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Abstract

We provide a closed formula of Bowen type for the Hausdorff dimension of a very general shrinking
target scheme generated by the nonautonomous dynamical system on the interval [0, 1), viewed as R/Z,
corresponding to a given method of Cantor series expansion. We also examine a wide class of examples
utilising our theorem. In particular, we give a Diophantine approximation interpretation of our scheme.
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1. Introduction

Recall that in the framework of autonomous dynamical systems, the evolution process
of the system is determined by continuously iterating a fixed map. In contrast, the
system is said to be nonautonomous if at each stage of the iteration process we
allow the action of a possibly different map. In this paper, we will be concerned
with a shrinking target problem in the context of the nonautonomous dynamical
system generated by a sequence Q = (qn) ∈ NN

≥2. Given such a sequence, the maps
TQ,n : R/Z→ R/Z and T n

Q : R/Z→ R/Z are defined for any n ∈ N as follows:

TQ,n(x) = qnx (mod 1),
T n

Q(x) = TQ,n ◦ · · · ◦ TQ,1(x) = qn · qn−1 · · · q1x (mod 1).
(1.1)

This system was first introduced and investigated in an implicit manner by Cantor in
[6], where he considered what is now called the Q-Cantor series expansion of a real
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number x, that is, the (unique) expansion of the form

x = ω0 +

∞∑
j=1

ω j

q1q2 · · · q j
,

whereω0 = bxc,ω j is in {0,1, . . . ,q j − 1} for j ≥ 1 andω j , q j − 1 for infinitely many j.
The relation between this definition and the nonautonomous dynamical system (1.1)
is that for every n ≥ 1, ωn = bqnT n−1

Q (x)c, where T n−1
Q (x) denotes the representative of

T n−1
Q (x) in [0, 1).

The study of normal numbers and various statistical properties of real numbers
with respect to large classes of Cantor series expansions dates back to Erdős and
Rényi [7, 8] and was continued by Rényi [16–18] and Turán [23]. Later, certain aspects
of this area were extensively studied by many authors, notably by Galambos [10],
S̆alát (see for example [19]) and Schweiger [20]. Most recently, the second author and
his collaborators continued to develop this area of research in [1, 2, 14], where the
primary results concern various concepts of normality, relations between them and the
Hausdorff dimensions of appropriate significant sets.

In this paper, we follow a different approach. We are prompted by the (relatively)
recent activity focused on determining the Hausdorff dimension of the set of points
‘hitting’ some shrinking target infinitely often. As with research regarding Cantor
expansions, one may trace this approach to the pioneering work of Besicovic̆ [3] and
Jarnı́k [13] with respect to continued fraction expansions. There are also connections
to conformal dynamics, Kleinian groups and conformal iterated function systems; we
list here a (by no means exhaustive) selection for the reader’s convenience: [4, 5, 11,
12, 15, 21, 22, 24]. We emphasise that unlike all the papers mentioned above, we work
in the context of a nonautonomous dynamical system, namely the one defined in (1.1).

The shrinking target scheme considered in the present paper is quite general, at least
in the context of sequences. Let α = (αi)∞i=1 be a sequence of nonnegative real numbers
and, for each n ≥ 1, let

α(n) :=
n∑

i=1

αi.

Let
D

Q
∞(α) = {x ∈ X := R/Z : ‖T n

Q(x)‖ ≤ e−α(n) for infinitely many n},

where ‖ · ‖ denotes distance to the nearest integer. We would like to bring the reader’s
attention to the fact that the set DQ

∞(α) has a precise Diophantine approximation
interpretation. A general scheme of Diophantine analysis has been laid down by three
of the authors in [9]. In the setting considered here, for every integer n ≥ 1, denote by
Qn the set of all Q-adic rationals of order n in X, that is, the set of all numbers of the
form

n∑
j=1

ω j

q1 · · · q j
,
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where ω j ∈ {0, 1, . . . , q j − 1}. For every Q-adic rational number w ∈ Q :=
⋃

n≥1 Qn, let
HQ(w) denote the least integer n ≥ 1 such that w ∈ Qn. We can interpret HQ(w) as
the height (induced by the sequence Q) of the number w. The triple (X,Q,HQ) then
forms a Diophantine space, that is, a complete metric space, a dense set and a function
measuring the ‘complexity’ of elements of this dense set. Define the (approximation)
function ψ : N→ (0,∞) as follows:

ψ(n) =
exp(−α(n))

q1 · · · qn
.

