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Abstract. In this paper we study the following question: Is it true that a generic hypersukfaake
degreed in p"*1, where(d, n) # (3,1), (2,2), (3, 2), does not admit a non-trivial, non-isomorphic
surjective map to another smooth variéfy except of course™? It is easy to see that it is true for
n = 1, 2. We try to prove this fon. = 3 and can exclude all possibilities firexcept” = G(1, 4)Ne®
andY = V35, a special Fano threefold of typé, found by Mukai and Umemura in [MU].
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1. Introduction

In[L], Lazarsfeld proves (in characteristic zero) that the only smooth variety which
can be an image @ under a non-constant morphisn¥isitself. Moreover, there

is an analogous result for smooth quadrics ([PSH: ¥ 3, a smoot-dimensional
quadric does not admit a finite surjective morphism to another smooth variety except
P" and itself, and any surjective endomorphism of a quadric is an isomorphism.
Also, there is evidence that a statement of this kind holds for certain homogeneous
varieties ([PS]).

QUESTION.Which other smooth projective varieties satisfy this property?

A sufficiently general hypersurface iff*, n > 2, seems to be a good candidate
for this (thoughany hypersurface certainly would not do: there are obvious maps
between Fermat hypersurfaces). In fact, fio= 3 it is not difficult to prove the
following.

THEOREM 1.1.If X is a general hypersurface in® of degree at least foul, a
smooth projective surface arfd X — Y a surjective finite) morphism, theiy” is
eitherP? or isomorphic toX, and in the last casg is an isomorphism

‘Finite’ stands in brackets here because a general hypersurfaéeirdegree
at least four has Picard group isomorphi@t@nd so the morphism has to be finite
if Y is not a point.

The key observation for Theorem 1.1 is Proposition 2.1 below, which is not
difficult to deduce from several results by Deligne and which asserts that the
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Hodge structure on the middle cohomologies of a general hypersurfae® in
does not have Hodge substructures (if the hypersurface is not a quadric or a 2-
dimensional cubic), except, of course, the obvious ones, i.e. Hodge substructures
generated by a multiple of the linear section class (and orthogonal to these). It
immediately implies the analogue of Theorem 1.1 for curves (one must assume
that the degree of the plane curve is at least four) and together with some general
facts, this proposition easily yields Theorem1.1.

The caser = 4 requires however a more detailed analysis. The problem is to
exclude the possibility of maps to three (types of) Fano threefolds which have the
same Hodge numbers &8, namely, the 3-dimensional quadric, a linear section
of G(1,4) in the Plicker embedding (denoted in the sequeVgsand varieties of
type Vs, C P13 (these are Fano threefolds of index one and sectional genus 12; see
for example [1], [M] for their construction and descriptions). So far, | do not have
a complete proof. Namely, it remains to exclude the linear secti@n(tf4) and
a special variety of typ&>,, which has been constructed in the paper [MU] as the
projective closure of the SI(C)-orbit of a certain binary form of degree 12. We
will call it the Mukai-Umemura variegnd denote it a¥35. V5, has non-reduced
Hilbert scheme of lines. As it was shown by Prokhorov in [B}, is characterized
by this property: the Hilbert scheme of lines on any different from the Mukai—
Umemura variety, has only finitely many singular points. So the main result of this
paper is as follows:

THEOREM 1.2.A general hypersurfac& in P* does not admit a non-trivial,
non-isomorphic map onto a smooth varigty P3, except possibly faf = Vs or
Y the Mukai—-Umemura variety.

However, some discussion will be given for these remaining cases.

The paperis organized as follows: in paragraph 2, we prove Proposition2.1 men-
tioned above, and we deduce Theorem 1.1 from this. In paragraph 3, we reduce
the problem in the 3-dimensional case to the study of maps to the Fano threefolds
with vanishingbz — the quadric,Vs and varieties of typd’,. Some generali-
ties on Fano threefolds are also recalled there. In paragraph 4, the Infinitesimal
Noether—Lefschetz theorem is applied to prove the absence of maps from a general
hypersurface iP* onto a quadric. Finally, in 5, we apply results of C. Voisin on
curves on general hypersurfaces to prove that the latter do not admit mapg:to a
with reduced scheme of lines.

We work over the field of complex humbers. The word ‘general’ applied to a
hypersurface ire” is used in the sense ‘outside of a countable union of proper
subvarieties in the parametrizing space’. One notation is frequently used in the
paper: forX c PV, Hy denotes a hyperplane sectionof
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2. Hodge structures

In what follows we make the following convention: for a smooth projective
dimensional varietyX we say that a Hodge substructureAi (X) is trivial if it
is either the wholé?™ (X)), or (in the case of even) it is a 1-dimensional Hodge
substructure generated by the multiple of the linear section class. We say that the
Hodge numbers oK are trivial, if they coincide with that af™.

