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Modular group representations throughout the realm

There are two aspects to Moonshine. The more general one is the unexpected presence
of modular group actions over a wide range of algebraic settings, and is now fairly well
understood. We have seen instances of this already with, for example, the characters
of affine algebras and VOAs. This chapter completes our treatment of these modular
actions. The more specific aspect – the association of Hauptmoduls to the Monster – is
still poorly understood and is the subject of the following chapter.

Much of this chapter is orthogonal to Monstrous Moonshine. For example, we dis-
cuss here fusion rings and modular data; both the fusion ring and modular data of the
Moonshine module V � are maximally trivial. Nevertheless, this chapter helps to paint
the general context of Monstrous Moonshine. In Section 7.2.4 we build on some of
the lessons from this chapter to speculate on a possible second proof of Monstrous
Moonshine.

6.1 Combinatorial rational conformal field theory

Recall the semi-simple Lie algebras: we study their structure and obtain their classifi-
cation by abstracting out combinatorial features (e.g. roots, Coxeter–Dynkin diagrams).
Of course this is easy to do with a finite-dimensional linear structure. RCFTs are infinite-
dimensional, but by definition their infinite-dimensional symmetry and implicit rigidity
again effectively reduces them to certain discrete structures. As we see next section, those
discrete structures are remarkable for their ubiquity in modern mathematics. See [208],
[207], [33], [131], [437], [236] for further background. As with all other chapters except
Chapter 7, we’ve tended to avoid giving original references, as these are voluminous and
can be recovered from the numerous review articles and books.

6.1.1 Fusion rings

Recall that the eigenvalues of a self-adjoint (equivalently, Hermitian) matrix are all
real. Consider the following scenario. Let A, B and C be n × n Hermitian matrices with
eigenvalues α1 ≥ α2 ≥ · · · ≥ αn , β1 ≥ · · · ≥ βn , γ1 ≥ · · · ≥ γn . What are the conditions
on these eigenvalues so that C = A + B? The answer consists of a number of inequalities
involving the numbers αi , β j , γk . Now discretise this problem:

Theorem 6.1.1 Letα1 ≥ α2 ≥ · · · ≥ αn ≥ 0,β1 ≥ · · · ≥ βn ≥ 0,γ1 ≥ · · · ≥ γn ≥ 0,
all be integers. Then the following are equivalent:
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(i) Hermitian matrices A, B and C = A + B exist with eigenvalues α, β, γ ,
respectively;

(b) the gln(C) tensor product multiplicity T γ

αβ is nonzero.

Recall from Section 1.5.1 that the finite-dimensional unitary irreducible modules of
the Lie algebra gln(C) ∼= C⊕ sln(C) are naturally labelled by pairs (a, λ) ∈ R× Nn−1,
where z �→ iaz is a representation of the abelian Lie algebra C, and λ = (λ1, . . . , λn−1)
is a highest weight for the simple Lie algebra sln . The eigenvalues α correspond to labels
a = αn and λi = αi − αi+1. The number T γ

αβ is the number of times the gln-module L(γ )
appears in the tensor product L(α)⊗ L(β) of modules. This remarkable theorem and
related results are discussed in the review article [218].

Now consider instead n × n unitary matrices with determinant 1. Any such matrix
D ∈ SUn(C) can be assigned a unique n-tuple δ = (δ1, . . . , δn) as follows. Write its
eigenvalues as e2π iδi , where δ1 ≥ · · · ≥ δn ,

∑n
i=1 δi = 0 and δ1 − δn ≤ 1. Let �n be

the set of all such n-tuples δ, as D runs through SUn(C). Note that D will have finite
order iff all δi ∈ Q, and that D will be a scalar matrix d I iff all differences δi − δ j ∈
Z. Of course, a sum of Hermitian matrices corresponds here to a product of unitary
matrices.

Theorem 6.1.2 [4] Choose any rational n-tuples α, β, γ ∈ �n ∩Qn. Then the follow-
ing are equivalent:
(i) there exist matrices A, B,C ∈ SUn(C), with C = AB, with n-tuples α, β, γ ;

(ii) there is a positive integer k such that all differences kαi − kα j , kβi − kβ j ,

kγi − kγ j are integers, and the fusion multiplicity N (k) kγ
kα,kβ of sln

(1) at level k is
nonzero.

We met the affine algebra sln
(1) = An−1

(1) and its modules in Section 3.2. Here,
kα corresponds to the level-k integrable highest weight λ ∈ Pk

+(A(1)
n−1) with Dynkin

labels λi = kαi − kαi+1. The sln
(1) fusion multiplicities are studied in Section 6.2.1.

Theorems 6.1.1 and 6.1.2 provide one instance of a general principle:

A result or construction valid for gln or sln tensor products should have an inter-
esting analogue for the sln

(1) fusion product.

The gln tensor product multiplicities are classical quantities, appearing in numerous
and varied contexts. The sln

(1) fusion multiplicities are equally fundamental, equally
ubiquitous, but less well understood.

Just as the tensor product multiplicities are structure constants of the character ring of
the Lie algebra, so do fusion multiplicities define a fusion ring, an aspect of Moonshine
complementary to Monstrous Moonshine.