In Diophantine approximation terminology, a point x ∈ X is called ψ-approximable
(relative to the Diophantine space (X,Q,HQ)) if there exists a sequence (wk)∞1 in Q
converging to x with the property that |x − wk| ≤ ψ(HQ(wk)) for all k ≥ 1. We observe
then that DQ

∞(α) is precisely the set of ψ-approximable numbers, a set which is a
standard object of study in Diophantine analysis.

Using the definitions above and prompted by thermodynamic formalism, given
s ≥ 0, we define the (upper) pressure function

PQ,α(s) := lim sup
n→∞

1
n

[(1 − s) log(q1 · · · qn) − sα(n)]. (1.2)

Note that since qi ≥ 2 and αi ≥ 0, the function s 7→ PQ,α(s) is strictly decreasing in its
domain of finiteness. We further define

bQ(α) := sup{t ≥ 0 : PQ,α(t) > 0} = inf{t ≥ 0 : PQ,α(t) < 0}.

Theorem 1.1. For any sequence α = (αi)∞i=1 of nonnegative real numbers,

HD(DQ
∞(α)) = bQ(α) = lim sup

n→∞

log(q1 · · · qn)
log(q1 · · · qn) + α(n)

.

Here and in what follows, HD denotes Hausdorff dimension.
The general form of this theorem does not differ much from the ones obtained in the

papers mentioned above. What is perhaps surprising is that it holds in such generality
in the realm of a nonautonomous system. We note that it also covers the autonomous
case of q-ary sequences, where q ≥ 2 is an integer; simply consider the constant
sequence Q = (q)∞1 , every term of which is equal to q. It also captures the cases
of periodic and eventually periodic sequences Q, that is, the ones that can also be
approached with the methods of autonomous dynamical systems.

We prove Theorem 1.1 in the next section and in Section 3 we describe a number
of classes of examples which illustrate its content and scope.

2. Proof of Theorem 1.1

Fix an arbitrary t > bQ(α), so that PQ,α(t) < 0. For each n ≥ 1, let Qn = q1 . . . qn and,
for each j = 0, . . . ,Qn − 1, let

∆n, j(α) :=
{
x ∈ X :

∥∥∥∥∥x −
j

Qn

∥∥∥∥∥ ≤ e−α(n)

Qn

}
,
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so that

D
Q
∞(α) = lim sup

n→∞

Qn−1⋃
j=0

∆n, j(α) =

∞⋂
N=1

∞⋃
n=N

Qn−1⋃
j=0

∆n, j(α).

We have
|∆n, j(α)| = 2(Qn)−1e−α(n)

and thus, for all sufficiently large n ≥ 1,

Qn−1∑
j=0

|∆n, j(α)|t = Qn(2(Qn)−1e−α(n))t = 2tQ1−t
n e−tα(n) ≤ 2t exp

(1
2

PQ,α(t) · n
)
.

Thus, for all sufficiently large N ≥ 1,

∞∑
n=N

Qn−1∑
j=0

|∆n, j(α)|t ≤ 2t
∞∑

n=N

exp
(1
2

PQ,α(t) · n
)

and so

Ht(DQ
∞(α)) ≤ 2t lim

N→∞

∞∑
n=N

exp
(1
2

PQ,α(t) · n
)

= 0,

where Ht denotes Hausdorff t-dimensional measure. Hence, HD(DQ
∞(α)) ≤ t and, since

t > bQ(α) was arbitrary, HD(DQ
∞(α)) ≤ bQ(α).

We now prove that HD(DQ
∞(α)) ≥ bQ(α). Fix 0 ≤ s < bQ(α) and fix a sufficiently

fast growing sequence (ni)∞i=1, to be determined later in the proof, along which the lim
sup in (1.2) is achieved, that is, for which

lim
l→∞

1
nl

[(1 − s) log(Qnl ) − s · α(nl)] = PQ,α(s) > 0. (2.3)

For each l ≥ 1, let
S l = {∆nl, j(α) : j = 0, . . . ,Qnl − 1}.