We put together several results mostly due to Deligne to prove the following.

PROPOSITION 2.1Any Hodge substructure if"(X) where X is a general
hypersurface of degre#in P"*1 is either trivial or orthogonal to a trivial one,
exceptwhed = 2 or (d,n) = (3,2).

Proof. Recall the definition of the Mumford—Tate grodp7’(V') of a rational
Hodge structur®” of weightn.

Consider a natural homomorphism

¢ T =C" xC" — GL(Vg)
given by
¢(a,b)v = aPbv

forv e VP4,

The Mumford—Tate group is then the minimal algebraic subgroup afiGL
defined over such that its group of points ovey MT'(C), contains)(7').

It is easy to see that if the Hodge structlfdhas a substructurd’, thenW is
globally invariant undeM T'(V'); conversely, subspacesW@finvariant unde®M T’
give rational Hodge substructuresiin

We will recall the relation between Mumford—Tate groups and the monodromy
as explained in [D1], [Z].

Let now f:Y — S be a smooth projective morphism of algebraic varieties
over C, and denote by the fiber overs € S. Letn be the dimension of.
Denote byG the Zariski-closure in AtH"(Y;,C)) of the monodromy group
I's = imm(S,s) C Aut(H™(Ys,Q)). G is defined over, soG = M(C) for an
algebraic subgroup/ of GL(H"(Y;,Q)). Let M° be a connected component of
M. Thenthe theorem of Deligne says thatf@utside a countable union of proper
subvarieties of, M? is a normal subgroup d¥/ T'(H™(Y5)).

Now let f:Y — S be a general Lefschetz pencil of hypersurface®iht, i.e.,

Y, for a generak is our hypersurfacel. Let Gprim be the Zariski-closure of the
monodromy group in GlHyim(X, C)) (this makes sense because the primitive
part of the cohomologies is of course globally invariant under monodromy). As
Deligne proves in [D2](G prim is either as big as possible or finite, and for edi

is always as big as possible: concretely,fathe intersection form,
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Gprim = SP(Hpim(X), %) if nis odd;
Gprim = O(Hpyim(X), ¥) or Gprim is finite if n is even

Using the irreducibity of the monodromy action on primitive cohomologies,
it is easy to see ([SGA]) that/pim can be finite only ifX is a quadric or a 2-
dimensional cubic. In other cases, we get that the action of the Mumford—Tate group
is irreducible onH g, (X ). From this we conclude that the only possible invariant
subspaces of the Mumford-Tate group, and so the only Hodge substructures in
H™(X) are the trivial ones and orthogonal to the trivial ones.

COROLLARY 2.2.If X is a general hypersurface iri* 1 which is not a quadric or
a 2-dimensional cubid” a smooth projective variety (not a point) afidX — Y
a surjective morphism, then the Hodge number¥ aincide either with that of
X or with that ofP™.

Indeed,f must be finite (we have that either PX) = Z, or X is a curve); therefore
the inverse image map* in cohomologies becomes an injection after tensoring
with Q. The mapf* is a morphism of Hodge structures, and so we are done.

Remark2.3. Infact the corollary can also be proved without the use of Mumford—
Tate groups. The argument would be a modification of the monodromy argument
which is used to prove the Noether-Lefschetz theorem (see e.g. lecture 4 by
C.\Voisin in [CIME]). One still needs, however, th@tim is big except in a few
cases.

Remark2.4. If the Hodge numbers of our general hypersurfé@nd its smooth
imageY coincide,K y is an effective divisor angt(X) # 0, thenf must be an
isomorphism by Hurwitz’s formula

Kx = f*(KY) + R7

whereR is the ramification divisor. Indeed, it is easy to see #HatK y) # 0 and
HPA(X) = HP4(Y ) imply R = 0 and so eithey(X) = 0, or f is anisomorphism.

Also, straightforward computation shows thgtX) = 0 if and only if X is a
plane cubic.

In dimension 2, the proof of Theorem 1.1 is now ready. Indeed, as we assume
that degX') > 4, by the previous remark we only have to deal with the case when
Y has trivial Hodge numbers. But it is well-known (see for example [BPV], p. 230)
that such” either isP? or has the unit ball as its universal covering. So if there is a
morphismf from a smooth hypersurfacé onto suchy’, then, ifY is notP?, there
should also exist a holomorphic magrom X to the unit ball such that = = - g,
wherer is the universal covering map. This is clearly impossible.
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3. Fano threefolds

In dimension three, we have by Proposition2.1 that the Hodge structure of a
general hypersurface of any degree does not have non-trivial Hodge substructures,
but Remark 2.4 does not apply to a hypersurface of degree less then 5. So, for
sufficiently general cubics and quartic®itwe also have to show the non-existence
of maps to varieties with the same Hodge numbers. From Hurwitz’s formula it is
immediate that any possible smooth image of a cubic or a quartic under a finite
morphism is also a Fano variety.

