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0. Introduction. Let k be a local field, with char(&) ^ 2. A quadratic space V over 
k is a finite dimensional vector space together with a non-degenerate quadratic form 
Q: V —> k. The special orthogonal group SO(V) consists of all linear maps T: V —> V 
which satisfy: 

Q(Tv) = Q(v) for all v and det T = 1. 

Assume that dim V > 2, and let v be a vector with Q{v) ^ 0. The orthogonal com­
plement W = (v)1 is a quadratic space over £, and SO(W) is the subgroup of SO(V) 
which fixes the vector v. In this paper, we study the restriction of irreducible, admissible 
complex representations of the locally compact group SO( V)(k) to the closed subgroup 
SO(W)(k). 

It is convenient to formulate this problem as follows. Let TT — ix\ ®7T2 be an irreducible 
representation of the product group G = SO( V)(k) x SO(W)(k), where ir\ is an irreducible 
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representation of SO(V){k) and TT2 is an irrreducible representation of SO(W)(k). Let ^ 
be the contragredient of 7T2, which is the representation on the space of smooth vectors 
in the algebraic dual space Hom(7T2, C). The group H = SO(W)(k) embeds as a subgroup 
of SO(V)(k), and hence embeds diagonally as a subgroup of G. There is a canonical 
isomorphism of complex vector spaces: 

(0.1) Hom//(7r, C) = Hom^TTi, T#). 

We say that ir^ appears with multiplicity dim Hom//(7Ti, TT^) = dimHom#(7r, C) in the 
restriction of TT\ to //. 

Our problem is therefore reduced to computing the dimension of Hom//(7r, C), for 
any irreducible representation 7r = TT\ ® rc2 of G. I. Piatetski-Shapiro and S. Rallis, 
following ideas of J. Bernstein, have recently shown that the vector space Hom#(7r, C) 
has dimension < 1, so the problem is to identify those irreducible representations n 
which admit a non-trivial //-invariant linear form. We give a precise conjectural answer, 
which we verify in many cases. 

Our conjecture assumes the Langlands parametrization of irreducible representations 
of G, in Vogan's revised form. The recipe for computing the space Hom//(7r, C) involves 
the local root numbers of symplectic representations of the Weil-Deligne group of k. 
Since the signs of these root numbers are mysterious enough in their own right, our 
conjecture might also be viewed as giving a representation-theoretic interpretation of 
their values ! 

We also treat the question of restriction of irreducible automorphic representations, 
which is related to central critical values of L-functions. 

ACKNOWLEDGEMENTS. We wish to thank W. Schmid, who patiently answered our 
questions on the discrete series, and D. Vogan, who carefully explained his beautiful ideas 
[V] on the Langlands parametrization. The surprising result [H-Kl] of M. Harris and 
S. Kudla on the restriction of non-holomorphic discrete series representations of Sp4(IR) 
to the subgroup SL2(IR) x SL2(IR) was a critical signpost in the formulation of our general 
conjectures. 

1. The Langlands parametrization. Let k be a local (= locally compact) field, 
and let G be a connected, reductive algebraic group over k. We review the conjectural 
Langlands parametrization of irreducible, admissible, complex representations IT of the 
group G = G(k). For details, the reader should consult [Bo]. 

Let W(k)f denote the Weil-Deligne group of k, and let T = Ga\(k/k). The L-group of 
G is a semi-direct product 

(1.1) LG = v G x T , 

where VG is (the complex points of) a connected reductive algebraic group over C whose 
based root datum is dual to that of G over k. A Langlands parameter is a continuous 
homomorphism 

(1.2) ip:W(k)f-^LG 
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which satisfies certain additional conditions [Bo, §8]. In the non-Archimedean case, such 
a homomophism specifies a nilpotent element N in vg = Lie(vG). Two Langlands pa­
rameters are considered equivalent if they are conjugate by an element of VG. 

Langlands has conjectured that there is a decomposition of the set Yl(G) of isomor­
phism classes of irreducible, admissible, complex representations TT of G into finite sets, 
called L-packets 

(1.3) n(G) = u n , ( G ) . 

Moreover, the L-packets Il^(G) are indexed by the equivalence classes of Langlands 
parameters <p. We will admit this conjecture, which is only known to be true when k = R 
or C, or when G is a product of fairly simple groups like tori or GL2, in all that follows. 

2. Generic L-packets. In this section, we assume that G is quasi-split over k, with 
Borel subgroup B. Write B — J K XL, where U_ is the unipotent radical of B and T is a 
maximal torus contained in B. Let A be the maximal subtorus of T which is split over k. 
We write B — B(k), U = U_(k), T = T(k), and A = A(k) for the corresponding subgroups 
ofG. 

The abelianization Uab — U/[U, U] is a k-vector space, isomorphic to the direct sum 
of the simple root spaces Ua for the adjoint action of A on U. A linear functional 

(2.1) f:Uab^k 

is generic if it is non-zero when restricted to each simple root space Ua. Let -0 be a 
non-trivial additive character ofk and let/ be a generic linear functional. The composite 
group homomorphism 

(2.2) 0:U-+Uab-*k^ Sl 

f V> 

is called a generic character of U. 
The generic functional and characters are permuted by the adjoint action of T on U, 

and there are finitely many orbits. If Z is the center of G and ad(G) = G/Z is the adjoint 
group, the T-orbits form a principal homogeneous space for the finite abelian group 

(2.3) ad(G)(fc)/ ImG(fc) = \&I(H\T,Z) -+ Hl(T,G)). 

This follows from the fact that there is a single orbit when G is adjoint. If 0 is a generic 
character, and d an element of ad(G)(/:), we let 0d be a generic character in the translated 
orbit. 

Let C(0) be the 1-dimensional representation of U which corresponds to the generic 
character 0. Gelfand and Kahzdan [G-K] and Shalika [Sk] have shown that for any irre­
ducible representation TT of G, the complex vector space 

(2.4) Hom£/(7r, C(#))has dimension < 1. 
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If the dimension is equal to 1, we say the representation n is 0-generic. For an excellent 
discussion of generic representations, and a proof of (2.4), see [Ro]. We must be more 
precise about the definition of an admissable representation when h = R or C here. In 
most of the paper, a ($, A>module will suffice, but in (2.4) one needs a representation of 
G on a topological vector space and continuous linear maps to C(#) to obtain multiplicity 
< 1 results (cf. [Ks]). 

CONJECTURE 2.5. Let 6 be a generic character of U and let (p be a Langlands pa­
rameter for G. Then the complex vector space Q^u^iG) Hom£/(7r, C(6)) has dimension 
< 1. Furthermore, this dimension is independent of the T-orbitofd. 

If the direct sum in Conjecture 2.5 has dimension equal to 1, we say the parameter ip, 
or the L-packet 17^ (G) is generic. The following criterion was suggested by a remark of 
S. Rallis. 

CONJECTURE 2.6. Let Ad: LG —• Autc(vg) be the adjoint representation of the L-
group. The parameter ip: W(k)f —• LG is generic if and only if the local L-function 
L(Ad o<p, s) of the composite representation ofW(k)' is regular at the point s — 1. 

We have checked that this conjecture is true in most cases where the theory of L-
packets is known to exist. For example, it is true for k = R or C, or when G is a torus or 
GL„, or when k is non-Archimedean and the parameter <p is trivial on the inertia subgroup 
of W(k). It is also compatible with Shahidi's conjecture that tempered parameters are 
generic [Sh, 9.4], as the L-function L(Ad cxp, s) of a tempered parameter <p is regular in 
the half-plane Re(s) > 0. 

3. Vogan L-packets. We review Vogan's reformulation of the Langlands para-
metrization; for details, the reader should consult [V]. First, we recall the notion of a pure 
inner form of the group G. This will be a reductive group G' over k, which is an inner 
form of G together with some additional structure: a lifting of the 1-cocycle T —• G/Z 
from the quotient of G by its center Z to a 1-cocycle T —> G. We are only interested in the 
cohomology class of the lifted cocycle; the classes of pure inner forms of G correspond 
to the elements of the finite pointed set Hl (I\ G). Since the map Hl (T, G) —> H1 (T, G/Z) 
of pointed sets is (in general) neither injective nor surjective, an inner form of G can give 
rise to more than one pure inner form, or to none at all. 

For example, let V be an orthogonal space over k and let G = SO(V0. We assume that 
char(&) ^ 2. The pure inner forms of G are groups of the form G' = SO(V0, where V 
is an orthogonal space over k with the same rank and discriminant as V. The class of the 
pure inner form G' is determined by the isomorphism class of the orthogonal space V 
over k. 