Definition 6.1.3 A fusion ring R = R(β,N ) is a commutative ring R with unity 1,
together with a finite basis β = {xa | a ∈ �} (over Z) containing 1 = X0, such that:
f1. The structure constants N c

ab, defined by xa xb =
∑

c∈�N c
abxc, are all nonnegative

integers.
f2. There is a ring homomorphism x �→ x∗ stabilising the basis� (we write (xa)∗ = xa∗ ).
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f3. N 1
ab = δb,a∗ .

f4. ‘S = St ’ (we’ll explain this shortly, but it says R is self-dual in a strong sense).
The numbers N c

ab are called fusion multiplicities, the labels a ∈ � are called primaries,
0 ∈ � is called the vacuum and ‘∗’ is called charge-conjugation.

The only reason for distinguishing the basisβ from the labels� is that for fusion rings the
multiplicative notation (e.g. unit 1) is natural, but in the traditional examples of modular
data additive notation is used. The terminology here comes from RCFT.

An important ingredient of fusion rings, as with character rings, is their preferred
basis β. Abstract rings don’t come with a basis. Forgetting the basis β, fusion rings
aren’t interesting: for example, the algebra R ⊗Z C over C (i.e. the span over C of β,
retaining the same multiplication and addition) is isomorphic as a C-algebra to C‖�‖

with operations defined component-wise (see Lemma 6.1.4 below). This is reminiscent
of the character ring of the Lie algebra Xr , which is isomorphic (as a C-algebra) to a
polynomial algebra in r variables.

For each a ∈ �, define the fusion matrix Na by

(Na)b,c = N c
ab.

Note that the fusion matrix N0 equals the identity matrix I , and Na∗ = (Na)t (Question
6.1.1). The fusion matrices can be simultaneously diagonalised:

Lemma 6.1.4 (a) Given any fusion ring R = R(�,N ), there is a unique (up to
ordering of the columns) unitary matrix S, with rows parametrised by � and columns
by say �′, obeying both

S0i > 0, (6.1.1a)

N c
ab =

∑
i

Sai Sbi Sci

S0i
, (6.1.1b)

for all a, b, c ∈ � and i ∈ �′.
(b) All simultaneous eigenspaces of all the fusion matrices are of dimension 1, and are
spanned by each column S,,b.

The proof of Lemma 6.1.4 only involves f1–f3. The condition f4 can now be expressed by
requiring that the S of Lemma 6.1.4 (for some ordering of the columns) obey S = St (so
�′ = �). The proof of Lemma 6.1.4 is elementary – the fusion matrices commute with
each other and hence with their transposes, and so are simultaneously diagonalisable –
and analogues hold in much greater generality. Equation (6.1.1b) says that the bth column
S,,b of S is an eigenvector of each Na , with eigenvalue Sab

S0b
. From the unitarity of S, we

know that Sab
S0b
= Sac

S0c
can hold for all a ∈ �, only if b = c, which gives us part (b).

The matrix S acts a lot like the character table of a finite group; a general theorem
valid for character tables has a fusion ring analogue.

Note that a priori the rows (parametrising basis vectors) and columns (parametrising
eigenvectors) of S in Lemma 6.1.4 play entirely different roles. In a natural sense [236],
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the dual ring to R has structure constants given by replacing S in (6.1.1b) with its
transpose St . This is what underlies calling f4 a self-duality condition. In contrast, the
character ring of a finite group is fusion-like, is diagonalised by the character table, but its
dual involves multiplying conjugacy classes and is isomorphic to the character ring only
for abelian groups. The appearance of self-duality here may seem somewhat mysterious,
but some sort of self-duality is pervasive in the mathematics of this chapter. In particular,
Drinfel’d’s ‘quantum double’ construction (Section 6.2.3) generates algebraic structures
possessing fusion rings and modular data, by combining a given (inadequate) algebraic
structure with its dual in some way. An example is provided by Section 6.2.4, where the
true (self-dual) fusion ring of a finite group is built up out of the character ring and its
dual.

Fusion rings arise naturally in RCFT (Sections 4.3.2 and 6.1.4). The ‘primaries’ are
the chiral primaries, parametrising the irreducible modules of the chiral algebra V . The
fusion multiplicities N c

ab are the dimension of the space of chiral blocks B
(0,3)c
a,b on a

sphere with three punctures (two ‘incoming’ and 1 ‘outgoing’), where we label those
punctures with the primaries a, b, c. Equation (6.1.1b) is called Verlinde’s formula [542],
and S has an interpretation in terms of modular transformations of the characters (4.3.9a).
A similar formula gives the dimension of any space of chiral blocks:

dim B(g,n+m) b1,...,bm
a1,...,an

:= N (g,n+m) b1,...,bm
a1,...,an

=
∑
c∈�

(S0c)2(1−g) Sa1c

S0c
· · · Sanc

S0c

Sb1c

S0c
· · · Sbm c

S0c
. (6.1.2)

The depth of Verlinde’s formula (6.1.1b), (6.1.2), which is considerable, lies in this
modular interpretation given to S. The S matrix is called the modular matrix for this
reason. Historically [50], the fusion ring arose directly by interpreting the chiral OPE
symbolically in terms of products of V-families of chiral fields (see e.g. section 7.3 of
[131]).

Recall Perron–Frobenius theory from Section 2.5.2. The fusion matrices Na are non-
negative, and it is indeed natural to multiply them:

NaNb =
∑
c∈�

N c
abNc.