Also (and this is a much more serious problem), we must exclude the possibility
of maps from a generic hypersurfacelifito threefolds with Hodge numbers of
3. Clearly, varieties with trivial Hodge numbers must be either Fano or of general
type. Contrary to the 2-dimensional case, where we had surfaces of general type
(which were all quotients of the unit ball), in the 3-dimensional case we get Fano
varieties:

LEMMA 3.0. A smooth threefold with Hodge numberséfis Fana
Proof. The general type case is impossible by the Bogomolov inequality

(c3(Y) —3c2(Y)) - Hy <0,

which applies to threefolds of general type with Picard grayfB]). Indeed, the
Riemann—Roch formula yields

ea(Y)ea(Y) = 24x(Oy) = 24x(O;9) = 24,

socx(Y) - Hy < 0, and this contradicts the above inequality.

So let us recall some general facts on Fano threefolds ([I]) which we will frequently
use.

The index of a Fano variefly is the maximal numbek such that- Ky = kL
with L ample. The index of a Fano threefold is at most 4, the only Fano threefolds
ofindex 4 resp. 3 are® resp. a quadric. I is very ample, then on a Fano threefold
of index two embedded h¥ there is a 2-dimensional family of lines. A general line
has trivial normal bundle, and there is a 1-dimensional subfamily of lines with the
normal bundle?d,1(1) @ Opi(—1) (in what follows, such lines on a Fano 3-fold of
index 2 are called—1, 1)-lines). So the Hilbert scheme of lines on such a 3-#6ld
is smooth, and ift is the universal family over this scheme, then the ramification
locus of the natural maggr X — V' consists exactly of—1, 1)-lines.

A Fano threefold of index on& with — Ky very ample has a 1-dimensional
family of lines. The normal bundle of a line is eith®p: & Op1(—1), or Op1(1) ®
Op1(—2). (1,—-2)-lines must, of course, form a closed subfamily, as these corre-
spond exactly to the singular points of the Hilbert scheme. However, this subfamily
need not be proper: for example, on the Fermat quartic each lfaei). If every
line on a Fano 3-fold” of index one ig(1, —2), then the divisor of lines ol is
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either a cone, or a tangent surface to a curve (if the geniiSisfat least 4, then

V' does not contain cones, so this divisor is always a tangent surface). If a general
line onV is (0, —1), then this is not the case apd¥ — V (with X the universal
family of lines) is an immersion along a general line. These last statements are easy
to see comparing normal bundles of a lineXirandV'.

From the classification of Fano threefolds with Picard number one ([I]) we have
that there is one family of Fano threefolds with the Hodge numbers of a cubic
(besides the family of cubics), namely, the family of varieligg— linear sections
of the Grassmannia@(1,5) c P4, and one family of Fano threefolds with the
Hodge numbers of a quartic (besides the family of quartics): these threefolds are
double covers of a quadric i, ramified along a quartic section of this quadric.

For this last family, we refer to the Theorem 4.1.1 below: it will be proven there that

a general hypersurface itf does not admit non-trivial morphisms to the quadric.

Let us consider the three remaining cases (note that the generator of the Picard
group is very ample in these cases).

PROPOSITION 3.1. (iA general quartic inP* cannot be mapped onto another
quartic. Any endomorphism of a general quarticrihis an isomorphism

(i) There are no finite maps from a general cubid4a.

(iii) Any finite map between smooth cubic®fris an isomorphism.

Proof. (i) A standard computation with Chern classes (see e.qg. [T]) yields that
if a quartic X is sufficiently general, then the surfag formed by lines onX is
of degree 320.

By a Torelli-type theorem ([Don]), a general quartic threef&lds determined
by its polarized intermediate JacobidfiX ). A morphismf: X — X' of quartics
induces an isogeny of(X) andJ(X'). This implies that the image of a general
guartic is also a general quartic, i.e., that if a general quartic admits morphisms of
certain degree onto other quartics, then among the images there will be quartics
with a surface of lines of degree 320 (of course to make this observation one
must first remark that morphisms of fixed degree from quartics to quartics form an
algebraic family, but this is more or less standard.)