We assume that n1 is chosen large enough so that α(n1) > log(2) (ignoring the case
α(n) ≤ log(2) for all n as trivial), so that for each l ≥ 1, S l is a disjoint collection.
Now we construct inductively a sequence of sets (Rl)∞l=1 as follows. We start by letting
R1 = S 1. For the inductive step, suppose that the set Rl ⊆ S l has been defined. Then
we let Rl+1 be the set consisting of all elements ∆ ∈ S l+1 contained in some interval
from the family Rl. We define the following nonempty compact set:

K :=
∞⋂

l=1

⋃
(S l) =

∞⋂
l=1

⋃
∆∈S l

∆.

For every ∆ ∈ S l, let
Rl+1(∆) := {Γ ∈ Rl+1 : Γ ⊆ ∆}.
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Then
Rl+1 =

⋃
∆∈S l

Rl+1(∆)

and, for all ∆ ∈ S l,

#(Rl+1(∆)) ≥
|∆|(

Qnl+1

)−1 − 2 =
(Qnl )

−1e−α(nl)(
Qnl qnl+1 · · · qnl+1

)−1 − 2

= qnl+1 · · · qnl+1 e−α(nl) − 2 ≥
1
2

qnl+1 · · · qnl+1 e−α(nl), (2.4)

where the last inequality holds provided that nl+1 ≥ 1 is large enough. We shall now
recursively define maps ml : Rl → [0, 1], l ≥ 1, as follows. Let m1(∆) = 1/#(R1) for all
∆ ∈ R1. Proceeding inductively, fix ∆ ∈ Rl and, for every Γ ∈ Rl+1, set

ml+1(Γ) :=
ml(∆)

#(Rl+1(∆))
.

Then it is easy to see (for example, by choosing arbitrary measures extending the
functions ml and then taking a weak limit) that there exists a Borel probability measure
m supported on K such that m(∆) = ml(∆) for all l ≥ 1 and ∆ ∈ S l. Equation (2.4) shows
that

ml+1(Γ) ≤ 2ml(∆)eα(nl) · (qnl+1 · · · qnl+1 )−1

and iterating this estimate gives

m(∆) ≤ 2l−1 exp(α(n1) + α(n2) + · · · + α(nl−1)) · (Qnl )
−1. (2.5)

Let x ∈ K be arbitrary. We want to show that there exists some C > 0 independent of x
such that for every r > 0

m(B(x, r)) ≤ C · rs. (2.6)

Since m is a probability measure, it is of course enough to show this for all small
enough r > 0. Fix r ∈ (0, e−α(n1)(Qn1 )−1) and then let l be the largest integer such that

e−α(nl) · (Qnl )
−1 ≥ r. (2.7)

By our choice of r, we have that l ≥ 1. Now, cover B(x, r) by a union of intervals of
the form [( j − 1/2)/Qn, ( j + 1/2)/Qn], j = 0, . . . ,Qn − 1. We can do it by taking no
more than

r
(Qnl+1 )−1 + 2 ≤ 2rQnl+1

such intervals. But then we can also cover K ∩ B(x, r) by at most 2rQnl+1 intervals of
Rl+1. By invoking (2.5) and the fact that the measure m is supported on K,

m(B(x, r)) ≤ 2rQnl+1 2l exp(α(n1) + α(n2) + · · · + α(nl)) · Q−1
nl+1

= 2l+1r exp(α(n1) + α(n2) + · · · + α(nl)).
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Hence, in order to show that (2.6) holds, it is enough to check that

2l+1 exp(α(n1) + α(n2) + · · · + α(nl)) ≤ C · rs−1.

Because of (2.7), and since s < bQ(α) ≤ 1, it is enough to show that

2l+1 exp(α(n1) + α(n2) + · · · + α(nl)) ≤ C(Qnl )
1−s exp((1 − s)α(nl)).

Equivalently,

(l + 1) log 2 + α(n2) + · · · + α(nl−1) ≤ log C + (1 − s) log(Qnl ) − s · α(nl).

But, because of our choice of s, we have PQ,α(s) > 0, so, by (2.3),

(1 − s) log(Qnl ) − s · α(nl) ≥ 1
2 PQ,α(s) · nl

for all large enough l. Thus, it suffices to verify that

1
2 PQ,α(s) · nl ≥ (l + 1) log 2 + α(n1) + α(n2) + · · · + α(nl−1) − log C.

This can be done by defining nl inductively to be large enough depending on
n1, . . . , nl−1 and on l. Note that this choice does not conflict with the requirement
(2.3). This completes the proof that HD(DQ

∞(α)) = bQ(α).
To finish the proof, we show that bQ(α) = δ := lim supn→∞ log(Qn)/(log(Qn) + α(n)).