So we can expect Perron–Frobenius to tell us something interesting. By (6.1.1a), the
Perron–Frobenius eigenvalue of Na is Sa0

S00
; hence we obtain the important inequality

Sa0S0b ≥ |Sab| S00. (6.1.3a)

Unitarity of S applied to (6.1.3a) forces

mina∈�Sa0 = S00. (6.1.3b)

The quantum-dimension D(a) of (5.3.12) equals Sa0
S00

, and so is bounded below by 1.
The borderline case of (6.1.3b) are those primaries a ∈ �, called simple-currents

in RCFT, obeying Sa0 = S00. To any such simple-current j ∈ �, there is a phase
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ϕ j : �→ C and a permutation J of � such that j = J0 and

SJa,b = ϕ j (b) Sa,b, (6.1.4a)

N b
j,a = δb,Ja . (6.1.4b)

For example, we see from (4.3.11e) that ε is a simple-current for the Ising model, with
phases ϕε(0) = ϕε(ε) = 1 and ϕε(σ ) = −1.

It is clear what plays the role of the endomorphism ‘∗’ in the character ring of a finite
group: complex conjugation. So take the complex conjugate of (6.1.1b). We find that S
also simultaneously diagonalises the fusion matrices Na . Hence from Lemma 6.1.4(b)
there is a permutation of �, which we denote by C , and some αb ∈ C, such that

Sab = αb Sa,Cb.

Unitarity of S forces each |αb| = 1. Looking at a = 0 and applying (6.1.1a), we see that
the αb must be positive. Hence

Sab = SCa,b = Sa,Cb, (6.1.5)

so as a permutation matrix, C = S2. Comparing f3 to Verlinde’s formula (6.1.1b), we
find that C is charge-conjugation: Ca = a∗. Note that C , like complex conjugation, is
an involution, and that C00 = 1.

More generally, recall our discussion of cyclotomic fields and their Galois automor-
phisms from Section 1.7. The character values ch(g) of a finite group G lie in the
cyclotomic field Q[ξ ], for the root of unity ξ = ξ‖G‖. Write σ� for the automorphism of
Q[ξ ] defined by σ�(ξ ) = ξ�, for some integer � coprime to ‖G‖. Then σ� acts on the
character table by

σ�(ch(g)) = ch(g�) = chσ� (g), (6.1.6)

for some character chσ� of G (to see which one, use the fact [308] that every G-
representation is equivalent to a matrix representation with all entries in Q[ξ‖G‖]).

Theorem 6.1.5 [114] Choose any fusion ring, and let S be the associated modular
matrix. The entries Sab of the matrix S lie in some cyclotomic field Q[ξN ]. Given any
Galois automorphism σ ∈ Gal(Q[ξN ]/Q),

σ (Sab) = εσ (a) Saσ ,b = εσ (b) Sa,bσ (6.1.7)

for some permutation b �→ bσ of �, and some signs (parities) εσ : �→ {±1}.
This is a fundamental symmetry of fusion rings, or rather their modular matrices. For
example, for σ equal to complex conjugation, (6.1.7) reduces to (6.1.5). Equation (6.1.7)
is essentially the statement that the fusion multiplicities are rational numbers; the cyclo-
tomicity follows from Theorem 1.7.1 and depends crucially on self-duality f4. Any
property of charge-conjugation seems to have an analogue for any of these Galois sym-
metries, although it is usually more complicated.

What has a fusion ring to do with ‘modular stuff’? That is explained next.
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6.1.2 Modular data

Choose any even integer n > 0. The matrix

S =
(

1√
n

e−2π i mm ′/n

)
0≤m,m ′<n

(6.1.8)

is the finite Fourier transform. Define the diagonal matrix T by Tmm = exp(π im2/n −
π i/12). The assignment(

0 −1
1 0

)
�→ S,

(
1 1
0 1

)
�→ T (6.1.9)

defines an n-dimensional representation ρ of SL2(Z), using (2.2.1a). This is the simplest
(and least interesting) example of modular data. Verlinde’s formula (6.1.1b) associates
a fusion ring with (6.1.8). Here the labels are � = {0, 1, . . . , n − 1} and the fusion ring
is the ring of integers Z[ξn] with preferred basis

β = {
1, ξn, . . . , ξ

n−1
n

}
.

The fusion multiplicities are given by addition mod n.
This SL2(Z)-representation (6.1.9) is realised by modular functions in the following

sense. For each a ∈ {0, 1, . . . , n − 1}, define the functions

χa(τ ) = 1

η(τ )

∞∑
k=−∞

qn (k+a/n)2/2,

where as always q = e2π iτ and η(τ ) is the Dedekind eta function (2.2.6b). Then (4.3.9)
hold. Thus !χ = (χa)t

a∈� is a vector-valued modular function with multiplier ρ for SL2(Z)
(Definition 2.2.2).

Definition 6.1.6 Let � be a finite set of labels, one of which – denote it 0 – is
distinguished. Modular data are matrices S = (Sab)a,b∈�, T = (Tab)a,b∈� of complex
numbers such that:
md1. S, T are unitary and symmetric, and T is diagonal and of finite order. That is,

T N = I for some N.
md2. S0a > 0 for all a ∈ �.
md3. S2 = (ST )3.
md4. The numbers N c

ab defined by (6.1.1b) are nonnegative integers.

From the presentation (2.2.1a) of the modular group SL2(Z), we see that modular data
defines a representation of SL2(Z), as in (6.1.9). Modular data abstracts out the SL2(Z)
action arising in unitary RCFT (for non-unitary RCFT, md2 should be weakened). It is
a significant refinement of fusion rings. In particular, most fusion rings are not realised
by any modular data (Question 6.1.5), but those that are are always realised by at least
three sets of modular data.

