
PROBLEMS ON MEASURE ALGEBRAS 

ROBERT KAUFMAN 

Suppose that G is a locally compact abelian group, u an element of infinite 
order, and w a complex number of modulus 1. I t is a familiar fact that there is a 
complex homomorphism ^ of the measure algebra M of G, which maps eu (the 
unit mass concentrated at u) to w. Beyond this, one may specify an element n 
of M, and require a homomorphism ^ which does not annihilate y.. The 
resolution of this problem leads to an abstract lemma on measurable trans
formations, derived in some generality in the first section. Next, following the 
examples of Hewitt and Kakutani (1 ), we construct a family of perfect compact 
subsets P of real numbers, such that for each measure M supported by P , we can 
have | ^ ( M ) | = limn_>œ |j/,iw||1/w. This is based on a probabilistic construction, 
which allows us to derive some miscellaneous facts about measures; for 
example, P supports measures M with ji(n) — o(l). The paper of Salem (4) 
seems to be the ultimate source for this method. We prove also that the closed 
ideal in M generated by eu — we (e = €o, the identity of M) is not the inter
section of maximal ideals when G is the circle group; the last section gives 
another example. 

1. A lemma on measurable transformations. Let 5 be a set, (g a 
a-field of subsets of 5, and T a measurable transformation of 5 into itself: 
T~XE G (g for each E in @. For a complex number w of modulus 1, a measurable 
function h on S is (T, w)-invariant if h(Ts) = wh(s), s G S. We write C.A. for 
the complex Banach space of finite countably additive measures in (5, @) and 
define a linear contraction U in C.A. : 

(E7/0(E) = / i ( ^ £ ) , E Ç (g, M € C.A. 
Set, for a measure /* fixed throughout this section, 

d = inf || U\ - w\ - /i||, X G C.A. 

LEMMA l.d = sup |/g(s)M(ds)|, \g(s)\ < 1, g(T, w)-invariant. 

Proof. For a bounded measurable function h, and X 6 C.A., 

J*(*)(tfM)(<fc) = f h(Ts)p(ds). 

For a function g as in the lemma, this shows that g is orthogonal to U\ — w\, 
proving the easy half of the statement. Define now a positive measure X on 5 by 
the formula 
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then /x « X and X(£) = 0 implies that X ^ E ) = 0. Let Y = L 1 ^ , G, X), a 
subspace left invariant by U. By the definition of d there is a linear functional 
x* of norm < 1 on Y such that ff*(/x) = d, x*(U<r) = m*((r). This means, of 
course, that there is a measurable function h on S such that \h\ < 1 and 

J h(s)n(ds) = d, J h(s)(Ua)(ds) = w J h(s)a(ds). 

From the identity at the beginning of the proof it is clear that h(s) = wh{Ts) 
except on a set of X-measure 0. Now put 

h*(s) = l i m ^ S vT'HT's) 

whenever the limit exists, and h*(s) = 0 otherwise. Then h* = h X-almost 
everywhere and h* is (T, w)-invariant on all of S, as required. 

2. Applications to measures in groups. Measurability in the group G is 
in reference to the cr-field determined by all continuous functions on G, which we 
call the Baire cr-field. We let / be the closed principal ideal of M generated by 
eu — we. To apply the lemma on measurable transformations, we note that if E 
is a Baire set and X Ç M, then [(eu - w)*\](E) = \(E - u) - w\(E). Taking 
T(g) = g + u, g £ G, we conclude that the distance of a measure fi from G is d, 
described in the lemma. 

THEOREM 1. These statements are equivalent for c > 0: 
(i) There is a complex homomorphism ^r of M for which V(J) = 0, |^ (M) | > c. 

(ii) For every number d in (0, c) there is a bounded Baire function h such that 
Kg + «) = tt*(g), g € G and 

J I l / n 

h(x)fxn(dx) > d. 
Proof. If (ii) holds for some d > 0 and some h, it holds also for VII^IU» so 

that by Lemma 1, 
limsup ||/xw+ J\\1/n>d. 

The implication (ii) —» (i) follows now from the formula of Beurling and 
Gelfand (3, 1.6, I I I . l ) , applied to the Banach algebra M/J (3, pp. 43-44). To 
prove the converse, let Z be the Banach space of Baire functions h as described 
in the theorem. Suppose that for some d > 0 and each h Ç Z 

J 11/» 

h(x)j/(dx) < d, 
..-^ I 

or equivalently 

- I f I 
lim r n\ I h(x)nn(dx) = 0, whenever r > d. 

By the principle of uniform boundedness, for each r > d there exists a constant 
B(r) such that J h(x)nn(dx) < r " 5 ( r ) | |ft|L, (A € Z , ! < » < » ) . 
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By Lemma 1, \\nn + J\\ < B(f)rn, 1 < n < » . Because each complex homo-
morphism of M is norm-decreasing, ^(J) = 0 forces |^(/x)| < r, and so 
|^(/x)| < d, as required. 

The sequence of lemmas below is intended mainly to elucidate the examples 
which conclude this article. 

