lemma 5]. Let (i1, . . . , i�′) and (j1, . . . , j�′) with i1 � · · · �
i�′ and j1 � · · · � j�′ be distinct �′-tuples such that

ai1 · · · ai�′ = aj1 · · · aj�′

(
t1
t2

)�

where t1 and t2 are positive integers with gcd(t1, t2) = 1. As in the proof of [SS01, Lemma 5],
we may assume that (n + i1d) · · · (n + i�′d) > (n + j1d) · · · (n + j�′d) and

(n + i1d) · · · (n + i�′d) − (n + j1d) · · · (n + j�′d) =
aj1 · · · aj�′

t�2
(x� − y�) (6.5)

where x = t1xi1 · · · xi�′ , y = t2xj1 · · · xj�′ and aj1 · · · aj�′/t
�
2 is a positive integer. We rewrite (6.5) as

(n + i1d) · · · (n + i�′d) − (n + j1d) · · · (n + j�′d) =
aj1 · · · aj�′

t�2

(
x� − y�

x − y

)
(x − y). (6.6)

We observe that the left-hand side of (6.6) is divisible by d. Also by Lemma 8 and (6.2), we find
that θD2 divides x − y since gcd(aj , d) = 1 for 0 � j < k. Thus x � y + θD2. We estimate the
left-hand side of (6.6) from above and the right-hand side of (6.6) from below as in [SS01, Lemma 6]
to obtain{(

�
1

)
θD2n

�′(�−1)/� −
(

�′

1

)
kdn�′−1

}
+ · · · +

{(
�
�′

)
(θD2)�

′
n�′(�−�′)/� − (kd)�

′
}

+ · · · + (θD2)� < 0.

(6.7)
By (6.3), we see that for each 1 � i � �′ the term in the ith curly bracket above is positive. This is a
contradiction to (6.7). Finally (6.4) follows as an immediate consequence from the argument [ES75,
pp. 297–299]. See also [SS01, Lemma 6].

We apply Lemma 10 to get the following.

Lemma 11. Suppose that (1.1) holds with D1 � (�θ/2k)n(�−2)/�. Then k < 11 380.

Proof. Suppose that the hypothesis of Lemma 11 is satisfied. Then we observe that (6.3) is satisfied
with �′ = 2. Hence, by Lemma 10, we find that the products aiaj with i � j are distinct. Then the
estimates of [Sar97, Lemma 8] are valid. We use these estimates to conclude k < 11 380 as in [Sar97,
pp. 165–166].

Next we apply Lemmas 10 and 11 to bound n.

Lemma 12. Suppose that (1.1) holds with � odd. Then n < (k�′D1/�θ)�/(�−�′) where �′ is given by
Table 3 below. (For example, by Table 3, we understand that if � = 7, then �′ = 5 for 4 � k � 8
and �′ = 4 for k � 9.)

Proof. Suppose that (1.1) holds with n � (k�′D1/�θ)�/(�−�′) where �′ is given in Table 3. Then (6.3)
and the hypothesis of Lemma 11 are valid. Therefore, we derive from Lemmas 11 and 10 that
k < 11 380, ai for 0 � i < k are distinct and (6.4) is valid. Now we proceed as in the proof of
[SS01, Lemma 8]. We illustrate the proof with an example. Let � = 5. Then �′ = 4 if 4 � k � 8 and
�′ = 3 if k � 9 by Table 3. Let k = 4. Then, H(d, 4, 2, 0) � 4 by Table 1. Hence (6.4) is not valid.
Thus k �= 4. Suppose that k = 2958. Then by Table 2, m1 = 4, m2 = 12 and H(d, 2958, 4, 12) � 271.
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Table 3.

� 4 � k � 8 k � 9 � 4 � k � 8 k � 9

3 2 2 19 11 8
5 4 3 21 12 8
7 5 4 23 13 9
9 6 5 25 14 9

11 8 5 27 15 10
13 9 6 29 16 10
15 10 7 �31 (� + 1)/2 (� + 1)/2
17 11 7 — — —

Table 4.