We can generalise (6.1.8) using lattices (recall Section 1.2.1). If we write L for the
lattice

√
nZ, then L∗ = 1√

n
Z is the dual lattice, the labels {0, . . . , n − 1} parametrise the

cosets L∗/L , and the modular function χa is the theta series of the ath coset, normalised
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by η. More generally, any even lattice L defines modular data in this way. The vacuum
‘0’ will be [0] = L . The fusion multiplicities N [c]

[a],[b] equal the Kronecker delta δ[c],[a+b],
so the fusion product is given by addition in the finite group L∗/L . All primaries [a] ∈ �
are simple-currents (6.1.4), corresponding to permutation J[a]([b]) = [a + b] and phase
ϕ[a]([b]) = e2π ia·b. Charge-conjugation (6.1.5) is given by C[a] = [−a]. The Galois
action (6.1.7) here is also simple: there is a Galois automorphism σ� for any integer �
coprime to the determinant |L|; σ� takes [a] to [�a], and all parities ε�([a]) equal +1.
From our point of view, however, this lattice example is a little too trivial.

In RCFT (Section 4.3.2), the labels a ∈ � are the chiral primaries and ‘0’ is the vacuum
state. The matrix T equals (4.3.10). Charge-conjugation C is a symmetry in quantum
field theory that interchanges particles with their anti-particles (and so reverses charge,
hence the name). The modular data S, T arise through (4.3.9), where χa are the one-point
functions on a torus. The above lattice example corresponds to the string theory of m
free bosons compactified on the torus Rm/L , where m = dim L .

Every property of fusion rings should have an analogue in modular data. For example,
the analogue of (6.1.5) is

TCa,Cb = Tab, (6.1.10a)

which says that T and C = S2 = (ST )3 commute. The analogue of (6.1.4) is

TJa,Ja Taa = ϕ j (a) Tj j T00. (6.1.10b)

In all known examples, including all those associated with RCFT [37], Galois is
intimately connected with the existence of characters χa realising the modular data as
in (4.3.9), which are modular functions for a congruence subgroup (recall (2.2.4)). In
particular, for all these examples, we get the remarkable property:

Definition 6.1.7 (congruence property) Let S, T be modular data, and let ρ be the
associated SL2(Z)-representation. Let N be the order of the matrix T , so T N = I . Then
we say S, T obey the congruence property if the following are all satisfied: ρ is trivial
(i.e. with value I ) on the congruence subgroup �(N ), and so defines a representation of
the finite group SL2(ZN ); we have characters χa realising the modular data in the sense
of (4.3.9), and those characters are modular functions for �(N ); the entries Sab all lie
in the cyclotomic field Q[ξN ]; and finally, the Galois automorphism σ� corresponds to

the modular transformation

(
� 0
0 �−1

)
∈ SL2(ZN ), and so we get(

ρ

(
� 0
0 �−1

))
ab

= ε�(a) δb,aσ� , ∀a, b ∈ �, (6.1.11a)

Taσ� ,aσ� = (Taa)�
2
, ∀a ∈ �. (6.1.11b)

The finite group SL2(ZN ) arises as SL2(Z)/�(N ). The quantity ‘�−1’ denotes the mul-
tiplicative inverse of � (mod N ), and exists because gcd(�, N ) = 1. We return to the
congruence property in Section 6.3.3. Probably Definition 6.1.6 is so weak that some
‘sick’ S, T are examples. It is expected, however, that all reasonably healthy modular
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data, for example, modular data associated with nice CFTs, VOAs or modular categories,
would obey the congruence property (or at least something close to it). It is known [169]
that modular data obeying the congruence property will typically (always?) be realised
by some vector-valued modular function as in (4.3.9).

6.1.3 Modular invariants

Modular data axiomatises the appearance of SL2(Z) in unitary RCFT. Two places mod-
ular data directly impacts on RCFT are Verlinde’s formula (6.1.2) and the partition
function (4.3.8b).

Definition 6.1.8 Choose any modular data S, T . A modular invariant is a matrix Z ,
with rows and columns labelled by �, obeying:
mi1. ZS = SZ and ZT = TZ;
mi2. Zab ∈ N for all a, b ∈ �; and
mi3. Z00 = 1.

It will be convenient at times to rewrite ZS = SZ as SZS = Z (recall that S is unitary).
The easiest modular invariants are the identity Z = I and charge-conjugation Z = C .
More generally, Z is a modular invariant iff CZ is.

Modular invariants axiomatise the 1-loop partition functions Z(τ ) (4.3.8b) of RCFT.
More precisely, an RCFT consists of two VOAs, called chiral algebras. For convenience
we will take them to be isomorphic, though this is not necessary (when they aren’t isomor-
phic, the theory is called ‘heterotic’). The modular invariant describes how these VOAs
act on the state space H, that is how H decomposes into modules of the chiral algebras:

H = ⊕a,b∈�ZabHa ⊗Hb.

mi2 holds because the Zab are multiplicities. The adjoint module H0 ⊗H0 contains
the vacuum 1⊗ 1, and mi3 says there should be only one vacuum. Finally, the 1-loop
partition function Z(τ ), being a physical correlation function defined on the torus,
must be invariant with respect to the modular group SL2(Z) of the torus. Equivalently,
Z(τ ) = Z(−1/τ ) = Z(τ + 1). Applying (4.3.9) and the unitarity of S and T gives the
modular invariance condition mi1.

Perhaps it is because of their basic importance to RCFT, but the lists of modular
invariants associated with affine algebras (Section 6.2.1) are quite remarkable. They also
play natural roles for subfactors and VOAs, as we’ll see.