LEMMA 2. If /x € L1, M $ / , Jftere w a continuous character x of G such that 
x(u) = w and Jx dix ^ 0. 

Proof. Suppose first that u generates a discrete subgroup H, so there is 
certainly a continuous character x of G, with x W = w. The automorphism 
/ ~^ X * / °f i 1 onto itself maps /x to an element not in the closure of the ideal 
Lx{eu — e) C I 1 , The quotient algebra of L1 by the closure of this ideal is 
IMG/H), so that for some character 7 of G with y(u) = 1, jyxdjji 9e 0, as 
required. 

In the remaining case H may be supposed compact with Haar measure mH. 
By the hypothesis we know there is a bounded Baire function h such that 
h(x + u) = wh(x), x ÇG, and Jh(x)n(dx) = 1. From the absolute continuity 
of y we conclude that the function F, defined by 

F(y) = J h(x + y)p(dx)9 y G G, 

is continuous. Since F(nu) = wn for each integer n, there is a continuous 
character 7 on i J fulfilling the condition y(u) = w. Writing *> = (7 • mH) * JU, 

J h(x)v(dx) = I I &(# + y)y(y)mH(dy)/jL(dx) 
J G "H 

-i y(y)F{y)mH{dy) = 1. 

Choose a character x for which fx dv 9^ 0—it is clear that x(u) = w and 
JX dfx * 0. 

LEMMA 3. Suppose that /x is supported in the compact set E. If for a certain 
integer m > 1 

nu £? ± £ ± . . . =fc -E (2m summands), a// w > 1, 

^ | | / x m + / | | = I IMII . 

Proof. Since /x™ is supported in the ra-fold sum of E with itself, the measures 
Mm * eww(—°° <n < 00 ) are mutually singular. Writing X = weM, 

AT 

| /T|| for every N > 1 
1 ^ 

But 11 (1/N) J^\k * P\\ converges to zero for every v in / , whence 

\\»m + J\\ = IIMII. 

Remarks. It may be observed that, in the event E is not a Baire set, it is 
contained in a compact Ga, Eu which meets the requirement of the lemma. 
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Further, if F\ is a compact Gg and F2 a compact set, F\ + F% is a G&. For if 

^1= n (ut), 
then 

^1 + ^2= n o/* + ^2), 

where t/i 2 272 2 • . . is a sequence of open sets, and each Uk has compact 
closure contained in £/ib-i. 

The construction of examples for the theory presented is based on the well-
known fact (Kolmogoroff et ah) that if rly r2j r3, . . . are positive numbers and 

oo 

Z) ft < °°> 
i 

then there is a probability measure /z on (— °°, «>) such that 

J 00 

eiutn(dt) = ]~I cos(«r<), — oo < # < oo 
(Pitt 2, pp. 44, 97). We consider, though, sequences subject to the stronger 
condition 

00 

52 fi < °°. 
In this case /x is supported in the "symmetric set" 

Z W = { Ê e« r«: €« = zfcl, 1 < * < » | . 

Following Salem (4 ) we introduce the product space of sequences 

£ = Ui ,É2,É8, . . .} , 
0 < £ j i < l , l < i < °° , and let P be the product of the Lebesgue measures d£* 
on the intervals 0 < £* < 1. According to our convention we write 

12 tt • f) = \ 12 c< £* ̂ : ê  = ± i , l < i < oo | . 
Let us say that the multiplier sequence (r) = {ri, r2, r3, . . .} is "m-sparse" 
(m = 1 , 2 , 3 , . . .) if for each number b 9e 0, it is almost certain that the m-fold 
difference set ± 2 (£ • r) ± . . . ± (£ • r) does not contain b. A technical 
detail is the fact that the subset of C whose measure is to be 1 is open in C. 

THEOREM 2. (r) is m-sparse if 

lim inf (2m + 1)* £ '* = °-

Proof. An element of the difference set has the form 
oo 

]C ai ii fu —m < ôi < m, 1 < i < oo. 
î 

I t is enough to prove that, almost certainly, this form does not represent b 9^ 0, 
provided also that one fixed hM has a specified value 9^0 ; for example, we may 
arrange the sequences of ô's according to the first number 5*0. 
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This restriction in effect, whenever 
oo 

S $«£«'< = & and N > M, 

Ë tiiiTi-b < (2m + 1) E r,. 

There are at most (2m + 1)^ iV-tuples (8U . . . , 5 )̂ which contribute to the 
probability ; for each choice, and any Borel set A of Lebesgue measure \A\, 

PU: It StZtrt €A}<J±-\A\. 
v i J oMrM 

Therefore the probability that the above inequality hold is at most 

2(5MrM)-1(2m + l)N+1tl rt. 
N+l 

As N —•> oo , the probability is seen to be 0. 
An immediate corollary is that if (l/i) logr*—> —oo, (r) i s m-sparse for 

every m, so that the symmetric set £ ( £ • r) almost certainly satisfies all the 
conditions under Lemma 3 (i.e. for all n and m). The set XX £ * r) is then an 
example of a set P mentioned in the introduction. Observe, however, that if 
rt = e"1** where a > 5, then for almost all £ £ C, the conditions in Lemma 3 
with m = 1 are fulfilled. 