Assume that G is quasi-split over k. Let </? be a Langlands parameter for G, and let 
C^ be the algebraic subgroup of VG which centralizes the image of <p in LG. Define the 
(finite) component group A^ of the parameter </? by 

(3.1) A^ = Cy/C* = 7ro(C^). 
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If G' is a pure inner form of G, let G' = G'(k). Since LG = LG', the parameter cp may 
also be a Langlands parameter for G'. (This will be the case if (p satisfies the condition 
[Bo, 8.2 (ii)] on relevant parabolics.) We let Yl^(G') be the corresponding L-packet for 
G', if it exists; otherwise, we let Y\^{G') be the empty set. 

Fix a generic character 9 of U once and for all. Then Vogan conjectures that there 
is a bijection (depending on the T-orbit of 0) between the set of admissible, irreducible 
representations IT' of the (classes of) pure inner forms G' of G and the set of pairs (</?, x)» 
where ip is a Langlands parameter for G and \ is an irreducible representation of the 
finite component group A^. The set 

(3.2) I \ = {7r ( ( / ? ,x ) :x£^} 

should be the disjoint union of the Langlands L-packets n(/,(G
/) over the classes of pure 

inner forms for G. We call II <̂  the Vogan L-packet of </?; as a set it should be independent 
of the choice of L-orbit for 6. Finally, if <p is a generic parameter for G and xo is the 
trivial representation of A^, the representation n(p, xo) should be the ^-generic element 
in the Langlands L-packet i \ (G) . 

4. Some recipes. One attractive aspect of Vogan's formulation of the parametriza-
tion is the simple recipes available for determining 

(4.1) the pure inner form G' which acts on the representation 7r(<̂ , x) in 11 ,̂, and 

(4.2) the other generic representations 7r(ip, x) m a generic Vogan L-packet 11^. 

These recipes rely on the following dualities of finite abelian groups: 

(4.3) H\k,G) x 7r0(Z(vG)r) -* Q/Z (ifc ̂  R,C) 

(4.4) H\k,Z) x H^r^iCG)) -> Q/Z. 

The first is due to Kottwitz [K]; in the non-Archimedean case the pointed set Hl(k,G) 
classifying pure inner forms has the structure of an abelian group. The second follows 
from the fact that the étale group scheme 7Ti(vG) is the Cartier dual of Z. For G a torus, 
both (4.3) and (4.4) are a restatement of Tate-Nakayama local duality. 

To settle question (4.1) when k ^ R, we remark that for any parameter (p there is a 
homomorphism 

(4.5) ^o(Z(vG)r) - , A^ = Tro(C )̂ 

whose image lies in the center of A^. Hence the irreducible representation x of A^ gives 
a character of 7ro(Z(v(G)r), which determines a pure inner form G' by (4.3). This is the 
group which should act on n((p9 x)- When k = R, the recipe for G' is more complicated. 

To answer question (4.2), one shows that for any generic parameter ip there is a bound­
ary homomorphism in Galois cohomology: 

(4.6) A ^ J f 1 ( r , 7 r 1 ( v G ) ) . 

https://doi.org/10.4153/CJM-1992-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-060-8


REPRESENTATION OF SO„ 979 

The T'-orbits of generic characters 6f on the quasi-split pure inner forms G' of G corre­
spond bijectively to the elements of the finite abelian group Hl (&, Z)» with # correspond­
ing to the identity element. By (4.4), each 0' determines a 1-dimensional representation 
X of A^ which factors through (4.6). The corresponding representation n((p, \) of G' 
should be ^'-generic. In particular, the Vogan L-packet n^ will contain a unique generic 
representation if and only if the map in (4.6) is the zero homomorphism. 

5. Invariants of orthogonal spaces. In this section, k is an arbitrary field with 
char(fc) ^ 2. Let V be an orthogonal space of dimension n over k. We recall the definition 
of the discriminant d{V) and the Hasse-Witt invariant e{V). For proofs of the assertions, 
see [Se, Chapter IV]. 

Let ( v i , . . . , vn ) be an orthogonal basis of V. If q(v) = \ ( v, v) is the quadratic form on 
V, let at = q(vi) in k*. Hence 

n n 

(5.1) q(v) = £ a,- • *? for v = X>/v,. 
1=1 /=1 

We define 

(5.2) d(V) = f\ai (mod**2). 

Then d(V) G k* /k* = Hl(k, (±1)) is a cohomological invariant of the space V, which 
is independent of the orthogonal basis chosen. If q is scaled by the factor a G fc*, then 
d(V) is scaled by the factor an in k*/k* . 

Let (a, b) be the Hilbert symbol in Br2(fc) = H\k, (±1)). We define 

(5.3) ^(V) = nfefly) in Br2(t). 

Again this is a cohomological invariant of V. 
When fc is a local field, the group k*/k* is finite and we have an injection B^ik)c—• 

(±1), which is an isomorphism if k ^ C. A class d G k* /k* gives a character 

(5.4) ud:k*/k*^(±l) 

a K-> («, J). 

6. Odd orthogonal groups. In this section, we assume k is a local field, with 
char(&) ^ 2. Let V be an orthogonal space of dimension 2m + 1 > 3 over £, and let 
G = SO(V) be the special orthogonal group of V. 

The L-group of G = G(k) is isomorphic to a direct product 

(6.1) LG = Sp2m(C) x T. 

Let <p: W(k)' •—> LG be a Langlands parameter for G; then </? is completely determined 
by its projection onto VG: 

(6.2) ¥>: W(*)' — Sp2m(C) - Sp(M) 
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where M is a symplectic space of dimension 2m over C. 
We may view M as a semi-simple representation of W(k), for k = R or C, and as a 

semi-simple representation of W(k) x SL2(C) when k is non-Archimedean. Let 

(6.3) M = 0Af (i) 

be its isotypic decomposition, and write 

(6.4) M(i) = ei-Ni 

with Ni irreducible and et — the multiplicity of Ni in M. The dual M(/)v is also an isotypic 
subspace of M = Mv, via the symplectic form. 

PROPOSITION 6.5. 1) IfM{i)y ^ Af(i'), then the centralizer ofV in M(i) © M(/)v is 
isomorphic to GL^.(C). 

2) IfM(i)y = M(i) and Ni is an orthogonal irreducible representation, then et = 2di 
is even and the centralizer of ' <p in M(i) is isomorphic to Sp2^.(C). 

3) lfM(i)y = M(i) and Ni is a symplectic irreducible representation, then the central­
izer of (f in M(i) is isomorphic to Oei(C). 

PROOF. 1) Write M(i) = Nt®W and M(/)v = M(j) = Nj ® Ww. Then the centralizer 
is GL( W), acting through the direct sum of the standard representation and its dual. 

2) and 3) Write M(i) = Ni (g) W, and let ( , )M be the symplectic form on M. There 
is a unique (up to scaling) invariant bilinear form ( , )# on Ni, and this determines a 
non-degenerate bilinear form (, )wonW such that (, )M = (, )N 0 ( » )w on M(0- The 
centralizer of <p is isomorphic to the subgroup of GL(W) which respects the form (, ) w . 
This group is symplectic or orthogonal, depending on the type of Ni. 

COROLLARY 6.6. The component group A^ = C^/C^p is an elementary abelian 
2-group, whose rank is equal to the number of distinct symplectic irreducible represen­
tations Ni in the decomposition ofM. 

If M is irreducible, A^ = (±1A/). In general, the element —\M ofZ^'G) is non-trivial 
in A^ if and only if M contains an irreducible symplectic representation Ni with odd 
multiplicity e^ 

PROOF. By the proposition, C^ is the direct product of groups isomorphic to GL^.(C), 
Sp2rf (C), and 0e.(C). Only the latter contribute to A<p. 

Now assume G is quasi-split: this occurs precisely when V contains an isotropic sub-
space of dimension m. Since Z = 1, there is a unique T-conjugacy class of generic 
characters 0 of U. Hence the Vogan correspondence defined in §3 is independent of any 
choices. 

The group 7r0(Z(vG)r) has order 2 and is represented by —1M- Hence, when k is 
non-Archimedean there is precisely one non-trivial pure inner form Gf of G. We have 
G' = SO(V/), where V is an orthogonal space of rank m — 1 with the same discriminant 
as V. The recipe of §4 states that the element 7r(< ,̂x) in the Vogan L-packet n^ is a 
representation of G' if and only if \{— \M) = — 1. 
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When k = R, the pointed set Hl(k,G) has cardinality m + 1. The pure inner forms 
G' have the form Gf = SO(V'), where V has the same discriminant as V and has rank 
0 < r < ra. One can show that ir(ip, \) is a representation of a group G' with 

(6.7) X ( - 1 M ) = e(V)/e(V)in (±1) = Br2(R), 

where e(V) and e(V) are the Hasse-Witt invariants defined in (5.3). 