A second partition function, playing the same role for boundary CFT (the open string)
that Z(τ ) plays for bulk CFT (the closed string), is that corresponding to a cylinder. Its
coefficient matrices My

ax define a fusion ring representation (6.2.6), called a nim-rep
[47], [236]. Although they are a fascinating part of the bigger picture, we’ll say little
about them in this book.

Fix a choice of modular data. Commutation mi1 of Z with T is trivial to solve, since
T is diagonal: it yields the selection rule

Zab �= 0 ⇒ Taa = Tbb. (6.1.12)

https://doi.org/10.1017/9781009401548.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.007


362 Modular group representations

More subtle and valuable is commutation with S. In particular, each symmetry of S
yields a symmetry of Z , a selection rule telling us certain entries of Z must vanish, and
a way to construct new modular invariants.

First consider simple-currents j, j ′. Equation (6.1.4a) and positivity tell us

Z j, j ′ =
∣∣∣∣∣ ∑
c,d∈�

ϕ j (c) S0c Zcd Sd0 ϕ j ′ (d)

∣∣∣∣∣ ≤∑
c,d

S0cZcd Sd0 = Z00 = 1.

Thus Z j, j ′ �= 0 implies Z j, j ′ = 1, as well as the selection rule

Zcd �= 0 ⇒ ϕ j (c) = ϕ j ′ (d). (6.1.13a)

A similar calculation yields the symmetry

ZJ0,J ′0 �= 0 ⇒ ZJa,J ′b = Zab, ∀a, b ∈ �. (6.1.13b)

The most useful application of simple-currents to modular invariants is to their con-
struction. In particular, let j = J0 be a simple-current of order n. Then (by Question
6.1.7(b)) we can find integers r j and Q j (a) such that

ϕ j (a) = exp

[
2π i

Q j (a)

n

]
, Tj j T00 = exp

[
2π i r j

n − 1

2n

]
.

Now define the matrix Z[ j] by [489]

Z[ j]ab =
n∑

�=1

δJ �a,b δ

(
Q j (a)+ �

2n
r j

)
, (6.1.14)

where δ(x) = 1 when x ∈ Z and is 0 otherwise. This matrix will be a modular invariant
iff Tj j T00 is an nth root of 1. For instance, Z[0] = I .

Now look at the consequences of Galois. Applying the Galois automorphism σ to
Z = SZS yields, from (6.1.7) and Zab ∈ Q, the equation

Zab =
∑

c,d∈�
εσ (a) Sσa,c Zcd Sd,σb εσ (b) = εσ (a) εσ (b)Zσa,σb.

(Why must σ commute with complex conjugation?) Because Zab ≥ 0, this implies the
selection rule and symmetry

Zab �= 0 ⇒ εσ (a) = εσ (b), (6.1.15a)

Zσa,σb = Zab, (6.1.15b)

valid for any σ . Of all the equations (6.1.13) and (6.1.15), (6.1.15a) is the most useful.
The reader can try to construct modular invariants from certain special σ�.

6.1.4 The generators and relations of RCFT

In fundamental and influential work of the late 1980s, Moore and Seiberg [436], [437]
isolated the data (finite-dimensional vector spaces and linear transformations) defining
each chiral half of RCFT, and provided a complete set of relations they satisfy. Roughly,
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Fig. 6.1 A vertex.

they do for topological field theories in 2+ 1 dimensions what Theorem 4.4.4 does in
1+ 1 dimensions. Most of their work has been rigorously clarified in the important book
[32]. This section sketches the basic ideas.

Their goal is to understand the spaces B(�) of chiral blocks (Section 4.3.2). As in
Section 4.4.1, incoming strings are those boundary circles oriented oppositely to the
surface. We can change the orientation of a boundary circle provided we also replace its
label (a module M ∈ �(V)) with its charge-conjugate M� (5.3.4a). Thus, for instance,
the spaces B

(g,n+m) b1,...,bm
a1,...,an and B

(g,n+m)
a1,...,an ,b∗1 ,...,b∗m

are naturally isomorphic in this way.
We know from the proof of Theorem 4.4.4 that we can build up an arbitrary surface

with boundary by sewing together discs, cylinders and pairs-of-pants. Hence the basic
building block is the vertex in Figure 6.1. In the spirit of the diagrams of Section 1.6.2, it
can be written as the graph on the right. This vertex represents an intertwining operator –
the Ii in (4.3.7). They are a natural generalisation of vertex operators (in fact they are
often called that), and they generate the chiral blocks F in exactly the same way that
quantum fields generate correlation functions (4.3.1a).

Definition 6.1.9 [199], [436] Let V be a VOA, and let (Mi , Y i ), for labels i ∈ �, be
its irreducible modules. For any a, b, c ∈ �, an intertwining operator of type

( c
a b

)
is a

linear map

w �→ Y(w, z) =
∑
n∈Q

w(n)z
−n−1 (6.1.16)

for each w ∈ Ma, where each mode w(n) ∈ Hom(Mb, Mc) (hence the name ‘inter-
twiner’), such that for allwa ∈ Ma,wb ∈ Mb and v ∈ V ,wa

(n)(w
b) = 0 for all sufficiently

large n (depending on both wa, wb), and we have both

z−1
0 δ

(
z1 − z2

z0

)
Y c(v, z1)Y(wa, z2)wb− z−1

0 δ

(
z2 − z1

−z0

)
Y(wa, z2) Y b(v, z1)wb

= z−1
2 δ

(
z1 − z0

z2

)
Y(Y b(v, z0)wa, z2)wb,

d

dz
Y(wa, z) =Y(L−1w

a, z).