Now if X' is a quartic with deg'x: = 320 and iff: X — X' is a morphism
such thatf*(Ox (1)) = Ox(m), then by Hurwitz’s formula

—Hxy =—mHx +R
we get that the ramification divisak is (m — 1)Hyx. As f~1(Sx+) = 80mHy
(counting with multiplicities), this means that some component of the inverse image
of S+ does not lie in the ramification.

Let C be an irreducible component of the inverse image of allimbich is not
contained in the ramification, and |Bx be the full preimage of. We have

(Zp/TI3)* = Op ® Op(—m).
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There is a natural morphism
¢ (Zo/IE)" = (In/TH) o

which must be an isomorphism at a smooth poinbofAlso, asC is reduced, the
map

P:Tx|c = (Zc/IE)*

must be a surjection at a general point@®f It is easy to see that the bundle
Tx(2) is globally generated. Therefore we must haveg 2. But this is already
a contradiction: we saw that, under an assumption that a general quartic admits
non-isomorphic maps onto other quartics, a general quartic must also occur as an
image of such a map. Composing these maps, we can get maps between quartics
of arbitrarily high degree. So we always hawe= 1, i.e. any surjective map from
a general quartic to a quartic is an isomorphism.

(iii) Let X be a cubic. Denote by x the surface formed b1, 1)-lines onX.

Again, a standard computation with Chern classes gives thatiiskd?lembed-
ding of the Fano surface inte” is canonical. Using this, one computes the degree
and genus of the following curvé on the Fano surface:

A = {lines intersecting a given (sufficiently general) line
and not coinciding witli},

(note thatA is complete if the normal bundle ofis trivial) and getg;(A) = 11.
For a general, the curveA is smooth ([CG]). Now there is a finite map A — [,
a(l') =1'nl,deda) = 5 (there are 6 lines through a general point of a cubic). The
ramification locus consists of points corresponding+d, 1)-lines, so the branch
locus consists of intersection pointsiandUx . We conclude by Hurwitz that the
degree of the ramification divisor is 30. The branch locus must then consist of at
least 8 different points, so the divisbry on our cubic is at least@x . As before,
one sees that if: X — X' is a finite map between cubics, then some component
of the inverse image of a genefal1, 1)-line is not in the ramification.

Denote byC' a reduced irreducible component of the inverse image of some
(=1, 1)-line, and byD the full inverse image of &1, 1)-line. Then

(Zp/TH)" = Op(m) © Op(—m).
Again we get a generic surjection
x:Txle = (Tn/TH)*|c-

But this time alreadyl’x (1) is globally generated, and thus = 1 andf is an
isomorphism.
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(i) From the arguments above it follows that it is enough to prove thaj a P°
such that lines on it cover only a hyperplane section divisor, can vary only in a
family of dimension less than 10 (as 10 is the dimension of the family of cubic
threefolds modulo projective equivalence). This is not difficult: in fact in this case
the scheme of lines must be non-reduced (Iskovskih shows in [I] that the reduced
one has bigger degree in the Grassmannian) and all the lines must be tangent to
some curve. Moreover, one checks easily that this curve is a rational normal octic.
Namely, denote a$' the surface of lines; a general hyperplane sectiols if
a curve of arithmetic genus 8, geometric gepysA) and with at least dggl)
singularities. Butd generates®, so dedA) > 8; therefore, equality holds and
pg(A) = p.(A) = 0 as stated.

Butallthe rational normal octics lying @r(1, 5) together with all their tangents,
are in the same orbit of A(G (1, 5)) = Aut(PP°). Indeed, such a curvé must be
the image of the Gauss magor some curve3 in P° ([Pi], Satz 11.2: the union of
lines inP", corresponding to points of a smooth curve which lie&ii, n) with
all its tangents, is either a cone, or a tangent surface to a curve), and it is not difficult
to conclude from the Rcker formulae for degrees of Gauss images ([GH], p. 270)
thatB is a rational hormal quintic.

Therefore one easily sees that the family of smdgifs containing a tangent
surface to somd (up to isomorphism) is either empty or 5-dimensional, so we are
done.

Remark3.2. In fact one even can make an explicit computation and show that
this family actuallyis empty, in other words, all 3-dimensional linear sections of
G(1,5) containing the tangent surface tb are singular. This shows that there
cannot exist a map fromnysmooth cubic to a smoofl,.

Again, according to the classification of Fano threefolds ([I]), apart feSrthere
are three types of Fano threefolds with trivial Hodge numbers

(1) the 3-dimensional quadr@s;

(2) Vs C P of index two; Vs is G(1,4) NP5, where the Grassmann variety of
lines inPP* is embedded if*® by Plicker coordinates;

(3) Voo C P13, Vs, is a Fano threefold of index one and sectional genus 12, with
— Ky very ample.