7. Even orthogonal groups. In this section, k is a local field, with char(&) ^ 2. 
Let V be an orthogonal space of dimension 2m > 2 over &, and let G = SO(V) be the 
special orthogonal group of V. 

We define the normalized discriminant D — D(V) by the formula 

(7.1) D = (-l)md(V) in k*/k*\ 

where d(V) is defined in (5.2). Let 

(7.2) E = k[x]/(x1-D) 

be the quadratic discriminant algebra associated to V. 
The L-group of G — G(k) is isomorphic to a semi-direct product 

(7.3) LG = S02m(C) x T. 

The subgroup of T which fixes E acts trivially on VG = SO(M), where M is an orthogonal 
space of dimension 2m over C. If D ^ 1 (mod /c* ), so E is a field, the quotient Gal(E/k) 
acts on VG via conjugation by a simple reflection in 6>(M). Let ip: W(k)' —• LG be a 
Langlands parameter for G; then y? is completely determined by the map 

(7.4) <p:W(k)'-+0(M) 

with determinant the quadratic character associated to E: 

(7.5) det ip = uD on W(ifc)̂  = ifc*. 

Let M = 0M(/) be the isotypic decomposition of the associated semi-simple repre­
sentation of W(k) or W(k) x SL2(C), and write M(i) = etNi with Nt irreducible and a 
the multiplicity of Ni in M. Arguing exactly as in Proposition 6.5 and Corollary 6.6 one 
finds 

PROPOSITION 7.6. 1) IfM(i)v ^ M(i) then the centraliser of (p in M{i) 0 M(/)v is 
isomorphic to GL^.(C). 

2) IfM(i)v = M(i) and N( is a symplectic irreducible representation, then et — 2d{ is 
even and the centraliser of(p in M(i) is isomorphic to Sp2^.(C). 

3) IfM(ïf — M(i) and Nt is an orthogonal irreducible representation, then the cen­
traliser of(f in M(i) is isomorphic to Oei(€). 

COROLLARY 7.7. The component group of the centraliser of if in 0(M) is an el­
ementary abelian 2-group, whose rank r is equal to the number of distinct irreducible 
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orthogonal representations Ni in the decomposition ofM. The component group A^ of 
the centralizer ofip in VG = SO(M) is elementary abelian of rank — rorr~\, the latter 
case occurring when dim Ni is odd for some orthogonal irreducible representation Ni in 
the decomposition. 

If M is irreducible, A^ — (±1M)- In general, the element —\M ofZ(wG) is non-trivial 
in A^ if and only if M contains an irreducible orthogonal representation Ni with odd 
multiplicity ^. 

Now assume G is quasi-split, or equivalently that V has an isotropic subspace of di­
mension m — 1 over k. When D = 1 (mod k*2), G will then be split and V will contain 
an isotropic subspace of dimension m over k. 

PROPOSITION 7.8. If 2m = 2,9 = 1 is the unique generic character of U. 
If 2m > 4, the T-orbits of generic characters 6 of U form a principal homogeneous 

space for the finite abelian group ker(Hx(k,Z) —• Hl(k,G)) = NE* /k* , where E is the 
discriminant algebra. The T-orbits of generic characters 6 of U are in 1-to-l correspon­
dence with the G-orbits of codimension I subspaces W of V such that V = W® W1 and 
W is split over k. 

PROOF. When 2m = 2, the group G = SO(V) is a torus, so U = 1. 
When 2m > 4, Uab is the sum of simple root spaces: 

m-2 
(7.9) Uab= ®Li®L 

i= i 

with dim*(L|) = 1 and dim£(L) = 1. (When V is split, L,- is associated to the simple root 
(ei — ei+\ ), and L is the 2-dimensional k-vector space associated to the roots (em- \±em).) 
The maximal torus T ~ N^k* x (k* x E\), where E\ is the subgroup of norm = 1 ele­
ments in£*, acts on Uab as follows. The element (t\,..., fm_2, t, a) acts by multiplication 
by ti on £,, and by multiplication by ta on the E-vector space L. Hence the T-orbit of a 
generic functional/: Uab —• A: is determined by the restriction/^ of/ to L, and the group 
E* /k* • E\ ~ NE* /k* acts simply-transitively on the orbits. 

Now let W be a split codimension 1 subspace of V. Let X be a maximal isotropic 
subspace (of dimension = m — 1) of W, and let B be a Borel subgroup of G which is 
constructed from a maximal isotropic flag containing X. Let Uw = U C\ SO(W)(k) and 
Tw = m SO(W)(k). Then Uff ~ ®^Lt ® t is a sum of 1-dimensional simple root 
spaces for Tw ~ Yl™Tx

xk*. 
Since L — t ®k E, we obtain a generic linear functional g: L —> k by choosing a 

basis vector e for £ over k and defining g(e (g) a) = Tr^/^a). The T-orbit of a generic 
functional/: Uab —•* A: with/L = g is well-determined by the G-orbit of W, and we denote 
the resulting generic character of U (or rather, its T-orbit) by 8w-

Ifd lies in the subgroup NE* of £*, the quadratic space dV (where the form is scaled by 
d) is isomorphic to V over k. We obtain a codimension 1 split subspace dW -̂> dV ~V, 
whose G-orbit depends only on the class of d in NE* jk* . The T-orbit of the resulting 
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generic character 9dW is easily seen to be the translate (Ow)d of the 7-orbit of 8w by the 
class d. 

We now discuss the recipes in §4 for the quasi-split group G — 80(10. The group 
7ro(Z(vG)r) has order 2, and is represented by —1M, except in the special case when 
2m = 2 and D = 1 (mod k* ). In the special case, G ~ Gm has no non-trivial pure 
inner forms. In the other cases, when k is non-Archimedean there is precisely one non-
trivial pure inner form G' of G. If D = 1 (mod k*'\ then G' = SO( V), where V is an 
orthogonal space of rank m - 2 ; if D^ 1 (mod F2)thenG' = SO(V')with V = dVfor 
any class dink* — HE*. The recipe states that the element ir((p, \) in the Vogan L-packet 
n^ is a representation of G' if and only if X{—\M) — — 1- More generally, in all cases 
one has 

(7.9) X ( - 1 M ) = e(V)/e(V) in Br2(*) - (±1). 

If (f is a generic parameter and 2m > 4, the group Hl(k,Z) = k*/k* acts transitively 
on the set of generic representations in the Vogan L-packet n^. More precisely, if d is 
a class in k* /k* , we define a quadratic character of the component group A^ by the 
formula 

X : A ^ < ± 1 ) 

a ^ det(Ma=-l)(d\ 

where Ma=~l is the minus eigenspace for an involution in the centralizer of <p, which lies 
in the connected component determined by a. If the representation 7r(</?, xo) is 0-generic, 
then the representation 7r(</?, X) is ^-generic. If d G NE* this is a representation of G; 
otherwise it is a representation of G'. 

8. Orthogonal pairs. In this section, V is an orthogonal space of dimension > 3 
over k (with char(&) ^ 2) and W is a codimension 1 subspace of V with V — W® W1. We 
assume that the odd dimensional space in the pair is split, and that the even dimensional 
space is quasi-split of normalized discriminant D G k* /k* . Let E = k^/ix1 — D) be 
the discriminant algebra. 

Let G = SO(W) x SO(V). Then G is quasi-split over k and contains the diagonally 
embedded subgroup H — SO(W). We wish to study the problem of restricting an irre­
ducible, admissible representation n of G = G(k) to the subgroup H — H(k). By the 
results of §6 and §7, we have 

(8.1) LG = (Sp(Mj) x SO(M2)) x T 

where M\ and M2 are symplectic and orthogonal spaces over C. If dim V = 2m + 1, 
then dim M\ = dimM2 = 2m; if dim V = 2m + 2, then dim M2 = 2m + 2 and dim 
Mi = 2m. A Langlands parameter (f : W^)' —• LG is completely determined by the 
resulting homomorphism 

(8.2) <p = <pl x<p2: W(k)' -* Sp(Mi) x Q(M2) 
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with det (f2 — ^D- There is a canonical symplectic representation 

(8.3) r: LG -+ Sp(Mx ® M2) = Sp(M) 

obtained by taking the tensor product of the two standard representations of 0(M\) and 
Sp(M2). 

The pure inner forms G' of G arise from orthogonal spaces: 

(8.4) G' = SO(Wf)(k) x SO(V')(fc) 

which satisfy 

f dim W = dim W dim V = dim V 
( } J d(W) = d(W) d(V) = </( V) 

We do not assume that W embeds as a codimension 1 subspace of V'. If it does, 
we call the pure inner form G' relevant, and define the diagonally embedded subgroup 
H' — SO( W')(k) of G'. The embedding of//' into G' is unique up to conjugacy, by Witt's 
theorem. 