� k∗ � k∗

3 331 12 103
4, 6, 15, 16 23 17, 20 11
5, 7 317 18 13
8, 13, 14 47 19, 21–25, 27 7
9 53 26, 28, 29 5

10 19 30–37 4
11 113 — —

Hence (6.4) is not valid. Thus k �= 2958. We exclude all values of k < 11 380 as above. The argument
for excluding other values of � � 29 is similar. Let � � 31. Then �′ = (� + 1)/2 by Table 3.
Let Y = H1(m1) or H2(m1,m2). As above we need to show that (6.4) does not hold for k < 11 380
and � � 31. We observe that if (6.4) does not hold for some odd � = �0, then it does not hold for
� = �0 + 2 provided that

Y >

(
1 +

2
�0

)m1

(m2 + 1) +
(

�0 + 1
2

)((
1 +

2
�0

)m1

− 1
)

. (6.8)

We observe that the right-hand side of (6.8) is a decreasing function of �0. Hence, it is enough to
check that (6.8) is valid and (6.4) is not valid at �0 = 31. We carry out this by checking at �0 = 31
for all k < 11 380 and for m1,m2, Y as in Tables 1 and 2.

7. Variables in (1.1) are bounded

Let d � d1. We first bound � and k. To do this, we compare the upper bound for n + (k − 1)d
obtained in §§ 5 and 6 and the lower bound for n + (k − 1)d which can be obtained by using the
iterative procedure in § 3. See Lemma 13. Let � and k be given. Then we bound n by Lemmas 6 or 12
according to whether � is even or odd, respectively. We observe that when n, d, k, � are bounded,
then b and y are also bounded by (1.1).

Lemma 13. Assume (1.1) with Hypothesis A. Then � � 37 and k � k∗ with k∗ given by Table 4.

Proof. Assume (1.1) with Hypothesis A. Then all Aj are distinct by Corollary 1. Thus Lemma 3
is valid. Suppose that � is even and � � 38. Then d � k�−1/2. Hence in Lemma 3, we may take
ηi = η′i = 0 for every i. Furthermore, by (1.3) and Lemma 6, we get δk�+1 = n + (k − 1)d <
k2d2/(4h0) + kd. Thus

δ <
d2

4h0k�−1
+

d

k�
. (7.1)
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We observe that the right-hand side of (7.1) decreases as k or � increases. Thus we evaluate the
right-hand side at k = 4, � = 38 and d = 1015 to get δ < 1.4× 107. On the other hand, we see from
Lemma 3 and a remark after the proof of (3.3) that δ > 4 × 108. Thus � � 36.

Let � � 36 be given. Suppose that k > k∗ where k∗ is given in Table 4. We check that d � k�−1/2
implying that ηi = η′i = 0 for every i. Now we compute the lower bound of δ by Lemma 3 and the
upper bound by (7.1) to see that they are inconsistent. Thus k � k∗.

Suppose that � is odd and � � 39. Then d � k�−1/2 and hence every ηi = η′i = 0 in Lemma 3.
Furthermore, by (1.3) and Lemma 12, we get

δk�+1 = n + (k − 1)d <

(
k�′D1

�θ

)�/(�−�′)
+ kd (7.2)

where �′ = (� + 1)/2. By the definition of θ given by (6.2), we find that

D1

θ
= D1

r∏
i=1

�
min(ei,ord�i

(D2))

i � D1D2 = d. (7.3)

Thus, by (7.2) and (7.3), we get

δ <

(
�′d
�

)�/(�−�′)
k−�+�′/(�−�′) +

d

k�
. (7.4)

Replacing �′ by (� + 1)/2 in (7.4), we get

δ <

(
(� + 1)d

2�

)2�/(�−1)

k(−�2+2�+1)/(�−1) +
d

k�
. (7.5)

We observe that the right-hand side of (7.5) decreases as k or � increases. Hence, we evaluate the
right-hand side of (7.5) at � = 39, k = 4 and d = 1015 to find that δ < 2.3 × 107. On the other
hand, we get δ � 7 × 108 for k � 4 by Lemma 3. This is a contradiction. Thus � � 37. Let � � 37
be given. Suppose that k > k∗ where k∗ is given in Table 4. We check that d � k�−1/2 implying
that ηi = η′i = 0 for every i. Now we compute the lower bound for δ by Lemma 3. Next we turn to
an upper bound for δ. For this, we use (7.4) with �′ given by Table 3 when 5 � � � 29 and we use
(7.2) if � = 3. We observe that (7.5) holds when 31 � � � 37 since �′ = (� + 1)/2. Finally, we check
that the lower bound and the upper bound for δ obtained above are inconsistent.