Let V
( c

a b

)
denote the space of all Y of the given type.
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Fig. 6.2 The braiding operator Bef

[
b

a

c

d

]
.

In short, the intertwining operator obeys all the properties the vertex operator YM obeys
in Definition 5.3.1. Of course the z-derivative in the definition completely specifies the
z-dependence of an intertwining operator. Note that the defining vertex operator Y (v, z)
of a VOA is an intertwining operator of type

( 0
0 0

)
, while the vertex operator YMa of the

module Ma is of type
( a

0 a

)
. Summing the formal power series in (6.1.16) over Q is a little

lazy here: the sum really is over n ∈ r + Z, where r = wtwc − wtwa − wtwb ∈ Q. The
analogue of the grading va1 here is that wtwa

(n) = wtwa − n − 1.
The dimension of the space of intertwiners is just the fusion multiplicities:

dim
(
V
( c

a b

))
= dim B

(
�

(0,3) c
ab

)
= N c

ab <∞. (6.1.17)

Given a surface� with m + n boundary circles, finding a basis for the space B(�b1,...,bn
a1,...,am

)
is now trivial, at this formal level: simply perform the following Feynman rules.

(i) Fix a basis for each space V
( c

a b

)
of intertwining operators.

(ii) Fix some dissection of � into pairs-of-pants, as in Figure 4.12 (it is more
convenient but not necessary to draw the corresponding trivalent graph).

(iii) Assign to each internal cut, or equivalently each internal edge of the trivalent
graph, a dummy label.

(iv) To each vertex in your dissection, bounded by labels a, b, c ∈ � (appropriately
oriented), choose an intertwining operator from the basis of the appropriate space
of intertwiners.

(v) ‘Evaluate’ the corresponding chiral block in (4.3.7) – this is a desired basis vector.
(vi) Repeat for each operator in your basis, and each possible value of all dummy

labels.

For example, consider the left-most dissection in Figure 6.2(a) of a sphere with four
boundary components. Let Y and Y ′ be any intertwining operators in V

( b
a e

)
and V

( e
d c

)
,

respectively. Then we get a chiral block

F = 〈wb,Y(wa, z)Y ′(wd , z′)wc〉, (6.1.18)

where Möbius invariance was used to send the b- and c-marked points to 0 and ∞.
Section 9.3 of [253] gives a more physical description of sewing. Incidentally, each
dissection corresponds to moving towards a ‘maximally degenerate’ boundary point on
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Fig. 6.3 The fusing operator Feg

[
b

a

c

d

]
.

Mg,n (recall Section 2.1.4), that is deforming the surface ever more closely to a trivalent
graph.

For each dissection, the chiral blocks of (v) are linearly independent and form a basis
for the desired space B(�b1,...,bn

a1,...,am
). This linear independence implies a product formula

for fusion multiplicities, for any pair of dissections of each labelled surface. For instance,
the dissections in Figures 6.2(a) and 6.3(a) tell us the nontrivial fact that

N (0,4) b
acd = dim B

(
�

(0,4) b
acd

)
=
∑
e∈�

N b
ae N e

cd =
∑
f ∈�

N f
ac N b

d f =
∑
g∈�

N g
adN b

cg. (6.1.19)

These identities imply that the fusion ring of an RCFT, defined here formally to have
structure constants N c

ab, is both commutative and associative. All of these product for-
mulae can be quickly deduced from Verlinde’s formula (6.1.2).

As we’ve repeatedly mentioned, a given surface can be dissected in different ways.
Duality here is the statement that although each dissection of � produces a different
basis of chiral blocks, they must be bases for the same space B(�), that is there must
be invertible linear maps relating the chiral blocks of different dissections. Consider the
easy examples in Figures 6.2 and 6.3. There we’ve given three dissections of the (g, n) =
(0, 4) surface. The corresponding linear maps (actually matrices, given our explicit but

noncanonical bases) are denoted B

[
b c
a d

]
= ⊕e, f ∈�Bef

[
b c
a d

]
and F

[
b c
a d

]
=

⊕e,g∈�Feg

[
b c
a d

]
. For the purposes of manipulating identities, it is convenient to

represent these operators pictorially as in (b) (recall Section 1.6.2). Because of these
pictures, they are usually called braiding and fusing. They play the same role here as the
Clebsch–Gordon and Racah coefficients (or 3j- and 6j-symbols), respectively, play in
the Lie theory of the quantum mechanics literature. See also the treatment in chapter 16
of [214].

The proposition at the end of [278] gives us four basic ‘moves’ from which any two
dissections can be related. These occur for surfaces with

(g, n) = (0, 1), (0, 2), (0, 4), (1, 1) (6.1.20)

(namely, the surfaces that need at most one cut to unfold them into discs, cylinders or
pairs-of-pants). The one for (1,1) is given in Figure 6.4. The corresponding operator is
called S(a) because it corresponds to the modular transformation τ �→ −1/τ . The result
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a                                a

Fig. 6.4 The S-operator S(a).

Fig. 6.5 A typical identity.

of [278] is the key to proving that a few dualities generate all others. In particular, all
duality transformations can be written in terms of F, B, S, e2π ic/24.