Let n^ be a Vogan L-packet for G. If the element 7ra in n^ is a representation of a 
relevant pure inner form G' of G, we define Hom//a(7ra, C) = Hom///(7ra, C). Otherwise, 
we set Hom#a(7ra, C) = 0. 

CONJECTURE 8.6. Let ip be a generic Langlands parameter for G and let H^ be the 
corresponding Vogan L-packet. Then the complex vector space ©^en Hom//a(7ra, C) 
has dimension = /. 

To give a more precise version of Conjecture 8.6, we must first fix a generic character 
#o of U as a base point corresponding to the trivial character \o of A^, then must specify 
which irreducible representation \ of A^ corresponds to the representation 7ra in n^ with 
Hom//a(7ra, C) = C. We will do this in §10, after some preliminaries on symplectic local 
root numbers in the next section. 

REMARK 8.7. It would be interesting to develop the correct notion of Gelfand pair 
which would give multiplicity < 1 results over a Vogan L-packet I \ , as in Conjecture 8.6 
or Conjecture 2.5. In both cases, we observe that the subgroup H has an open dense orbit 
on the ^-rational points G/B of the flag variety, with trivial stability subgroup. 

REMARK 8.8. The group 0(W'){k) x 0(V')(k) acts by conjugation on G', and this 
action gives an involution n »—> 7r* of the set of isomorphism classes of irreducible rep­
resentations. Since Hom///(7r, C) is isomorphic to HomH>(ir*, C), Conjecture 8.6 suggests 
that whenever IT and 7r* are in the same L-packet, they are isomorphic. This should follow 
from Corollary 7.7. 

REMARK 8.9. We have been assuming that char(&) ^ 2, but there is a similar theory 
in characteristic 2. If V is a quadratic space over a field of characteristic 2, with quadratic 
form Q: V —+ k and associated bilinear form (x,y) — Q(x + y) + Q(x) + Q(y), we say V 
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is non-degenerate if the radical V1 has dim V1 < 1; if V1 = (v) is 1-dimensional, we 
insist that Q(v) ^ 0. If dim V is even V1 = 0, and we may define the Arf invariant of V 
in Hl (&, Z/2Z) = k/p(k). If dim V is odd, V1 = (v) is 1-dimensional and we have the 
discriminant d(V) — Qiy) in k* /k* as before. 

In the setting of this paper, we would start with a pair of non-degenerate quadratic 
spaces W -̂> V with codim W = 1. If D is the Arf invariant of the even dimen­
sional space, the discriminant algebra is replaced by the étale quadratic fc-algebra E — 
k[x]/{^ +x + D). The group G = SO(W0 x SO(V) is connected and reductive, and con­
tains H = SO(W) as a diagonally embedded subgroup. The parameters ip and L-packets 
n^ are exactly as before. 

9. Symplectic local root numbers. In this section, we suppose we are given a 
symplectic representation 

(9.1) ip:W(k)'->Sp(U). 

Our aim is to define a local root number e(U) = ±1 . 

Fix a non-trivial additive character -0 of k, and let dx be the Haar measure on k which is 
self-dual for Fourier transform with respect to 0. Following the notation of Tate's article 
[Ta, 3.6], we define the e-factor eo(U) of the underlying representation of the Weil group 

(9.2) W W ( * ) —Sp(I/) 

by the formula: 

(9.3) eo(U) = eL(^o, VO = eD(w> ® ||1/2,^<&). 

If k is Archimedean, put e(U) — CQ(U). If k is non-Archimedean, let / be the inertia 
subgroup of W(k), let Fr be a geometric Frobenius which generates the quotient W(k)/I ~ 
Z, and let q be the cardinality of the residue field. Let N be the nilpotent endomorphism 
of U given by </?, and let U*N=0 = ker(7V: U1 —> U1). We define 

(9.4) e(U) = e0(U) - det(-Fr .q^l//l/N=0). 

PROPOSITION 9.5. The local root number e(U) is independent of the choice ofx^ and 

satisfies e(U)2 = 1. 

PROOF. Since <po is self-dual and det <̂ 0 = 1, the formulae in [Ta, 3.6] show that 
ezX^o, ^) is independent of ip and satisfies ezX^o, VO2 = 1-

The fact that, in the non-Archimedean case, det(— Fr -q~xl2\ U1 / U!
N=l0) = ±1 is 
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proved in [Gr, 7.9]. 

NOTE 9.6. A similar argument gives a local root number e(U) = ±1 for a special 
orthogonal representation 

ip: W(k)' - • SO(U). 

In this case, there is an interpretation of the sign of e(U) in terms of the liftability of if 
to Spin(£/), due to Deligne [De]. 

The local root number e(U) is additive for direct sums of symplectic representations: 

(9.7) c(C/i 0 U2) = e(Ui) • e(U2). 

If U is zero-dimensional, we agree that e(U) = +1. Here is a calculation of e(U) in a 
simple case. 

PROPOSITION 9.8. Assume that U ~ P @ Pv, where P is a representation of W(k)e 

and Py is the dual representation. Then e(U) — detP(—1). 

PROOF. See [Gr, 8.2]. We view det F as a 1-dimensional representation of W(k)ab = 
k\ 

Proposition 9.8 will apply when the image of if in Sp(U) is contained in the Levi 
subgroup of the parabolic stabilizing a maximal isotropic subspace P of U. 

10. The local conjecture. We are now in a position to make Conjecture 8.6 more 
precise. As in §8, we fix a quasi-split pair W <̂-> V of orthogonal spaces over k, and let 
G = SO(H0 x SO(V). Our first task will be to specify a distinguished T-orbit of generic 
characters #o for the unipotent radical U of a Borel subgroup of G. Clearly any generic 
character of G has the form OQ — 0\^02onU = U\xU2, where 6\ is a generic character 
of unipotent subgroup U\ in the odd orthogonal group and Oi is a generic character of 
unipotent subgroup U2 in the even orthogonal group. Since all 0\ lie in the same T\ -orbit, 
the problem is to specify the T2 -orbit of 62. 

When dim V > 4 is even, we let 62 = 6w in the notation of the proof of Proposi­
tion 7.8. Indeed, W c—• V is an odd dimensional split orthogonal space of codimension 
1 in V. When dim V > 3 is odd, we let U be a subspace of codimension 1 in W such 
that V is the direct sum of U and a hyperbolic plane. Then U is an odd dimensional split 
orthogonal space, so by Proposition 7.8 the orbit of 9V on SO( W) is well-defined. We let 

#2 — @u* 
Now fix a generic Langlands parameter if: W(k)f —> LG. The choice of #o = 0\ ® 02 

above gives a (conjectural) bijection between Â^ and the elements in the Vogan L-packet 
n< ,̂ where the #o-generic representation of G corresponds to the trivial character %o of 
A<p. We recall that A^ = A\ x A2 is an elementary abelian 2-group, where A\ is the 
component group of the centralizer of ip\ in Sp(Mi) and A2 is the component group of 
the centralizer of f2 in SCXM2). In particular, A^ — Hom(A^, ±1). 

Recall the representation r of LG defined in (8.3). The composite homomorphism ro f 
gives a symplectic representation 

(10.1) ro(f:W(k)' -^Sp(M). 
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Hence, by §9, we obtain a local constant e(M) = ±1 . 
More generally, if a — (a\,ai) is an involution in Sp(Afi) x 0(Mi) which centralizes 

the image of ip in LG, we obtain representations M"1=_1, M%2=~1, Ma]®a2=z~l of W(k)\ 
which are symplectic, orthogonal, and symplectic respectively. We use these three rep­
resentations to define an invariant \{a) in (±1) as follows 

(10.2) X(a) = e(M°l®a2=-1) • det(M2)^dim(A^,=_1)(-l) • detCA^^-1)*dimAfl (—1). 

For example, for a = (—1M, > — 1M2)
 w e find 

(10.3) X ( - 1 . - 1 ) = detA^ i m M l(-l) = +1. 

Similarly, we have 

(10.4) x ( - l , + D = X(+l . -D = 6(M)-detM|d i m M l(-l) . 

We recall that the centralizer D^ of <p in Sp(Mi) x 0(M2) is isomorphic to a prod­
uct of general linear, symplectic, and orthogonal groups. The coset of a (mod D^) is 
determined by the signs of the determinants of the orthogonal components of a. 

PROPOSITION 10.5. For an involution a in D^y the value \(a) = ±1 depends only 
on the coset of a (mod D^). The resulting map x'.D^jD^ —> (±1) is a group homo-
morphism. 

PROOF. We first observe that if a and b are commuting elements of order 2 in D^, 
we have the formula x(ab) = x(ba) = x(a) • x(b). Indeed, the representation 

of W(k') is isomorphic to the representation 

Ma=-l®Mh=-1. 