8. Algorithm for solving (1.1) when d is large
In this section, we present an algorithm for finding the solutions of (1.1) whenever k, �, d′ > 0,
δ1 > 0, δ2 > 0 are given such that 1 < d � d′ and δ1 < δ < δ2. We choose m1, α1, . . . , αm1 suitably
and compute G0 given by (2.18). We put

κ =




[
k

G0 − 2

]
if G0 � 3;

k otherwise
and a = pα1−1

1 · · · pαm1−1
m1 . (8.1)

Below, we give the various steps of the algorithm.

Algorithm 1.
Step 1. We form the set W1 of divisors of a.
Step 2. We form the set W2 of pairs (AZ�

1, BZ�
2) such that A,B ∈ W1 with A < B, gcd(A,B) = 1,

Z2/Z1 is a convergent in the continued fraction expansion of (A/B)1/�, Z1, Z2 do not
exceed δ

1/�
2 k1+1/�, least prime factor of Z1Z2 > k if G0 � 3 and P (Z1Z2) > k if G0 < 3

and ((δ1k
�+1 − kd′)/a)1/� < Z1.
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Step 3. Let

δ1k
� − d′ � (2κd′)�/(�−2). (8.2)

Then we carry out (A)–(C) as given below.

(A) We form the set W3 of all positive integers that are �th powers having all prime
factors greater than k and not exceeding δ4, where δ4 � min ((3κd′)�/(�−2), δ2k

�+1).
We observe that W3 contains 1. We take W4 = W3 − {1} if G0 � 3 and W4 = W3

otherwise.
(B) Let W5 be the set of integers of the form AZ� with A ∈ W1, Z

� ∈ W4 such that
δ1k

� − d′ � AZ� � δ4. Let the elements of W5 be arranged in increasing order.
Let W5(i) denote the ith element of W5.

(C) Let W6 be the set of pairs (W5(j),W5(i)) with gcd(W5(j),W5(i)) = 1, P (W5(j)
W5(i)) > k if G0 < 3 and W5(i) − W5(j) < κd′ for 1 � j < i � |W5|.

Step 4. We form W7 = W2 if (8.2) does not hold and W7 = W2 ∪ W6 otherwise.
Step 5. Let W8 be the set of pairs (N1, N2) ∈ W7 for which the triple (N1, N2, 1) has Property P2.

Let W9 be the set of pairs (N1, N2) ∈ W8 for which the triple (N1, N2, r) has Property P1

for some integer r � 1 dividing N2 − N1.

Now we show that under suitable conditions W9 �= ∅ whenever (1.1) holds.

Lemma 14. Suppose that (1.1) with Hypothesis A holds. Let k � 4, G0 � 2 and δ1k
� � a.

Then W9 �= ∅ where W9 is constructed as in the algorithm with d′ = d1.

Proof. Assume (1.1) with Hypothesis A. By Corollary 1, all the Ai are distinct. Therefore, there
are at least G0 of the Ai in W1, which are composed of p1, . . . , pm1 to the orders not exceeding
α1−1, . . . , αm1 −1, respectively. Suppose that G0 � 3. Then we divide the interval [0, k) into G0−2
sub intervals [

0,
k

G0 − 2

)
, . . . ,

[
(G0 − 3)k

G0 − 2
, k

)
(8.3)

of length k/(G0 − 2). We find that there exists a sub interval from (8.3) containing two integers
0 < i0 < j0 < k such that Ai0 , Aj0 are in W1. Since G0 � 2 there always exist two terms of ∆, say,
n + id = AiX

