ON THE MINIMAL GRAPH WITH A GIVEN NUMBER OF SPANNING TREES

BY
J. SEDLÁČEK

Let G be a finite connected graph without loops or multiple edges. A maximal tree subgraph T of G is called a spanning tree of G. Denote by $k(G)$ the number of all trees spanning the graph G. A. Rosa formulated the following problem (private communication): Let $x(\neq 2)$ be a given positive integer and denote by $\alpha(x)$ the smallest positive integer y having the following property: There exists a graph G on y vertices with x spanning trees. Investigate the behavior of the function $\alpha(x)$.

Obviously, $\alpha(1)=1, \alpha(3)=3, \alpha(4)=4, \alpha(5)=5, \alpha(6)=6, \alpha(7)=7, \alpha(8)=4, \alpha(9)=5$, etc. The minimal graph $G_{\min }$ need not be unique. For instance, we have $\alpha(30)=6$ and Figures 1 and 2 show two nonisomorphic graphs $G_{\min }$ on six vertices with $k\left(G_{\min }\right)=30$.

Figures 1 and 2.
It is easy to see that $\alpha(x) \leq x$ for each positive integer $x \neq 2$. Further, the following estimates are true: If $x \equiv 0(\bmod 3), x>6$ then by considering the graph consisting of a circuit of length $x / 3$ and circuit of length 3 , having one vertex in common,

$$
\alpha(x) \leq \frac{x}{3}+2 .
$$

If $x \equiv 2(\bmod 3), x>5$ then by considering the graph consisting of a circuit of length $(x+4) / 3$ with a single chord,

$$
\alpha(x) \leq \frac{x+4}{3} .
$$

If $x=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \ldots p_{s}^{a_{s}}$ and if $p_{1}, p_{2}, p_{3}, \ldots, p_{s}$ are odd primes then by considering the graph with a_{i} circuits of length p_{i} meeting at a single vertex,

$$
\alpha(x) \leq 1+\sum_{i=1}^{s} a_{i}\left(p_{i}-1\right) .
$$

In the following theorem $1 g x$ means the natural logarithm of x. The symbol [n] means the maximal integer m with $m \leq n$.

Theorem 1.

$$
\alpha(x)>[\sqrt{\lg x}] \text { for each } x \neq 2
$$

Proof. For $x=1$ this is obvious. Assume $x \geq 3$ and put $R=[\sqrt{\lg x}]$. If G is a graph on n vertices with $n \leq R$ then we have $k(G) \leq R^{R-2}$ (Cayley's formula). Therefore

$$
\lg k(G) \leq(R-2) \lg R \leq R \lg R<R^{2}=[\sqrt{\lg x}]^{2} \leq \lg x
$$

hence $k(G)<x$. Thus $\alpha(x)>R$. Hence the proof.
Theorems 2 and 3 are easy corollaries of the preceding Theorem 1.
Theorem 2.

$$
\lim _{x \rightarrow \infty} \alpha(x)=+\infty .
$$

Theorem 3. For every positive integer n the equation $\alpha(x)=n$ has at most a finite number of roots.

In a former paper [1] we defined the set A_{n} as a set of all natural numbers m for which there exists a graph G with n vertices and $k(G)=m$. Put $A_{n}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, where $x_{1}<x_{2}<\cdots<x_{r}$. We showed that for $n \geq 8$ we have

$$
\left\{\begin{array}{rlrl}
x_{r} & =n^{n-2}, & x_{r-1}=(n-2) n^{n-3}, \tag{1}\\
x_{r-2} & =(n-2)^{2} n^{n-4}, & x_{r-3}=(n-1)(n-3) n^{n-4}, \\
x_{r-4} & =(n-2)^{3} n^{n-5}, & x_{r-5}=(n-3)(n-2)(n-1) n^{n-5}, \\
x_{r-6} & =(n-2)\left(n^{2}-4 n+2\right) n^{n-5}, & & x_{r-7}=(n-3)^{2} n^{n-4}, \\
x_{r-8} & =(n-4)(n-1)^{2} n^{n-5}, & & x_{r-9}=(n-2)^{4} n^{n-6} .
\end{array}\right.
$$

Further

$$
\begin{aligned}
A_{1}=A_{2}=\{1\}, A_{3}= & \{1,3\}, A_{4}=\{1,3,4,8,16\} \\
& A_{5}=\{1,3,4,5,8,9,11,12,16,20,21,24,40,45,75,125\} .
\end{aligned}
$$

Let n be a given positive integer. We shall engage in solving the equation $\alpha(x)=n$. For $\alpha(x)=1$ we have $x=1$. The equation $\alpha(x)=2$ has no solution. For $\alpha(x)=3$ we get $x=3$ and for $\alpha(x)=4, x=4,8,16$. The equation $\alpha(x)=5$ has the roots $x=5,9,11$, $12,20,21,24,40,45,75,125$. Denote by $M(n)$ the set of all roots of the equation $\alpha(x)=n$. We have $M(1)=\{1\}$ and for $n>1$ the following relation holds:

$$
M(n)=A_{n}-\bigcup_{i=1}^{n-1} A_{i}=A_{n}-A_{n-1} .
$$

In [2] we showed that $\left|A_{n+1}\right| \geq\left|A_{n}\right|+n-1$. From this inequality Theorem 4 follows immediately:

Theorem 4.

$$
\lim _{n \rightarrow \infty}|M(n)|=+\infty
$$

Let be given an equation $\alpha(x)=n$, where $n \geq 8$. We are able to determine ten roots by using the formulas (1). Obviously $(n-1)^{3}<(n-2)^{4}$ and $(n-1)^{n-6}<n^{n-6}$, hence $(n-1)^{n-3}<(n-2)^{4} n^{n-6}$. We conclude $\alpha\left(x_{i}\right)=n$ for $i=r, r-1, r-2, \ldots, r-9$.

References

1. J. Sedláček, On the spanning trees of finite graphs, Časopis Pěst. Mat. 91 (1966), 221-227.
2. -, On the number of spanning trees of finite graphs, Časopis Pěst. Mat. 94 (1969), 217-221.

University of Calgary,
Calgary, Alberta