Since e is additive for direct sums, this gives 

e(Mab=-1) • e(M^)2 = e(Ma=-l)e(Mb=-{). 

a=-\ 9 

But e(M *=-i Y — \by Proposition 9.5, so 

e(Mab=-1) = e(Ma=-l)e(Mh=-1). 

A similar argument shows that 

i dim(M^ I = _ 1) = i dim(Mf=_1) + )- dim(M*1=_1) (mod 2) 

detMa
2

2b2=~l = detMa
2

2=~l - d e t M ^ 1 . 

So x(ab) = x(a) ' x(b). This allows us to reduce to the case when only one component 
of a is non-trivial in the product D^ ~ 11/ GLe.(C) x fl/ SpM (C) x UiOe.(C). We must 
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show that x(°) = 1> unless the component at lies in Oe.(C), when \(a) depends only on 
det a,-. There are six cases to consider. 

1) a = (ai, 1) with «! G GU(C). Then 

M? , = _ 1 ~m(N®Ny) 

Ma
2
2=~x ~ 0 

Afa=_1 - m((N®M2) 0 (iV®M2)v). 

Here Af is an irreducible summand of Mi which is not self-dual, and m is the multiplicity 
of -1 as an eigenvalue of a \ in the standard representation of GLe(C) (or its dual). We find 
X(a) = det(N0 M2)(- l)m • det M 2 ( - l ) m d i m N by Proposition 9.8. Since det(Af 0 M2) -
detMf11^ • detA^imA/2 and dimM2 is even, this shows \{a) = 1 

2) a = (ai, 1) with A! G Sp2^(C). Then 

Af?,=_1 - mN 

Ma
2
2='x = 0 

Ma ="1 = m(N®M2) 

Here Af is an irreducible orthogonal summand of Mi, and m is the multiplicity of — 1 as 
an eigenvalue of a\ in the standard representation of Sp2^(C). Since m is even, Ma=~l — 
f ((N 0 M2) © (N (8) M2)v) and we have 

X(a) = deuW0M 2 ) ( - l )? • detM2(-l)? dimAr 

by Proposition 9.8. Since det (AT 0 M2) = detMÎ?im N • detNdimM2 and dim M2 is even, 
this shows x(«) = 1. 

3) a = (au 1) with ax G Oe(C). Then 

Mi1 = _ 1 = mTV 

M^ = _ 1 = 0 

Afa=_1 = m(iV(8)Af2) 

Here N is an irreducible symplectic summand of Mi, and m is the multiplicity of — 1 as 
an eigenvalue of a\ in the standard representation of Oe(C). We have det a\ — (— l)m, so 
the coset of a\ (mod SOg(C)) is determined by the parity of m. We have 

X(a) = e(Ar(g)M2)
m • d e t M 2 ( - l ) m " ^ . 

If m is even \(a) — 1 ; if m is odd \{a) is independent of the choice of a in the non-trivial 
coset. 

4) a = (1, a2) with a2 G GLe(C). Then 

Ma;=~x = o 

M ^ " 1 =m(N®Nw) 

Ma=-X = m((Mi 0 N) © (Mi 0AOV). 
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Here N is an irreducible summand of M^ which is not self-dual and m is the multiplicity 
of —1 as an eigenvalue of ai. We have 

X(a) = det(Mi (g)A0(-l)w • det(7VeNv)?d imMl(-l). 

But det(Mi ®N) = detMfmN • detNdimM' = detA^imAf', and dettfV 0 Nv) = detW • 
detNv = 1. Since dim Mi is even, \{a) = 1. 

5) a = (1,«2) with «2 in Sp2/C). We have 

M p - 1 - 0 

Ma=~l =m(M1®N). 

Here TV is an irreducible symplectic summand of M2, and m = 0 (mod 2) is the multi­
plicity of —1 as an eigenvalue of «2. We have 

dim Mi 

\(a) = e{Mx ®N)m • detN(-l)w 2 . 

The orthogonal representation M\ <g> N has trivial determinant, so e(M\ ® iV) = ±1 by 
Remark 9.6. Since m is even, x(a) = 1. 

6) a — (1, ai) with «2 in Oe(C). We have 

M p - 1 = 0 

Ma
2
2=~l =m-N 

Ma=~l = m(Mi<g)A0 

Here TV is an irreducible orthogonal summand of A/2 and det #2 = (— l)m- We have 

dimA/j 

X(a) = c(Mi <g>TV)m • detTV(-l)m 2 . 

This clearly depends only on the coset of a (mod SO^(C)). 

Since the involutions in D^ represent all the classes (modD^), \ induces a map 
D^/D0^ —• (±1). This is clearly a group homomorphism, as any two classes â and b 
in D^/LP can be represented by commuting involutions a and b in D^, and we have 
seen that x ( ^ ) — x(a) * X(^) when « and Z? commute. 

The component group A^ of the centralizer of <p in Gv injects as a subgroup (of index 
1 or 2) in D^/DP. Hence \ induces a character 

(10.6) X : ^ - ^ ( ± l ) . 

We now state our main local conjecture, which seeks to identify the representation 7ra in 
a generic Vogan L-packet with Hom#a(7ra, C) ^ 0. 
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CONJECTURE 10.7. Let p be a generic Langlandsparameter for G, and let #o be the 
T-orbit of generic characters of U fixed at the beginning of this section. Normalize the 
Vogan correspondence so that the representation ix(p, XO) in Tl^ corresponding to the 
trivial character xo of Ay is 0Q-generic. Finally, let \ be the irreducible representation 
of the component group A^ defined using symplectic root numbers in (10.5-10.6). 

Then the pure inner form Gf which acts on the irreducible representation IT' — ir(p, \) 
in the Vogan L-packet Yl^ is relevant, and the complex vector space Hom//'(7r', C) is 1-
dimensional. For all other representations 7Ta in Yl^, we have Hom//a(7ra, C) = 0. 

REMARK 10.8. The L-packet n^ contains a unique generic representation if and only 
if det Ma

2
2=~x = 1 for all a = (aua2) in Ay. In this case, the character \ corresponding 

to the unique representation TT' with Hom//'(7r', C) ^ 0 is given by the simpler formula: 

X(a) = e(Ma—x). 

REMARK 10.9. Assume k ^ R. Then formula (10.3): x(—1» —1) = +1» w h e n c o m -
bined with (6.7) and (7.9), shows that the pure inner form G' which acts on ir(p, X) is 
relevant. By formula (10.4), we find that 

(10.10) G' = G iff e(M) = detM| d i m M l ( - l ) . 

REMARK 10.11. The suggestion that elements in A^ might be useful in decomposing 
the representation M and obtaining more symplectic root numbers, like e(Mfl=-1), is due 
to M. Harris. 

11. The case k — C. When k — C, conjectures 10.7 and 8.6 are equivalent, as there 
is a unique representation IT in each Vogan L-packet. We make this more explicit here. 

Since W(k) = C* and G = SO(W) x SO(V) is split, a Langlands parameter ip corre­
sponds to a homomorphism 

(11.1) </>:C*-+vr 

z^zxt 

with À, [i G X*(T) <S> C and À = /x(modX*(7)) well-determined modulo the Weyl group 
of v 7 in VG [Bo, §11]. The parameter p therefore corresponds to a continuous character 
ofT: 

(11.2) p:T->C* 

t \-+1x • ¥ 

The Vogan L-packet n^ is equal to the Langlands L-packet n^(G), as there are no non-
trivial pure inner forms of G. We have n^ = {71-}, where TT is an irreducible subquotient 
of the unitarily induced representation Ind# p. The parameter (p is generic if and only if 

(11.3) TT = Indg p is irreducible. 

https://doi.org/10.4153/CJM-1992-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-060-8


REPRESENTATION OF SO„ 991 

For this to occur, a necessary and sufficient condition is that the complex numbers 

(11.4) (av ,A)and(av ,/x) 

are not simultaneously negative integers, for all co-roots a v of T [Kn, Chapter XIV]. 
Hence Conjecture 2.6 is true. 

Our local conjecture is simply 

CONJECTURE 11.5. Assume that k = C and that the induced representation n = 
Indf p is irreducible. Then the complex vector space Hom//(7r, C) has dimension = 1. 

We remark that H has an open orbit on the flag variety G/B, with trivial stability 
subgroup. 

12. The case k — R: discrete series. In this section, k — R and W <—• V is a pair of 
real orthogonal spaces (not necessarily quasi-split). Let the odd orthogonal space in the 
pair have dimension In + 1, and the even orthogonal space in the pair have dimension 
2m and normalized discriminant D. We assume that 

(12.1) D = (-l)m (modr 2 ) . 

Then the group G = SO(W) x SO(V) has a compact inner form, and G — G(R) has a 
compact Cartan subgroup. Let H = SO( W) be diagonally embedded in G, and H = H(R). 
If 7T is a representation in the discrete series of G, we will give a conjecture for the 
dimension of the complex vector space Hom#(7r, C). 