�
i and n + jd = AjX

�
j with j > i and Ai, Aj in W1. By (8.1), we find

(j − i)d = AjX
�
j − AiX

�
i with 0 < j − i < κ (8.4)

where i > 0 whenever G0 � 3. Suppose that Xj = 1. Then since j > 0, we have a � Aj = AjX
�
j =

n + jd > d. Hence, a � n + jd > n > δ1k
�+1 − (k − 1)d > δ1k

�+1 − (k − 1)a contradicting our
assumption. Thus Xj �= 1. Similarly, we see that Xi �= 1 whenever i �= 0. Thus we always have
P (XiXj) > k and if G0 � 3, then the least prime factor of XiXj > k. We note that Ai, Aj are
coprime to d. Hence by (8.4), we get

α = gcd(Ai, Aj) < k. (8.5)

Furthermore, we put A′
i = α−1Ai, A′

j = α−1Aj. By dividing both sides of (8.4) by gcd(Ai, Aj), we
get

A′
µX�

µ − A′
νX

�
ν = ±rd (8.6)

where 0 < r < κ/α, (µ, ν) = (i, j) or (j, i), A′
µ > A′

ν are in W1 and gcd(A′
µ, A′

ν) = 1. Furthermore,
by (8.5), we see that

δ1k
� − d1 < A′

µX�
µ, A′

νX�
ν < δ2k

�+1. (8.7)
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Therefore Xµ,Xν do not exceed δ
1/�
2 k1+1/� and they are bounded from below by ((δ1k

�+1−
kd1)/a)1/�. Suppose that (8.2) does not hold. Then we find by (8.7) that

A′
νX

�−2
ν � (A′

νX�
ν)

(�−2)/� > (δ1k
� − d1)(�−2)/� > 2κd1. (8.8)

From (8.6) we get ∣∣∣∣∣A
′
ν

A′
µ

− X�
µ

X�
ν

∣∣∣∣∣ <
κd1

A′
µX�

ν

which, by (8.8), implies that∣∣∣∣∣
(

A′
ν

A′
µ

)1/�

− Xµ

Xν

∣∣∣∣∣ <
κd1

A′
µX�

ν

(
A′

µ

A′
ν

)1−1/�

<
κd1

A′
νX

�
ν

<
1

2X2
ν

.

Thus Xµ/Xν is a convergent in the continued fraction expansion of (A′
ν/A

′
µ)1/�, see [NZ80, p. 161].

Hence (A′
νX�

ν , A
′
µX�

µ) ∈ W2 = W7. We observe that αA′
νX

�
ν , αA′

µX�
µ are two terms of ∆ and

hence the triple (αA′
νX�

ν , αA′
µX�

µ, αr) has Property P1. Since α < k, we conclude that the triple
(A′

νX
�
ν , A′

µX�
µ, r) has Property P1. Furthermore, we observe that (A′

νX�
ν , A

′
µX�

µ, 1) also has
Property P2. Thus the pair (A′

νX�
ν , A

′
µX�

µ) ∈ W9, which proves the assertion.

Thus we may suppose that (8.2) holds. Furthermore, if A′
νX

�−2
ν > 2κd1, then we argue as in the

previous paragraph to see that (A′
νX

�
ν , A′

µX�
µ) ∈ W9 yielding the assertion. Thus, we may suppose

that A′
νX

�−2
ν � 2κd1. Hence

A′
νX

�
ν � (A′

νX�−2
ν )�/(�−2) � (2κd1)�/(�−2), (8.9)

which, together with (8.7), implies that A′
νX

�
ν ∈ W5. Let A′

νX
�
ν = W5(i) for some i � 1. We see

from (8.9) and (8.6) that A′
µX�

µ � A′
νX�

ν + κd1 � (3κd1)�/(�−2) and hence A′
µX�

µ ∈ W5. Thus by
(8.6), the pair (A′

νX�
ν , A′

µX�
µ) ∈ W6. Arguing as earlier, we see that (A′

νX�
ν , A

′
µX�

µ) ∈ W9 which
proves the assertion.