Varieties of typeV,, form a six-dimensional family and they admit several
descriptions ([M]). Recall that alV>,'s except the Mukai-Umemura variety,
constructed in [MU] have reduced Hilbert scheme of lines, that is, a general line
on such @’ is (0, —1). On V.3, any line is(1, —2) ([MU]). It was shown in [I]
that the surface formed by lines on &>, # V5 is linearly equivalent te-2Ky,,

([17) (on Vi3 itis then, of course, the anticanonical divisor, as the canonical class is
the generator of the Picard groupah.)

The geometry ol thus differs from the geometry of other varieti€s, and
this is important for the sequel. As we remarked alreadyygrall the lines must
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be tangent to some curve, and oVa # V35 this it not the case: the natural
mapp: X — Vay, whereX is the universal family of lines on thi,, must be an
immersion along a general line.

4. An application of infinitesimal Noether—Lefschetz theorem
4.1. THE QUADRIC

Let f be a (finite) map between a hypersurfakeof degreed > 3 in P* and a
3-dimensional quadriQ).

THEOREM 4.1.1. (a)-et f*(Og(1)) = Ox(m). Thenm < 3d.
(b) If X is generic, then there are no mapsX — Q.

Before starting the proof of the theorem, let us briefly recall the concept of Infini-
tesimal Noether—Lefschetz theorem from [CGGH]

Let Z be a smooth complete intersectiba N - - - N Dy, in a smooth projective
variety Y. Assume (for simplicity) thaZ is a surface, i.e. diff = k£ + 2 (this is
the only case we will need here). Define the subspfaj_:é(Z) of infinitesimally

fixedclasses inH11(Z) as a subspace of classes which stay infinitesimally in all
directions of typg1, 1), in other words (cf. [CGGH]).

S HiljjiL.(Z) if and only if it is in the right kernel of the multiplication map
T ® HYY(Z) — H%?(Z), whereT c HY(Z,Ty) is the Kodaira—Spencer image
of the tangent space 4tto the parametrizing spacé¢ HO(Y, EBf:l O(Dy))) (this
multiplication map is induced by the derivative of the period map).

We say that the Infinitesimal Noether—Lefschetz theorem holds for complete
intersections of typéD1, ..., Dy) (i.e. complete intersections of divisors linearly
equivalenttaDs, ..., Dy)in Y, iffor any smoothZ oftype(Ds, ..., Dy), H (Z)
consists exactly of those classes which are restrictioif$, dj-classes ory". The
Infinitesimal Noether—Lefschetz theorem implies the

Noether—Lefschetz theorem: For a genéliof type(D4, ..., D), Pid(Z) =
Pic(Y).

The locus of smoott¥ with Pic(Z) # Pic(Y) is called the Noether—Lefschetz
locus; for Z in the Noether-Lefschetz locus andin H%1(Z) which is not a
restriction of a class oy, the vector subspace @f which annihilates\ is the
Kodaira—Spencer image of the tangent space to the corresponding component of
the Noether—Lefschetz locus.

Proof. (a) Letl be a line on) andH a smooth hyperplane section@fwhich
contains it. AsQ is a homogeneous variety, for a general choicé afid H the
inverse image§’ = (1) andM = f~(H) will be smooth ([H], Ch. 3, Thm.
10.8). We have an exact sequence

0— NZ,H — N17Q — Ol(l) — 0.
As N, g = Oy, this sequence splits and o = O; @ O;(1).
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Itis easy to see tha¥c x = f*(IV;,9) = Oc ® Oc(m). So the exact sequence
0— No,m = Nex = Nax|le — 0
is just
0— Oc — Oc ®Oc(m) - Oc(m) — 0
and therefore splits. In particular, the map
a: H(N¢,x) — H°(Nyr x|c)

is surjective, so fo: HO(Ny;,x) — H°(Nu,x|c) we obviously have I8 C

Im «a. But this means that every infinitesimal deformationidfin X contains

an infinitesimal deformation of’. C is not linearly equivalent to a multiple of a
hyperplane section oM/, and this means that the Infinitesimal Noether—Lefschetz
theorem does not hold for divisors froff?(m)| on X . But as Ein and Lazarsfeld
prove in [EL], Proposition 3.4, this can only happemif< 3d.

(b) Now if the hypersurfac& is generic, we even have that every infinitesimal
deformation of\/ in P* contains an infinitesimal deformation©f M is a complete
intersection of typdd,m); it is known that the Infinitesimal Noether—Lefschetz
fails for such complete intersections only(if, m) = (2,1),(3,1) or (2,2) (see
e.g. [E2] for a much more general result).