Fix a decomposition of V and W into definite subspace 

(12.2) V = V + 0 V _ W=W+®W-

such that W+ — WP\ V+ and W- = WD V_. This determines a maximal compact subgroup 
K in G, which is unique up to conjugation by H. We have K = K(R) with 

(12.3) K = S(0(W+) x 0(W-j) x S(0(V+) x 0(V-j). 

Let Tbe a compact Cartan subgroup of G contained in K, and let Tc be the corresponding 
split torus in Gc = G(C). The character group X*(I) = Hom(rc,Gm) = Hom(7,51) is 
free abelian, of rank n + m. The Weyl group Wfc = NGC(TC)/TC acts linearly on X*(r), 
as does its subgroup WK = NG(D/T — NKc(Tc)/Tc, the compact Weyl group. 

A Harish-Chandra parameter A for G is an element of ^X* (7) which is non-degenerate 
with respect to the co-roots of Tc and satisfies a certain congruence (modX*(7)). More 
precisely, if a is a root of Tc acting on the Lie algebra of Gc and a v is the associated 
co-root, we insist that (A, av) ^ 0. Then A determines a subset <I>+(A) of positive roots: 
those a with (A, a v ) > 0. Let p = p(X) be half the sum of the positive roots in <E>+(A); 
we insist further that 

(12.4) A = p(A) (modX*(r)). 
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The Harish-Chandra parameters are stable under the action of Wc on yC(T). 
Harish-Chandra (cf. [S], [Kn, Chapter IX]) associated to each parameter À an irre­

ducible discrete series representation 7r(A) of G, and proved that 

(12.5) TT(A') ~ TT(A) iff A' = wX with w G WK. 

The Langlands L-packet containing 7r( A) consists of the inequivalent representations [Bo, 
10.5] 

(12.6) {TT(WA) : w G WG/WK} = I \ (G) . 

We now describe the parameter <p of this L-packet. 
The group W(R) sits in an exact sequence 

(12.7) 1 -> C* -> W(R) -> Gal(C/R) - • 1 

and a Langlands parameter <p is a homomorphism 

(12.8) </>: W(R) -* VG x Gal(C/R) = LG. 

Since 2A G X*ÇT) = X*(v7), we may define p on C* by the formula [Bo, 10.5] 

(12.9) p(z) = (z/z)x in v7\ 

The image of a generator of Gal(C/R) in the quotient W(R)/C* goes to an element of 
LG which normalizes yT and induces the involution A i—> —A of ^X*(T). In our special 
case, we may view <p as a homomorphism 

(12.10) </?: W(R) -* Sp(M0 x 0(M2) 

with dim M\ — 2n and dim M2 = 2m. The image lies in Sp(M 1) x SO(M2) = VG if and 
only if m is even, and the quotient W(R)/C* acts by the element —1 in the Weyl group 
of v r inSp(Mi)xO(M 2 ) . 

The equivalence class of the Langlands parameter p depends on the Wc-orbit of A 
in ^X*(T). The discrete series L-packets correspond to those parameters p such that the 
image of W(R) is not contained in any proper Levi subgroup of LG. 

A more classical description of the parameter p is given as follows. Fix a basis for 
X*(T) = lei © Z*2 © • • ' © len © Z/i © Z/2 © • • • © Z/m such that the standard root basis 
Ao is given by (m > 2): 
(12.11) 

Ao = {e\ -e2,e2 — e^...,en-\ - en,en,f\ -/2,/2 - h * • • • ,/m-i -fm,fm-\ +/m} -

Then A has a unique W^-conjugate A0 which lies in the positive Weyl chamber associated 
to Ao. We have 

(12.12) < a\ > a2 > «3 > • • • > an > 0 a,; G \T - Z 
[ fei > b2 > b3 > • • • > bm-x > \bm\ bj G Z 
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The fact that the at arc ^-integers and the bj are integers follows from a calculation of 
Po; we find: 

n ( 1 \ m 

(12.13) po = J2[n + --i)ei + Z(™-J)fj-
Ï = 1 V Z y 7=1 

The coefficients #/ and fy of Ao are complete invariants of the Langlands L-packet n^(G). 
They determine the decomposition of the symplectic representation M\ and the orthog­
onal representation Mi of W(R) as follows. 

For a e | Z define the 2-dimensional representation N(a) of W(R) by 

(12.14) Ma) - lnd^R\z/z)a. 

Then N(a) ~ N(—a), and Af(a) is irreducible for a ^ 0. The representation N(a) is 
symplectic for a G ^Z — Z, and orthogonal (with determinant = u~\ = o;c/R) for 
a G Z. We have the decompositions 

(12.15) [M2-©-=1M^) 

The Vogan L-packet n^ is the disjoint union of Langlands L-packets n^(G') over the 
pure inner forms G' of G. Since the centralizer of (p in VG 

n m 

(12.16) C^=A^ = n C i ( C ) x n O i ( C ) 
/ = 1 1= 1 

is an elementary abelian 2-group of rank = (n + m), we have 

(12.17) Card(n^) = 2n+m. 

Of the 2n+m representations in n^, exact 2 are generic, and exactly 2 are finite dimen­
sional. 

The group A^ is generated by elements a and 6j, where ex•• — — 1 on the summand 
N(ai) and = +1 elsewhere and 6j• = — 1 on the summand #(&,) and = — 1 elsewhere. 
We now evaluate the character x'-A^ —* (±1) defined in (10.2) using symplectic root 
numbers. (We henceforth assume bm > 0 for simplicity in notation.) 

PROPOSITION 12.18. We have the formulae: 

Xfe) = ( - l ) * ^ 
X(.6j) = (-l)#<a>*>>. 

PROOF. We have used the notation #{b < a,} for the cardinality of the set {/' : 
1 < J < m and bj < a,}. 

For a = e,- we find: M\'=~x = N(at), Mf=~l = 0, Ma=~l = N(at) <g> M2. Hence 

X(a) = Y[e(N(a,)®N(bj)) • detM2(-l). 
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But if a G \T — Z and b G Z are non-negative, we have [Ta, 3.24]: 

- 1 b>a 
+1 b<a. 

(12.19) e(N(a)®N(b)) = j 

Hence x(a) = (-l)#<*>fl'> • ( - l ) m = (-l)#^<fl->. 
For a = 6j we find: M?1=_1 = 0,M^2=-1 = #(&,-), M ^ " 1 =MX® N(bj). Hence 

X(fl) = II c(#te) ® #(*!/)) • detiV(^)(-l)B. 

Using (12.19), we have 

X(a) = (-1)#^<^> • (-1)" = (-i)#{«>^}. 

If we fix a quasi-split pure inner form Go and the distinguished generic character 0Q, 
so that the representation ir((p, xo) m n^ corresponding to the trivial character xo is the 
0o-generic representation of Go, then Conjecture 10.7 predicts that the unique element 
ira in n^ with Hom//a(7rcr, C) ^ 0 is ir((p, x)- Since we have determined \ explicitly in 
Proposition 12.18, we can make this conjecture more concrete in terms of the interlacing 
of the invariants at and bj of (p. 

For example, which pure inner form G acts on 7r(<̂ , \ )? Normalize the quasi-split pure 
form Go to be 

n l o n . r _ | S O ( n + l , n ) x SO(m,m) m even 
( } ° ~ | s O ( t t + l , r c ) x S O ( m + l , m - l ) m odd. 

We define the integers 0 <p < n and 0 < q < m by: 

(12.21) P = #{i':xfo) = ( -D i } 

q = #{j--X(tj) = (-irm} 

The recipe for the group G acting on 7r(<̂ , \) is then: 

9 99x r _ j SO(2n +1-2/7,2/7) x SO(2#, 2m - 2q) n even 
(12.22) o - | SQ(2n _ 2 p , 2/7 + 1) x SO(2^, 2m - 2q) n odd. 

The fact that G is relevant follows from the identity 

m n even 
(12.23) P + q--} AA 

^ ^ \n n odd. 
One can also easily identify the element of the Langlands L-packet n^(G) which is 

isomorphic to ir(ip9 X) (up to a small ambiguity when G is split). Recall that a root a in 
O = 0(7C , Gc) is called compact if it occurs in the action of 7C on Lie(J^c) C Lie(Gc). 
The subset of compact roots ®K = ^MTc, ^ c ) i s stable under the action of WK on X*(T). 