9. Proof of Theorem 1 when � > 3

We assume (1.1) with Hypothesis A and � > 3. Then k � 4. By Lemma 13, we see that � � 37 and
k � k∗ with k∗ given by Table 4. We apply Algorithm 1 with d′ = d1 to exclude all of these values
of � and k as follows. For all values of �, we choose m1, α1, . . . , αm1 , as below. We give the choices
for k � k∗, k prime or k = 4.

k = 4: m1 = 2, α1 = α2 = 2;

5 � k � 10: m1 = 2, α1 = 3, α2 = 2;

11 � k � 28: m1 = 3, α1 = 4, α2 = α3 = 2;

29 � k � 36: m1 = 3, α1 = 4, α2 = 3, α3 = 2;

37 � k � 66: m1 = 3, α1 = 5, α2 = 3, α3 = 2;

67 � k � 100: m1 = 4, α1 = 4, α2 = 3, α3 = α4 = 2;

101 � k � 198: m1 = 5, α1 = 4, α2 = 3, α3 = α4 = α5 = 2;

199 � k � 270: m1 = 5, α1 = 5, α2 = 3, α3 = α4 = α5 = 2;

271 � k � 331: m1 = 5, α1 = 5, α2 = α3 = 3, α4 = α5 = 2.
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By these choices of m1, α1, . . . , αm1 , we find that G0 � 4 except for k = 4, 5, 7, 19, 23 in which
cases G0 = 2, 2, 2, 3, 3, respectively. By (2.7) and �� 4, we see that δ > δ1 where δ1k

� � p4
π(k)+χ0

/k � a

with a given by (8.1). Thus the conditions of Lemma 14 are satisfied. We now explain the rest of
the algorithm by means of an example.

We take � = 5. Then d1 = 5 · 104 and k∗ = 317. For every k � k∗, we compute G0 and by
Lemma 3, we find δ1. We observe that (8.2) is valid only for k � 61. Thus

W7 =

{
W2 ∪ W6 for 4 � k � 61,
W2 for 67 � k � 317.

(9.1)

We fix k = 11. Then m1 = 3, α1 = 4, α2 = α3 = 2 and G0 = 4. Thus κ = 5, a = 23 · 3 · 5. We apply
Lemma 3 to get δ > 7 = δ1. By Lemma 12, we find that

n + (k − 1)d
k6

� ((33 · 104)5/2 + 5 · 105)/116 < 35 312 523 = δ2.

By (9.1), we need to form the sets W2 as well as W6. As in Step 1, we first form the set W1 of
divisors of 23 · 3 · 5. Then we form the set W2. For this, we fix (A,B) with

A,B ∈ W1, A < B, gcd(A,B) = 1. (9.2)

Next we find all integers Z1, Z2 such that Z1, Z2 � δ
1/5
2 116/5 � 575, Z1 > ((7 · 116 − 5 · 105)/

23 · 3 · 5)1/5 > 9, the least prime factor of Z1Z2 > 11 and Z2/Z1 is a convergent in the con-
tinued fraction expansion of (A/B)1/5. Then we form the set W2(A,B) of all pairs (AZ5

1 , BZ5
2 ).

Finally we put W2 =
⋃

W2(A,B) where the union is taken over all the pairs (A,B) satisfying (9.2).
We get

W2 = {(475, 23 · 315), (3 · 195, 22 · 5 · 135)}. (9.3)
We proceed to carry out Step 3 (A)–(C). We have δ4 = 6.2 × 109. Thus W3 is the set of integers
of the form Z5 with the least prime factor of Z exceeding 11 and Z � 90. Hence, W4 is the set
of fifth powers of all primes greater than 11 and less than or equal to 89. Then W5 is the set of
integers of the form AZ5 with A ∈ W1, Z5 ∈ W4 such that 1 077 357 � δ1k

�−d1 � AZ� � 6.2×109.
Now we find all pairs (W5(j),W5(i)) with gcd(W5(j),W5(i)) = 1 and W5(i)−W5(j) � κd1 = 25·104

for 1 � j < i � |W5|. We get

W6 = {(22 · 135, 175), (195, 2 · 3 · 135), (22 · 175, 3 · 5 · 135), (3 · 195, 22 · 5 · 135), (315, 22 · 5 · 175)}.
(9.4)

Then W7 is the union of the sets in (9.3) and (9.4). Among the pairs (N1, N2) in W7, we find that
Property P2 holds for (N1, N2, 1) only when (N1, N2) is in the set

W8 = {(195, 2 · 3 · 135), (22 · 175, 3 · 5 · 135), (315, 22 · 5 · 175)}.
For each pair (N1, N2) in W8, we check that the triple (N1, N2, r) does not have Property P1 for any
integer r � 1 dividing N2 − N1. Thus W9 = ∅, which is not possible by Lemma 14. Thus k �= 11.
All other values of k with 4 � k � 317 are excluded similarly. Finally we exclude all other values of
� as above.