Remark4.1.2. The proof of part (a) works faX any smooth threefold with
Picard grouf. In fact, the result from [EL] is as follows

Let X be a smooth projective threefold, andAebe a very ample an® a nef line
bundle onX. If Y is a smooth divisor from the linear syste8k x + 164 + B|,
then the Infinitesimal Noether—Lefschetz holds for Y.

So this means that we can easily bound the possible degree of a map from a smooth
threefold X with Picard (in fact, even Neron-Severi) grospo a 3-dimensional
quadric in terms o, (X) and the numerical index of .

A result of this type had been first obtained by C. Schuhmann ([S]) by different
methods. However, our bound fat seems to be better in some cases (e.g. for
hypersurfaces) and it uses less invariantXafin [S], the bound also depends on
c2(X)). Also, the method given here admits a simple generalisation for maps from
n-folds to n-quadrics (however, the bound grows very fast withas it becomes
more difficult to obtain all the vanishing results needed to prove Infinitesimal
Noether—Lefschetz). | hope to return to bounding degrees of maps to certain Fano
varieties in a forthcoming note.

Remarld.1.3. Infinitesimal Noether—Lefschetz theorem implies the ‘usual’ one,
butthe converse does not have to be true, asiitis clear from the discussion preceeding
the proof of Theorem4.1.1. Indeed, if a smooth complete intersegtisma very
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singular point of a component of the Noether—Lefschetz locus, then the Infinitesimal
Noether—Lefschetz can fail at. The obvious map from the Fermat hypersurface
of degree 2 in P* to the quadric provides us with an explicit example. Indeed, the
Noether-Lefschetz theorem holds for divisors frpmil s, | on F»,: any curve on a
generic intersection of the Fermat hypersurfaggwith a hypersurface of degree

n is a complete intersection ([Mois]). However, as the proof of Theorem4.1.1
shows, the infinitesimal Noether—Lefschetz cannot be true at a smooth divisor from
|nHp,, | if this divisor is the inverse image of a hyperplane section of the quadric.

4.2. ADISCUSSION

Trying to apply the same method to thgandV,’s, one must produce a curve

in a surfaceS on each of these Fano’s such tifat= 1D andM = f~1S are
smooth (sd should vary in a large family) and the sequence of normal bundles for
D C S C Vs (or Vap) splits (by the ‘sequence of normal bundles’ forC Y C Z

we mean, of course

0_>NX,Y —>NX72 —>Nyyz|X —>0)

This seems difficult on &>, which is not Mukai-Umemura (in the next section,
another method will be applied to deal with this class of varieties). On the Mukai—
Umemura variety,, and on thé’s, there are 1-dimensional families of lines such
that the normal bundle sequence for H C V5(V55) splits. Moreover, it is not
difficult to show that for a curve linke¢l, 1) to such a line the sequence of the
normal bundles also splits. However, there is a problem with the smoothness of
the inverse image of a hyperplane section passing through auiitke the normal
bundleO(—1) @ O(1) on Vs or a line with the normal bundl®(—2) & O(1) on
Vb.

Let us consider the case b, for example. It is easy to see that thel, 1)-
lines onVs are all tangent to some curve It can be shown that is a rational
normal sextic, so itis exactly the singular locus of the surfaéarmed by(—1, 1)-
lines and every—1, 1)-line intersects: at one point. Observe that we have the
following:

If /: X — Y C P"is afinite morphism of non-singular varieties and

H a hyperplane ir?” which does not contailr, thenf (Y N H) (%)
is non-singular at a poing if and only if f, (7, X) is not contained

in H.

Now it is clear what the problem is: even for a general choick ibfcan happen
that for the pointy = I N X there is some point in f~(y) such thatf, (T, X) =
T,l = T,%, in other wordsyk(f) = 1 along some component ¢f 3. This will
makez a singular point off ~*H if H containg.
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If, however,> does not lie il = { f(x):rk, f = 1}, then for a general choice
of [ we can find a smooth inverse image of a hyperplane section thiouatgarly,
I does notlie in; if z € INT, z # y, then foranyt € f~1(2) f.(T:X) # T,1. If
now T is not contained in the branch locus ffthen obviously we can choogé
through a general line dfi such thatf ~1H is smooth; ifT" is in the branch locus,
we just make the elementary observation that the tangent spa@catal therefore
the image of the tangent spaceXq stays constant along the lihe

Having a smoothV/ = f~1H, we argue as in Theorem 4.1.1. The result will
be as follows.