These duality operators obey several identities, coming from surfaces (0, 5) and (1, 2)
(those requiring two cuts to decompose into pairs-of-pants). An example is Figure 6.5;
another is the Yang–Baxter equation (Figure 1.29). The reader is encouraged to write
these identities down explicitly. Figure 6.5 has the shape F B B = B F , while the Yang–
Baxter equation looks like B B B = B B B. Other identities are given in section 3 of
[437].

[436] argue, and [32] prove, that all mapping class group actions on the spaces B(�)
can be deduced from these relations. They also argue that Verlinde’s formula (6.1.2)
follows, by considering the space B

(1,2)
aa∗ .

For example, consider the Ising model (Section 4.3.2). Here� = {1, ε, σ }. Its modular
data S, T is given in (4.3.11), and a basis for the space of chiral blocks in B(0,4) σ

σσσ is given
in (4.3.13). Its fusion ring is defined by ε × ε = 1, ε × σ = σ and σ × σ = 1⊕ ε.
Recall that these blocks assume that the four points z1, . . . , z4 have been mapped to
0, w, 1,∞, respectively (so w goes to the cross-ratio). To find the fusing matrix, one
way is to note that this duality interchanges the roles of z1 = 0 and z3 = 1, and therefore
corresponds to the Möbius transformation w �→ (1− w)/(1− 0) = 1− w. Likewise,
braiding interchanges z2 with z3, and so corresponds to the Möbius transformationw �→
(0− 1)/(0− w) = 1/w. When applying Möbius transformations to chiral blocks, recall
(4.3.5); equivalently, chiral blocks (of quasi-primaries) are often written as differential
forms: here they are Fi dw−1. The braiding and fusing matrices here become

B

[
σ σ

σ σ

]
= 1√

2

(
y y−3

y−3 y

)
, (6.1.21a)

F

[
σ σ

σ σ

]
= y2 + y−2

√
2

(
1 1
1 −1

)
, (6.1.21b)
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for some primitive 16th root y of 1. Also, S(σ ) is 0× 0 (since N (1,1)
σ = 0 by (6.1.2)),

and S(ε) = (y−2).

Question 6.1.1. (a) Directly from Definition 6.1.3, prove that the fusion ring homomor-
phism ∗ in f2 is an involution (i.e. ∗2 = id).
(b) Again directly from the definition, prove that Na∗ = (Na)t for any fusion matrix
Na .
(c) Directly from the definition, prove that the numbers Nabc := N c∗

ab in any fusion ring
are completely symmetric in a, b, c.

Question 6.1.2. Choose your favourite character table theorem in, for example, [308]
and find and prove the fusion ring analogue.

Question 6.1.3. Prove that a fusion ring R(β,N )⊗Z Q, considered as an algebra over Q,
is isomorphic to a direct sum of number fields. Construct these number fields explicitly,
from the matrix S. (Hint: (6.1.7) may be helpful.)

Question 6.1.4. Prove Theorem 6.1.5.

Question 6.1.5. Classify all one- and two-dimensional fusion rings and modular data.

Question 6.1.6. What happens to the modular data of the lattice example when the lattice
is integral but not even (i.e. it has odd norm-squared vectors).

Question 6.1.7. (a) Prove (6.1.13b).
(b) Prove that if j = J0 is order n, then ϕ j (a) is an nth root of unity, and for n odd
TJa,Ja Taa is also an nth root of 1, while for n even it is a 2nth root of 1.
(c) Prove that the set of all simple-currents forms an abelian group (with respect to
composition of the permutations J ).
(d) Prove that N J J ′c

Ja,J ′b = N c
ab. Describe σ j and εσ ( j) of simple-currents, for any σ ∈

Gal(Q[ξN ]/Q).

Question 6.1.8. Suppose all a ∈ � are simple-currents. Prove that any modular invariant
is of the form (6.1.14).

Question 6.1.9. Suppose we have four sets of functions, namely ai (z) and bi (z) (for
1 ≤ i ≤ n), and c j (z) and d j (z) (for 1 ≤ j ≤ m), and they are all holomorphic in some
common domain (e.g. the unit disc). Suppose the equality

n∑
i=1

ai (z) bi (z) =
m∑

j=1

c j (z) d j (z)

holds throughout that domain. Then n = m and there is an invertible n × n matrix M
such that both

ai (z) =
n∑

j=1

Mi j c j (z), bi (z) =
n∑

j=1

(M−1)i j d j (z).
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6.2 Examples

6.2.1 Affine algebras

The mathematical riches of CFT go far beyond Lie theory, but CFT would have remained
an esoteric part of mathematical physics, unknown to mathematics proper, if its deep
connection to Lie theory hadn’t been discovered.

The source of some of the most interesting modular data are the nontwisted affine
Kac–Moody algebras g = Xr

(1) (Section 3.2). We are interested in its integral highest
weights λ ∈ Pk

+(g) with a given fixed level k ∈ N.
Recall that the g-character χλ(τ ) (3.2.11c) is essentially a lattice theta function, and

transforms nicely under the modular group SL2(Z). In fact, the SL2(Z)-representation
ρ of Theorem 3.2.3 defines modular data. The ‘vacuum’ is 0 = kω0, and the set of
‘primaries’ � are the highest weights Pk

+(g) given in (3.2.8). The matrix T is related to
the eigenvalues of the second Casimir operator of g = Xr , and S to elements of finite
order in the Lie group of Xr [333]:

Tλμ = exp

[−π i (ρ|ρ)

h∨

]
exp

[
π i (λ+ ρ|λ+ ρ)

k + h∨

]
δλ,μ, (6.2.1a)

Sμν = α
∑
w∈W

det(w) exp

[
−2π i

(w(μ+ ρ)|ν + ρ)

k + h∨

]
, (6.2.1b)

Sλμ
S0μ

= chL(λ)

(
exp

[
−2π i

(λ |μ+ ρ)

k + h∨

])
. (6.2.1c)

The unimportant number α is given explicitly in theorem 13.8(a) of [328]. The inner-
product is the usual Killing form of g, W is the (finite) Weyl group of g, ρ is the Weyl
vector

∑r
i=1 ωi and h∨ is the dual Coxeter number (the sum

∑r
i=0 a∨i of the colabels

in Figure 3.2). Also, λ denotes the projection λ1ω1 + · · · + λrωr , and ‘chL(λ)’ is the
appropriate finite-dimensional Lie group character.