For each Harish-Chandra parameter A, we define a function signA:0 —> (±1) as 
follows. Let a E WG be the unique element such that A = crAo, with Ao in the fundamental 
chamber (12.12). We define: 

[ signA(a) = xfo)/(-Dn + i + 1 if « = *(±*i) 
(12.24) j signA(a) - x(^)x(^)/(- l ) / + y if a - (J{±et ± *,-) 

[ signA(a) = x(Sdx(Sj)/(-iy+i if a = a(±y} ± ^ ) . 

https://doi.org/10.4153/CJM-1992-060-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-060-8


REPRESENTATION OF SO„ 995 

Then a necessary condition for 7r(À) to be isomorphic to 7r((/?, \) is: 

(12.25) signA(a) = +\<=^ae®K. 

This is also sufficient when G is not split. When G is split, the group WK has a non-trivial 
normalizer in WG which preserves ®K. We have NWG(WK)/WK of order 2; if À satisfies 
(12.25) so does A' = rX for an element r in the non-trivial W#-coset of NWG(WK)- In this 
case, either 7r(A) or 7r(A') is isomorphic to 7r(<̂ , X), depending on the sign of x(^m)-

These considerations permit us to give a restatement of Conjecture 10.7 for the di­
mension of Hom//(7r(A), C) which makes no reference to L-packets or to the group A^. 
Let W~ be the negative of the quadratic space W. Then the odd orthogonal space V® W~ 
is split. Let J = SO(V0 W~); then / contains G = SO(V) x SO(W) ~ SO(V) x SO(W~) 
as a subgroup. 

The decomposition of (12.2) gives a decomposition 

(12.26) y e r = (y+e wr) e (VL e w~) 

into definite subspaces, and hence defines a maximal compact subgroup MofJ = /(R). 
We haveM° DG = £°, and Tis a Cartan subgroup of M. 

Let *F = ^(T^Jc) be the roots of 7c acting on Lie(/c), and let *¥M be the subset of 
compact roots. Let A be a Harish-Chandra parameter for G. One checks that (A, a v ) ^ 0 
for all a G *F, except possibly for a pair ±a of short roots. (The exceptional case occurs 
when the invariant bm of the associated Langlands parameter </? is = 0). We will assume, 
for simplicity, that (A, a v ) ^ 0 for all a € x¥. Then A determines a set *F+(A) of positive 
roots, as well as a root basis Z(A) of *F consisting of the indecomposable positive roots. 

CONJECTURE 12.27. The vector space Horn// (7r(A), C) is 1 -dimensional if and only if 
every element a in the root basis Z(A) of *¥ is non-compact. Otherwise, 
HomH(7r(A),C) - 0 . 

As an example, assume m — n and 0 < k < n. Suppose that the invariants a, and bj 
of if satisfy the branching inequality: 
(12.28) 

b\> ax> b2> a2- • • > bk> ak> ak+i > bk+i > ak+2 > bk+2 - - > an > \bn\. 

Then the relevant pure inner form G is isomorphic to SO(2n+1 — 2k, 2k) x SO(2n—2k, 2k) 
and 7T = 7r((£, X) is the discrete series representation (unique when n ^ 2k) which is the 
"smallest" element of 11^ (G). By this we mean that ir = 7r(A), with at most one wall 
of the open Weyl chamber associated to A non-compact. If k = 0, G is compact and ir 
is finite dimensional. If k = n, n is the unique element of U^(G). If k — 1, ir is in the 
holomorphic discrete series. In these 3 cases, using the work of [D], [Hi], [M], and [Z], 
we can show that Hom//(7r, C) ^ C. 

In the general case, Conjecture 12.27 is compatible with the results of Li on the re­
striction of minimal ^-types [L, §4]. It is also in accord with the results of Harris and 
Kudla [H-Kl] on the non-holomorphic discrete series for Sp4(R)/(±l) = SO(3,2)°. 
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REMARK 12.29. The group J whose root system *F appears in Conjecture 12.27 
may be relevant to the general problem of computing Hom#(7r, C). Indeed, let P be the 
maximal parabolic subgroup of J which fixes the isotropic subspace U — {w + w~ : 
w G W} of V © W~. Then G has an open orbit on the flag variety J/P with stability 
subgroup = H. 

13. The non-Archimedean case: unramified parameters. In this section, we as­
sume the local field k is non-Archimedean, with char(fc) ^ 2. Let R denote the ring of 
integers of k, TT a uniformizing parameter in R, and q the cardinality of the residue field 
ko =R/TTR. 

If VR is a quadratic space over R (i.e., a free /^-module with a quadratic form Q: VR —> 
R), we say VR is non-degenerate if Vo — VR ® ko is a non-degenerate quadratic space 
over ko = R/TTR. (If char(fco) = 2, we use the definition in remark 8.9). Let WR -̂> VR be 
a pair of non-degenerate quadratic spaces over R with rank VR = rank W/? +1, and let GR 

be the group scheme SO(VK) X SO(WR) over R. The special fibre G0 = GR ® &o is then 
connected and reductive, and the general fibre G = GR 0 k is an orthogonal group of the 
type we have been studying. Furthermore, G is quasi-split and split over an unramified 
extension of k. 

The group scheme HR = SO(WR) is diagonally embedded in GR. Let 

(13.1) K=GR(R)^G=G(k) 

KH = HR(R)^H = H(k). 

Then K and KH are hyperspecial maximal compact subgroups of G and H respectively, 
and KDH = KH- (When G is split over k, there is another conjugacy class K' of hyper­
special maximal compact subgroups of G, but K' C\ H is not hyperspecial in H.) 

For any Langlands L-packet n</P(G) of G, it is known that 

(13.2) Y, dimHom/KC,^) < 1. 
7raGn^(G) 

When this dimension is equal to 1, we call n^(G) an unramified L-packet. The unique 
representation 7ra in I \ ( G ) with TT% ^ 0 is called the K-spherical representation. Our 
aim in this section is to study Conjecture 10.7 for unramified L-packets. 

We begin by describing the unramified parameters (p. A parameter ip: W(k)f —y LG is 
unramified if <p is trivial on the inertia subgroup / of W(k) and the nilpotent element in 
vg is trivial (N = 0). Then if is determined completely by the value < (̂Fr) = g x Fr in 
LG = VG X Gal(£/fc), where Fr is a geometric Frobenius class in the Weil group. 

In our case, we may view ip as a homomorphism 

(13.3) <p\ W(k)f -^ Sp(Mi) x 0(M2) 

Fr i—> s = s\ x S2 
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where s is a semi-simple element (i.e., s is diagonalizable in the standard representation 
Mi <g> 1 0 1 ® M2), well-defined up to conjugacy by VG = Sp(Mi) x SO(M2). If G is 
split, then s = si x s2 with 

(13.4) 

si = 

S2 

(OCX 

\ 

<x„ 

\ 

a r 1 / 
\ 

Kll 

in Sp(M0 

in SO(M2). 

If G is not split, but splits over the unramified quadratic extension E of k, then s — s\ x si 
with s\ as above and 

(13.5) S2 

/Pi 

\ 

Jm-l 

+ 1 

/£-] 

\ 

vxxî 

in 0{M2\ 

We now describe the unramified L-packets 11^ (G). Let B — U_x The a Borel subgroup 
of G; we assume that B = BR®k where BR stabilizes a pair of maximal isotropic /?-flags 
in WR and VR. Put £ = B(k\ U = U(k), T = I(fc); then TDK = T(R). A continuous 
quasi-character 

is said to be unramified if it is trivial on T(R). When G is split, the group of unramified 
characters of T is canonically isomorphic to the points of the complex torus yT in VG. 
When G is not split, but split by the unramified quadratic extension £, the group of un­
ramified characters of T is canonically isomorphic to the set yT x Gal(£"//:)/lnt(vr) = 
vr/(r-conjugacy), where r is a generator of Gal(E/k) [Bo, 9.5]. In both cases, an un­
ramified Langlands parameter ip determines a W-orbit {w\} of unramified characters of 
T, where W is the Weyl group NG(A)/T of the maximal A:-split torus A in T. 
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If X is an unramified character of T, we extend it to a character of B which is trivial 
on U. Let 6: B —> IR* be the modular function of B, and define the induced representation 
ofG: 

(13.6) /(x) = {locally constant / : G — C : f(bg) = x(b)6(b)l/2f(g)}. 

Then I{\) has a composition series of finite length, and the irreducible Jordan-Holder 
factors 7ra of I{\) are equal to the irreducible Jordan-Holder factors of I(w\), for any 
w £ W. The unramified L-packet n^(G) consists of those irreducible factors of /(x) 
which have a vector fixed by some hyperspecial maximal compact subgroup of G [Bo, 
10.4]. 

Since G = BK, I(x)K has dimension = 1, and there is always a unique representation 
7T in Yl^(G) with iP ^ 0. When G is not split, Tl^(G) = {TT} contains a single element. 
When G is split, n^(G) contains either 1 or 2 elements, depending on the dimension of 
ir*'. One can predict the cardinality of n^(G) from the parameter (p. Indeed, one finds 
that 

(13.7) Atp = Z/2Z if 2̂ E 0{Mi) has {±1} contained in its set of eigenvalues, 
1 otherwise. 