PROPOSITION 4.2If f: X — Vs where X is a general hypersurfacelit is a
finite morphism, then the curue tangent to all the{—1,1)-lines onVs must be
contained in the locu$f (z): 7k, f = 1}.

The case of &7}, is completely analogous.

5. Curves of low genus and a generdl>,

The other method to rule out finite morphisms frorgemeralhypersurface td/s
andV>; is to notice that if they exist, then there must be curves of low genus on
a general hypersurface irf (obtained for example as inverse images of lines or
conics), and thus try to get a contradiction with the results of C. Voisin ([V]) or L.
Ein ([E]). More concretely, the following results are due to Voisin:

(V1) LetX bethe universal family of hypersurfaces of degteeP”, d > n+2,
and X, a fiber. Then the bundlBX (1)|x, is generated by global sections.

(V2) Let X be a general hypersurface of degi¢e: n + 2in P". Then, for a
divisor D on X, any desingularization: D — D satisfies

The map given by the linear syste;, + o*(n + 2 — d) Hx| is generically
finite onto its image.

OBSERVATION 5.0. It follows easily from (V1) that iff: X — Vs is a finite
map (X is, as before, a general hypersurfaceprft) and degX > 6, then the
inverse image ofl’, the surface formed by—1,1)-lines onVs, is contained in
the ramification. Indeed, if some componentfof'T is not in the ramification,
then there exist a reduced irreducible compor@nif 1 = D, wherel is a
(—1,1)-line. As our hypersurface is general, this gives rise to a fathity X'. We
have the natural morphism

b TX|e = (Le/TE) e = (Te/TE)",
and this is surjective at a smooth point@f But there is also a morphism
¢:(Zo/IE)" = (In/ID)*|c = Oc(m) ® Oc(—m),

which is a generic isomorphism. A3Y (1)| x is globally generated, this is impos-
sible if m # 1. The casen = 1 obviously cannot occur.
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The same argument shows thafifX — V>, is a finite map, then the inverse
image of the surface of lines C V5, is in the ramification.

Using the results (V2), (V3), we are able to rule out the case of a non-Mukai—
UmemuraVaz,.

PROPOSITION 5.1There are no surjective morphisms from a general hypersur-
face inP* to aVay # Vs

Proof.Let f: X — V2, be a morphism. As in the paragraph 4.2, we consider the
surfaceM C X, whichis the inverse image of a hyperplane sectibof V55, such
thatH contains aliné. The pointis that if &2 is not the Mukai-Umemura variety,
then for a general choice éf andi the surfacell has very simple singularities.

LEMMA 5.2. One can chooskand H so thatM is smooth but for a finite number
of A;,_1-singularities(i.e. of singularities locally given by? +y°+ z* = 0), where
for each singular point of/ the numbetl is the number of sheets of the covering
f: X — V22 coming together in this point. Moreover, all the singular pointg/of
are mapped by to the same point oh

Proof. By Bertini, only points off ~1(1) can be singular on the inverse image
of a generalH O [. We notice that on ouV», there does not exist a curve such
that all lines are tangent to it (see the end of Paragraph 3). Therefore, if a general
line | passes through the poinissuch that at some point; € f1(p;) we have
7k(f)q,; = 1, then the image spaag; = f.(T, ;X) C T}, V22 cannot be the
tangent space tb We can suppose thatlies in the branch locus of. Then at
all the other points of we have a finite number of 2-dimensional images of the
tangent spaces t&, say planeg’, ; at a pointt € [. Notice that at a smooth point
of the branch locus there is only one plafg which coincides with the tangent
plane to the surfacg formed by lines.

Now we recall the observation)which says that as soon as our hyperplahe
does not pass throudh ; orv; ;, then the inverse image &f will be non-singular
at the corresponding point. Of course a general hyperplane will pass through some
P, ;’s, but we can choose a hyperplafflesuch that it passes only through those
of the planes’, for which ¢t a smooth point of the branch locus, and, moreower,
satisfies the following property.

Near each poing € f~1t, we can write the may as

u==x, v=y, w=2z" ()

where(z,y, z) resp.(u,v,w) are local coordinates neag resp.t,
andk = k(q) is a positive integer.

Obviously, we can also assume that in these local coordinates ouiidigaen
byw =0,u = 0.