10. Algorithm for solving (1.1) when d is small

We give an algorithm for finding solutions of (1.1) when d is small and this is more efficient than
Algorithm 1. This algorithm is a modified extension of the algorithm given in [SS03]. Let k, �,
d′ > 0, δ1 > 0, δ2 > 0 be given such that 1 < d � d′ and δ1 < δ < δ2. Let d be fixed. We now give
the various steps of the algorithm.
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Algorithm 2.
Step 1′. We have n + (k − 1)d > δ1k

�+1. We use (3.1) if d � δ1k
�/2 and, otherwise, we use (3.2)

to estimate |I| � α′, say. Let χ1 = max(α′, 2) and pπ(k)+χ1
= Q0. For any integer i > 0,

we put

s1(i) =
[
δ1k

�+1 − kd

i�

]
+ 1; s2(i) =

[
δ2k

�+1

i�

]
;

s3(i) =
[
Q�

0k
�

i�

]
+ 1; s4(i) = min(s2(i), s3(i)).

Now we find all primes Q such that

Q0 � Q � min(Q0k, δ
1/�
2 k1+1/�). (10.1)

For each Q in (10.1) we form the set

D′
Q = {t Ql | gcd(t Ql, d) = 1, P (t) � k, s1(Q) � t � s4(Q)}.

We put E′ =
⋃

D′
Q where the union is taken over all Q satisfying (10.1). Furthermore, if

Q0 < (δ2k)1/�, then we find all primes Q such that

Q0 � Q � δ
1/�
2 k1+1/�. (10.2)

For each Q in (10.2) we form the set

D′′
Q = {t Ql | gcd(t Ql, d) = 1, s3(Q) � t � s2(Q) and t Ql has Property P0}.

We put E′′ =
⋃

D′′
Q where the union is taken over all Q satisfying (10.2). Finally we put

Ed = E′ ∪ E′′ if Q0 < (δ2k)1/�; E = E′ otherwise.

Step 2′. Let Ed,0 = Ed. We take E′
d,1 to be the set of N ∈ Ed,0 for which N + d as well as N − d

do not have Property P0. We put Ed,1 = Ed,0 − E′
d,1. Next, we construct E′

d,2 to be the
set of N ∈ Ed,1 for which N + 2d does not have Property P0 and at least one of N − d,
N − 2d does not have Property P0. We put Ed,2 = Ed,1 −E′

d,2. We proceed inductively to
construct the sets E′

d,3, Ed,3, . . . . We observe that

Ed,0 ⊇ Ed,1 ⊇ Ed,2 ⊇ · · · . (10.3)

Thus, N ∈ Ed,i implies that N �∈ E′
d,i which means that either N + id has Property P0 or

every one of N − d,N − 2d, . . . ,N − id has Property P0.
Step 3′. We construct the sequence (10.3) for every d � d′.

Lemma 15. Assume (1.1) with Hypothesis A. Let k � 4 and δ1 < δ < δ2. Suppose that d � d1 is
fixed. Then Ed,i �= ∅ for 1 � i � [k2 ].

Proof. Assume (1.1) with Hypothesis A and let δ1 < δ < δ2. Then we see that there is a term
in ∆, say n + hd, 0 � h < k which is divisible by a prime Q1 � pπ(k)+χ1

= Q0 to an �th power.
Thus n+hd = t1Q

�
1 where t1 is a positive integer. Furthermore, gcd(t1Ql

1, d) = 1 since gcd(n, d) = 1.
Suppose that Q0 � (δ2k)1/�. Then t1δ2k � t1Q

�
0 � t1Q

�
1 < δ2k

�+1 implying t1 < k�. Since t1Q
�
1 is a

term of ∆, it has Property P0. Hence P (t1) � k. Furthermore, since δ1 < δ < δ2 and Q�
0k