If s > t > δ, then, for all n sufficiently large,

log(Qn)
log(Qn) + α(n)

≤ t, α(n) ≥
1 − t

t
log(Qn)

and thus

PQ,α(s) ≤ lim sup
n→∞

1
n

[
(1 − s) log(Qn) − s

1 − t
t

log(Qn)
]

= s
(1 − s

s
−

1 − t
t

)
lim inf

n→∞

log(Qn)
n

≤ s
(1 − s

s
−

1 − t
t

)
log 2 < 0

and so s > bQ(α). Conversely, if s < t < δ, then, for infinitely many n,

log(Qn)
log(Qn) + α(n)

≥ t, α(n) ≤
1 − t

t
log(Qn)

and thus

PQ,α(s) ≥ lim sup
n→∞

1
n

[
(1 − s) log(Qn) − s

1 − t
t

log(Qn)
]

= s
(1 − s

s
−

1 − t
t

)
lim sup

n→∞

log(Qn)
n

≥ s
(1 − s

s
−

1 − t
t

)
log 2 > 0

and so s < bQ(α).
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3. Examples
In this section we consider a few classes of examples. Having proved Theorem 1.1,

our task reduces to examining sequences (qn)∞n=1 with appropriate arithmetical
properties. Our examples show how to get a very explicit closed formula for the
Hausdorff dimension ofDQ

∞(α) for many classes of sequences (qn)∞n=1.
Our first example follows directly from Theorem 1.1.

Example 3.1. Let G(a1, . . . ,an) denote the geometric mean of the positive real numbers
a1, . . . , an. Suppose that Q is eventually periodic. That is, we can write Q in the form

(d1, d2, . . . , dk, p1, p2, . . . , pm).

Let αn = c > 0 for all n. Then α(n) = cn for all n.

A short calculation shows that

HD(DQ
∞(α)) =

log G(p1, . . . , pm)
log G(p1, . . . , pm) + c

.

In particular, if Q = (2, 3, 2, 3, . . .), then HD(DQ
∞(α)) = log

√
6/(log

√
6 + c). As

mentioned in the introduction, one could obtain this result by the methods of
autonomous dynamics. This is particularly transparent in the case when qn = b for
all n.

We observe that if
L = lim inf

n→∞

α(n)
log(Qn)

,

then Theorem 1.1 says that

HD(DQ
∞(α)) =

1
1 + L

, (3.8)

with the convention that the right-hand side is 0 if L =∞. On the other hand, we have
the following simple observation.

Observation 3.2. Let L ∈ R ∪ {±∞} and let (an)∞n=1 and (bn)∞n=1 be two sequences of
positive real numbers such that

∞∑
n=1

bn =∞ and lim
n→∞

an

bn
= L.

Then
lim
n→∞

a1 + a2 + · · · + an

b1 + b2 + · · · + bn
= L.

Combining Observation 3.2 with (3.8) yields the following result.

Corollary 3.3. Suppose that the limit

L := lim
n→∞

αn

log(qn)
exists in [0,∞]. Then

HD(DQ
∞(α)) =

1
1 + L

,

with the convention that the right-hand side is 0 if L =∞.
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The next two examples follow directly from Corollary 3.3.

Example 3.4. Suppose that Q is a sequence such that limn→∞ qn/nk ∈ (0,∞) for k > 0
and αn = c log n for c > 0. Then

HD(DQ
∞(α)) =

k
k + c

.

For example, if qn = n + 1, then HD(DQ
∞(α)) = 1/(1 + c). As another example, if

qn = 2 +

⌊ √
n +
√

n cos n
3
√

n

⌋
,

then HD(DQ
∞(α)) = (1/6)/(1/6 + c).

Example 3.5. Suppose that Q is a sequence such that limn→∞ qn/bn ∈ (0,∞) for b > 1
and αn = cn for c > 0. Then

HD(DQ
∞(α)) =

log b
log b + c

.

For example, if qn = 2n, then HD(DQ
∞(α)) = log 2/(log 2 + c).
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[20] F. Schweiger, ‘Über den Satz von Borel–Rényi in der Theorie der Cantorschen Reihen’, Monatsh.

Math. 74 (1969), 150–153.
[21] B. Stratmann, ‘Fractal dimensions for Jarník limit sets, the semi-classical approach’, Ark. Mat. 33

(1995), 385–403.
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