In fact there will be exactly one poing such thatd containspP;,, i.e. is tangent
to S, and at this point the intersection iofvith the other componemt of H N Sy
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will be transversal. (This is because we can chd@seich thatd does not contain
other lines except thenA will induce a section in the universal family of lines on
Va2, 1.e. will intersect in the singular points of plus at one non-singular point,

in which the intersection will be transversal.) This means that in local coordinates
near this point we hav# given as

w 4 fa(u,v) + awu 4+ bwv + cw? + higher order terms

with f, a non-degenerate quadratic form (the coefficient & non-zero because
H is smooth). In other words, the inverse imagédbivill be locally given as

ZF . (invertible power series+ fa(z,y) + g(z,y),

whereg(zx, y) starts with cubic terms, and this is obviously &p i-singularity.

It is well-known that anAj_i-singularity is resolved by a chain of rational
curvesEy, ..., By 1, B> = —2,F; - E; = 1if |i — j| = 1 and 0 otherwise. Let us
assume the following notations.

e m: M — M is the resolution of singularities;

eg=1f-m M — H;

e C is a reduction of some irreducible componentfof'(/); at a general point
of C there aré: sheets of the covering coming together($passes through
Ag_1-singularities ofM; C is smooth at these singular pointsdf because
of (xx);

e C is the proper transform af on M; C = C;

e C' maps tol, say, generically:: 1, so onC' we haven singular points of\/,
saypi, ..., pn, and a poinp; is resolved by a chai#; 1, ..., E; ;1.

An elementary computation shows that we can assﬁ}neEM = 1, and
C'Eiyl = 0forl 75 1.

LEMMA 5.3.
~ n k—1

g (1) =kC+> > (k—j)Ei; + F,
i=1j=1

whereF - E; ; = 0for1<i<n,1<j <k—1,andF - C > 0 (in other words,
F comes from other components of the inverse imagp of
Proof. Obviously

n k-1
g (1) = kC + Z Z a; j B ; + F,
i=1j=1

anda; ; are easy to compute from the equaliti¢$!) - £; ; = 0 for anysi, j.
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Now we have
g (1) - kC = k(L g.(C)) = —2kn,

(as on a smooth K3-surfadé we havel? = —2),

n k-1
(kC)? = (g"(1) = DD _(k = §)Eij — F) - kC
i=1j=1
< —2kn— (k—1)kn = —(k + 1)kn,
so(C)2 < —((k + 1)/k) - n. Notice that
n  dedC)
dedf) dedf (1)’

son = m - dedC). Now K - = 7*(On (d + m — 5)), so we can estimate from
above the arithmetic genus 6fand therefore of’. We get

2p0(C) — 2 < (d - % - 5) degC.

To finish the proof, suppose now thatis as small as possible, i.e. that all
components of the inverse image$have multiplicity at least. As S is linearly
equivalent to 21y,,, we have thak < 2m with equality if and only if the set-
theoretic inverse image & is a hyperplane section of. In other cases; < m.

If X is a quintic, we therefore get thatis a rational curve of degree at most
four. But this is a contradiction, because it is well-known that on a general quintic
there is only a finite number of such curves, and as ourilinel, varies in a 1-
dimensional family,we also have th@must vary.

If deg(X) > 6, we can apply the theorems of Voisin mentioned above. Namely,
if m/k > 1, this is a contradiction with (V2); if the set-theoretic inverse image
of S is a hyperplane sectioA of X, or contains such a hyperplane section, then
by Zak’s theorem on tangencigshas only isolated singularities. Oty we have
a 1-dimensional family of curves which are reductions of irreducible components
of the inverse images of lines df},. A general one of these curves will not pass
through the singularities od. This and the computation above imply that on the
desingularization oft we will have a 1-dimensional family of curves with negative
squares, which is impossible.

If m = k, we get a contradiction with (V2).

Finally, if X is a quartic or a cubic, the simplest argument is to remark that, asin
the Proposition 3.1, some component of the inverse imageofi», does not lie
in the ramification (recall tha§ = 2H,,,) and so we can come to our conclusion
as in that proposition.
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Remarkb.4. It is difficult to argue in the same way fok and V3, , since the
singularities we get on the inverse image of a hyperplane section containing a
(—1,1) or (—2, 1)-line can become uncontrollable. There is a theorem by L. Ein
([E]) which reads as follows for generic hypersurfacesin

If Y is a family of smooth curves on a generic hypersurf&cef degreeai in
P* such that the members of this family cover a subschedeasidimension
k, then for a curv&” € Y we have tha¥y + (8 — k — d) Hy s effective.

If we take preimages of lines o (resp. conics 01v2,) as memberd” of a
family ), we getKy = (d—5)Hy, i.e. we have the smallest canonical class which
agrees with Ein’s theorem. The results of Voisin cited above improve these of Ein
(V3) is an improvement fok = 1 and (V2) fork = 2. However, | do not know
how to obtain an improvement féar= 3.
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