LEMMA 4 (4). (a) If rt = e~ia with a > 1, then for some j = j(°0 aw J almost 
all £, 

= E l£(»)l'< °°-f i cos nr&A 

(b) Ifr i = 6~*log log \i > 3, thenfor almost all £,fi(n) = o(l) asn 

Proof. For any number s > 0 and integer n > 1, 

f |A(») | sP(^) = ft f |cos«r, £<!'#,. 

The typical multiplicand is equal to 

(nri)'1 I | cosy |*d:y<l— \ - (wr*)"1 J I |cos;y|*d;y. 

Under (a), w* > 1 for [log n/log a] indices i, so 

co . 

As soon as 

we have 

J |M(«) |SP(^) < {JL^1 J* |cosy|V*y}' 

J |cos;y|sd;y < a~ 
o 

ËjiM(»)rp(«x » 

[log n/log a] 

and (a) follows from this. 
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In (b), nrt > 1 for large n and 

Jog«_ 
log log n ' 

Now 

r | cos3/ | s^ < Cs 1/2 a s 5 —» oo. 
v 0 

Taking 

f v logw 
log log n 

we find that for large n, log s(w) > f log log «, 

J u W r P ^ X e x p ^ f l o g . + C j ^ ) . 

For each integer Af > 1, 

M° j \fi(»)\-rm < exp ( - f l o g , + C ^ - ^ ) 

so that 

£ Ms(lnl)\n(n)\silnl) < oo 

almost certainly. Therefore jl(n) = 0(1) almost certainly. 

THEOREM 3. If G is the circle group T, the ideal J is not the intersection of 
maximal ideals of M. 

Proof. We consider T as the (additive) group of reals R, mod 2ir. We choose 
rt = e~bi according to the remarks after Theorem 2. Let H be the subgroup of R 
which is mapped onto the infinite subgroup of T generated by u. I t is almost 
certain that H C\ ( ± 1 ] àz ]C) = {0}, because H is countable. Writing X/ for 
the image of 2Z(mod 2TT), it is almost certain that nu (? ± X / ( £ • r) db Z/(£ * r) 
so that the random measure n constructed in Lemma 4, and now projected 
from R to T, is almost certainly not in J. Call this new measure A ; its7th power 
is almost certainly in Ll(T). Thus the present theorem follows from Lemma 2 
unless xW-~ w for some continuous character x of T. 

In the last event, x is unique, so we can choose a positive measure a with 
finite support F, so that jx da = 0, whence a * \j is almost certainly in / . If we 
also arrange that nu (? do F do F lor w ^ O , then, almost certainly, 

nu g ± E ' ± E ' ± f ± f . 

This is sufficient, because a * A is concentrated in XI' + ^S to yield or * X $ J . 

3. Another example. In the following example we construct a compact 
metric abelian group G, a Borel probability /x in G, a Borel set £ Ç G , and an 
element uolG such that 
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(i) {E+mu)r\E = 0, for m ^ 0, 
(ii) „(£) = 1, 

(iii) At*At*M is equivalent to the Haar measure m in G, with derivative bounded 
away from 0 and <» . 

The construction uses the following notations, p being always an odd prime. 
Zp is the group Z/pZ\ mp is the invariant probability in Zv. Fp = Zv — {0} 
and \ip is the probability uniformly distributed in Fp. G = II^ Zp, m = Yipmpi 

n = l ipn P , F = n p F^,^ = ( 1 , 1 , 1 , . . . ) , andE = F~ Um9£0(F + mu). 
Of assertions (i)-(iii), (i) holds by construction and (ii) will follow as soon as 

it is proved that n(F + mu) = 0 if m ^ 0. However, 

li(F + mu) = tx(Up (Fp + m- 1)) = Up><i »P(FP + m- 1). 

Now fJip(Fp + m • 1) < 1 — p~l if m ^ 0 (mod £), so n(F + mu) = 0 if m 9e 0. 
To prove (iii) we denote by ep the unit mass at 0 in Zp. Then 

MP = £(£ - l ) - 1 ^ - p^ep). 
Thus 

M , V M , = PKP - l)-3[mP - 3/r-im, + Sp~2mp - />-%,]. 

Here we used the facts that mp is invariant and that mp and ep are idempotent. 
Continuing, 

M / V M , = [1 + (/> - l)"3]mp - (p - 1)"%,. 

If we write /xp = fp • m p , then 

/ , > ! + ( £ - I ) " 3 - />(*> - I ) " 3 = 1 " (P " I)"2 > i 

Moreover, \fP — 1| = 0(p~2) so the product I I^ /p converges uniformly to a 
function/ bounded away from 0 and °° ; of course, /z = / • m . This is (iii). 

We note that if w is a complex number of modulus 1, but not a root of unity, 
there is no continuous character mapping u to w. Thus for such a w, the closed 
principal ideal / generated by @M — we does not contain /* (cf. Lemma 4) but 
contains M*M*M (Lemma 2). Thus J is not the intersection of the maximal 
ideals in M which contain it. 
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