The former situation always occurs when G is not split, by (13.5), and reflects the fact 
that G has a non-tri vial quasi-split pure inner form. When G is split and <p is unramified, 
we should have Card(A(/7) = Cardn(/?(G) = Card 11^. 

By the work of Casselman and Shalika [C-S], the L-packet nvP(G) is generic if and 
only if 

(13.8) det(l - Ad(s)q-l\w$) ^ 0 s = < (̂Fr). 

This proves Conjecture 2.6 for unramified parameters. In the notation of (13.4) this 
means: ctfccp ^ q for 1 < i < j < n and (3ff3f ^ q for 1 < i < j < m. If this 
is the case, one finds that the ^-spherical representation 7r in n(/?(G) is the #o-generic 
element, so corresponds to the trivial character xo of A^. 

Since M = M\ ® M^ is an unramified representation of W(k)\ we have 

(13.9) X(a) = e ( M a = _ 1 ) * detM|dim(A^1=_1)(-l) • d e t w r - 1 ) ^ 1 ^ - ! ) 
= +1 for all a G A<p. 

Since \ = xo, Conjecture 10.7 leads us to make the following. 

CONJECTURE 13.10. Assume n is K-spherical and generic (13.8). Then Hom//(7r, C) 
has dimension = 1. Furthermore, the natural pairing of 1-dimensional complex vector 
spaces 

Horn*(C, O x Hom//(7r, C) -* C 

is non-degenerate. 

S. Rallis [R] has proven this conjecture in most cases. It is true when dim V < 4 by 
[Gr-P]. 
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14. The global conjecture. In this section, we assume that A: is a global field, with 
char(£) ^ 2. Let W <—> V be a pair of orthogonal spaces over k and G = SO(W) x SO( V). 
The algebraic group H = SO(W) embeds diagonally; we put G — G(k) and H — H(k). 

If v is a place of £, we let kv be the corresponding completion and Gv = G(kv). For 
almost all places v, the group Gv is quasi-split, and split by an unramified quadratic 
extension of kv. For these places, let Kv C Gv be the (conjugacy class of) hyperspecial 
maximal compact subgroup described in the last section. 

Let A be the ring of adèles of k. The group of adèlic points of G is a restricted direct 
product 

(14.1) G^ = G(A) = Y[GV 

Kv 

and any irreducible, admissible representation 7r of G^ factors as a restricted tensor prod­
uct [F, Theorem 2]: 

(14.2) 7r = 0v7rv dim7ifv = 1 almost all v. 

We admit the existence of a locally compact group L(k), which maps surjectively to 
W(k) with a compact, connected kernel, such that the parameters of irreducible, tempered 
automorphic representations of GA are certain homomorphisms 

(14.3) ip: L(k) -* Sp(Mi) x 0(M2) 

with bounded image, up to conjugation by VG = Sp(Mi) x SO(M2). For each place v, 
we assume there is a map W(kv)' —> L(k), so a global parameter (p gives rise to tempered 
local parameters 

(14.4) <pv: W(kv)
f — Sp(M0 x <9(M2), 

almost all of which are unramified. We assume Shahidi's conjecture [Sh, 9.4] that tem­
pered local parameters <pv are generic. 

We define A^, as before, as the component group of the centralizer of the image of <p in 
VG. We then have a map A^ —> A{fv for all places v. Let <^be a global tempered parameter, 
and assume that the distinguished element nv = 7r(</?v, \V) in the Vogan L-packet Tl(Pv is 
a representation of Gv. Then, by Conjectures 10.7 and 13.10, Hom//v(7rv, C) ~ C, and 
when 7rv is ÀVspherical the //v-invariant linear form takes a non-zero value on the Af­
fixed vector. Then the admissible representation n = (gv7rv of G& in the L-packet of </? 
satisfies: 

(14.5) Hom^A(7r,C)^C. 

We recall the symplectic representation M — Mi (g) M2 of the L-group. 
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CONJECTURE 14.6. The adèlic representation 7r is automorphic if and only if for all 
a G A^p the global root number e(Ma=~l) — +1. In this case, TT appears with multiplicity 
1 in the discrete spectrum ofG. 

This conjecture was motivated by certain multiplicity formulae of Arthur [A, §3]. In­
deed, for tempered parameters <p with A^ abelian, the adèlic representation TT — 
(8)7r((̂ v,Xv) in the global L-packet should appear with multiplicity zero or one in the 
discrete spectrum, the latter case occurring when the character \ = Tixv of A^ is trivial. 
In our case 

so 

X(a) = riXv(fl) = I[e(Ma
v=-{) = e(Ma=~x) 

V V 

by global class field theory (detAf£2=_1(— 1) = +l) . One can show that e(M) = +1 
also follows from global reciprocity, so the condition in Conjecture 14.6 is true when 
a = (-lAf1,+lM2)ora = ( + 1 ^ , - 1 ^ ) . 

We now assume that the adèlic representation 7r is automorphic, and realize it 
(uniquely) in the space of functions/ on G \ G&. Then the integral 

(14.7) 1(f) = (f(h)dK 
jti\ti^ 

(if convergent) defines an ///^-invariant linear form on TT. If the automorphic representa­
tion 7T is cuspidal,/ is a bounded function on G \ G&\ since H\H^ has finite volume the 
integral in (14.7) is convergent. If 7r is not cuspidal, there may be convergence problems 
defining the form £, but we will ignore them here. 

Let L(M,s) be the global L-function of the symplectic representation ro<p: L(k) —-> 
Sp(Mi (8) Mi), normalized so the point s — \ is in the center of the critical strip. We 
assume the meromorphic extension of L(M, s) to the entire s-plane. 

CONJECTURE 14.8. The integral in (14.7) defines a non-zero element t in the one-
dimensional space Hom//A(7r, C) if and only ifL(M, \) ^ 0. 

15. Evidence in low dimensions. We now investigate our conjectures for the pair 
of orthogonal spaces W °-> V when dim V < 4. 

When dim V = 2, the group SO(V)(*) = E*/k* is a torus and SO(W)(ifc) = (1). The 
Vogan L-packet n^ has 1 or 2 elements. The conjectures are all true, as the irreducible 
representations 7r of G are 1-dimensional. 

When dim V = 3, the split group SO(V) is isomorphic to PGL2, and SO(U0 is the 
torus in SO(V) corresponding to the discriminant field E. The Vogan L-packet i \ has 
either 1, 2 or 4 elements, each corresponding to a representation of a different pure inner 
form of G. The local conjectures were proved by Tunnell [Tu] in most cases, and by H. 
Saito [Sa] in general. The global conjectures were proved by Waldspurger [W]. 
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When dim V = 4 and V is split over k, then V ~ Miik) with the determinant form. If 
(A, B) G GL2(A:) x GL2(1)/M*, then (A, £) induces the orthogonal similitude v i—• AvB~l 

of V. This element lies in SO(V)(&) if and only if detA/ det# = 1; hence we have an 
exact sequence 

(15.1) 1 - • SO(V)(Jfc) - • GL2(Jk) x GL2(£)/AF - • it* -> 1. 

The subspace W c—• V is also split, and the inclusion 

SO(W)(k) = GL2(k)/k* ^ SO(V)(k) ^ GL2(£) x GL2(fc)/M* 

is the diagonal map A i—> (A, A). Indeed, we may take W the vectors of trace 0 in M2(£), 

orthogonal to the vector v = of norm = 1. 

Similarly, if V is anisotropic, then V ~ D is the unique quaternion division algebra 
over k with its norm form. Here we have an exact sequence 

(15.2) 1 -> SO(V)(ifc) - • D* x D*/M* -* ND* - • 1. 

The subspace W ^> V of vectors of trace = 0 is also anisotropic, and the inclusion of 
SO(W)(k) = D*/k* is the diagonal map A »-• (A, A). 

Finally, when V is quasi-split, with discriminant field E, we find 

(15.3) SO(V)(Jfc) = {A G GL2(£) : detA G Jfc*}/M* 

and the inclusion of SO(VK)(/:) = GL2(k)/k* or D* /k* is the obvious one. 
The isomorphisms of (15.1), (15.2), (15.3) allow one to reduce many of the conjec­

tures for restriction of irreducible representations from SO( V) to SO(H0 to restriction of 
irreducible admissible representations of GL2(fc) x GL2(fc) to GL2(fc), or D* x D* to D*, or 
GL2(£) to either GL2(fc) or D*. These questions were treated by Prasad in [PI] and [P2], 
and the results obtained there lead to a proof of Conjecture 8.6. The finer Conjecture 10.7 
is still open. Some evidence for the global conjecture is contained in [H-K2]. 
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