� � δ2k
�+1,

we have s1(Q1) � t1 � [δ2k
�+1/Q�

1] = s4(Q1). Also Q1 satisfies (10.1). Thus t1Q
�
1 ∈ E′. Suppose that

Q0 < (δ2k)1/�. If t1Q
�
1 satisfies Q�

0k
� < t1Q

�
1 < δ2k

�+1, then we see that t1Q
�
1 ∈ E′′. If t1Q

�
1 � Q�

0k
�,

then t1Q
�
1 ∈ E′. Hence n + hd ∈ Ed,0. By (1.1), we see that n + (h + j)d has Property P0 for

0 � j < k − h. Also n + (h − j)d has Property P0 for 0 � j � h. Let h � [k/2]. Then n + hd ∈ Ed,i

for every 0 � i � [k/2] since k = 4 or k is prime. Suppose that [k/2] < h < k. Then we
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consider n + (h − [k/2])d = n + h′d with 0 < h′ � [k/2]. We see that n + h′d is a term of ∆
and arguing as earlier we get n + h′d ∈ Ed,i for every 0 � i � [k/2]. This proves the assertion.

11. Proof of Theorem 1 when � = 3

We assume (1.1) with Hypothesis A and � = 3. Let k � 4. Then by Lemma 9, we have

d ∈ {7, 13, 14, 19, 21, 26, 28}. (11.1)

Furthermore, by (7.2) and Lemma 3, we see that k is bounded above by 47, 131, 47, 263, 331, 131, 47
according as d = 7, 13, 14, 19, 21, 26, 28, respectively. We apply Algorithm 2 to exclude all of these
values of k and d. We explain by means of examples. Let d = 19. First we take k = 109. By Lemma 3,
we see that δ > 4.8804 = δ1. By (7.2), we get δ < 18.65 = δ2. We compute χ1 = α′ = 56.
Thus Q0 = 439. We see that Q0 > (δ2k)1/�. Thus we need to compute Ed = E′. First we find
all the primes Q between 439 and 1380. Then we form D′

Q. For instance, when Q = 439, we get
s1(Q) = 9, s4(Q) = 31 and D′

439 = {t 4393|9 � t � 31, t �= 19}. We now construct Ed and follow
Step 2′. We find that Ed,1 = {32 · 4793, 2 · 7 · 4493, 2 · 3 · 7513} and Ed,2 = ∅. This contradicts
Lemma 15. Thus k �= 109. Next we take k = 4. Then δ > 1.339 = δ1. By (7.2), we get δ < 509 = δ2.
Furthermore, χ1 = α′ = 2. Thus Q0 = 7. We see that Q0 < (4 × 509)1/3. Thus we need to compute
Ed = E′∪E′′. For the primes between 7 and 23, we compute D′

Q as well as D′′
Q. For primes between

29 and 47, we compute D′′
Q. For instance, suppose Q = 29, then we find that s3(Q) = 1, s2(Q) = 5

and D′′
Q = {t 293|1 � t � 5, t �= 5}. We follow Step 2′ to get Ed,1 = ∅. Thus k �= 4. All other values

of k are excluded similarly. We exclude all the values of d in (11.1) as above.
Let k = 3. By the result of Győry [Győ99], we have 3 � d. Now we omit the one term in ∆

divisible by 3. Then we see from (1.1) that

N(N + id) = b′1y
3
1, i = 1, 2, b′1 = 1, 2, 4, (11.2)

where N = n or n + d if i = 1, N = n if i = 2 and y1 is some positive integer. Suppose that d
is even. Then N and N + id are both odd and by (11.2) we have N = u3, N + id = v3 for some
positive integers u and v. Thus 60 � id = v3 − u3 implying that (u, v) = (1, 3). Thus n = 1, d = 26,
which is not possible by (1.1). Hence, we may assume that d is odd. Thus

d ∈ {5, 7, 11, 13, 17, 19, 23, 25, 29}. (11.3)

We put X1 = N + id/2. Then (11.2) becomes X2
1 − i2d2/4 = b′1y3

1. We see that this equation can be
rewritten as X2 = Y 3 +(b′2d)2 with b′2 ∈ {1, 2, 4}. Now we use SIMATH to find all the integral solu-
tions of this elliptic equation when d is given by (11.3). We check that none of the integral solutions
yield any solution to (1.1).
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