The combinatorics of Lie group characters at elements of finite order, that is the
ratios (6.2.1c), are quite rich and have been studied by many people. For instance, [431]
show that they lead to quick algorithms for computing, for example, tensor product
multiplicities. Kac [327] used them in a Lie theoretic proof of quadratic reciprocity.

For example, for A1
(1) at level k, we may take Pk

+ = {0, 1, . . . , k} (the value of λ1),
and then the S and T matrices and fusion multiplicities are given by

Sab =
√

2

k + 2
sin

(
π

(a + 1) (b + 1)

k + 2

)
, (6.2.2a)

Taa = exp

[
π i(a + 1)2

2(k + 2)
− π i

4

]
, (6.2.2b)

N c
ab =

{
1 if c ≡ a+b (mod 2) and |a−b| ≤ c ≤ min{a+b, 2k−a−b}
0 otherwise

. (6.2.2c)

For A1
(1) the matrix S is real and so charge-conjugation C = id. More generally, for Xr

(1)

C corresponds to a symmetry of the Coxeter–Dynkin diagram of Xr . For A1
(1), there
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(−1,−1)
(1,−2)

(2,−1)

(1,1)

(−2,1)

(−1,2)

2(0,0)

(a)

(2,0) (4,−1)

(1,2)

(2,3) (4,2)

(3,1)2 (5,0)

(c)

(2,0) (4,−1)

(1,2)

(2,3) (4,2)

(3,1)2 (5,0)

(b)

Fig. 6.6 Tensor and fusion products L(2, 0)⊗ L(1, 1) and L(0, 2, 0) × 2 L(0, 1, 1).

is precisely one nontrivial simple-current, namely j = k, corresponding to Ja = k − a
and ϕ j (a) = (−1)a . More generally, to any affine algebra (except for E8

(1) at k = 2), the
simple-currents correspond to symmetries of the extended Coxeter–Dynkin diagram. For
A1

(1) this symmetry interchanges the zeroth and first nodes, that is J (λ0ω0 + λ1ω1) =
λ1ω0 + λ0ω1 (recall a = λ1 and k = λ0 + λ1).

The fusion multiplicities N ν
λμ, defined by (6.1.1b), are essentially the tensor product

multiplicities T ν

λμ
:=multλ⊗μ(ν) for g (as opposed to the unrelated and less interesting

tensor product multiplicities of g), except ‘folded’ in a way depending on the level k.
This is seen explicitly by the Kac–Walton formula (see [328] page 288, [552], though
there are other co-discoverers):

N ν
λμ =

∑
w∈W

det(w) Tw.ν

λμ
, (6.2.3a)

where w.γ :=w(γ + ρ)− ρ and W is the affine Weyl group of Xr
(1) (the dependence

on k arises through this action of W ). The proof follows quickly from (6.2.1c). This
practical formula is also described in Section 16.2 of [131] and Section 4.9 of [553].

Equation (6.2.3a) looks more natural when viewed as follows. The Racah–Speiser
formula (there are other co-discoverers) for tensor product multiplicities says

T ν

λμ
=
∑
w∈W

det(w) dim L(μ)w.ν−λ. (6.2.3b)

Combining (6.2.3) gives the ‘affinisation’ of Racah–Speiser:

N ν
λμ =

∑
w∈W

det(w) dim L(μ)w.ν−λ. (6.2.3c)

For example, the weights for the eight-dimensional A2-module L(1, 1) are given in
Figure 6.6(a). In Figure 6.6(b), we translate this weight space byρ + λ = (3, 1). Equation
(6.2.3b) now tells us to Weyl-reflect each dot not in the A2 alcove Pk

+ + ρ. Two of these
dots are fixed by a Weyl reflection and so cancel themselves. Weight (4, −1) gets Weyl
reflected to (3, 1) and so reduces the multiplicity there by 1. Shifting back by ρ = (1, 1),
we thus get the tensor product

L(2, 0)⊗ L(1, 1) = L(0, 1)⊕ L(2, 0)⊕ L(1, 2)⊕ L(3, 1).
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The calculation of the A2
(1) fusion multiplicity at, for example, level 2 (Figure 6.6(c))

is identical, except we now have extra Weyl reflections and the alcove is much smaller.
The weight (4, 2) now lies outside the alcove, and reflects to (3, 1) where it reduces that
multiplicity to 0. Thus we obtain the fusion product (writing the level as subscript)

L(0, 2, 0) × 2 L(0, 1, 1) = L(1, 0, 1).

Equation (6.2.3a) has the flaw that, although the N ν
λμ are manifestly integral, it is

not clear why they are positive. An open problem in the theory is the discovery of a
combinatorial rule, for example, in the spirit of the well-known Littlewood–Richardson
rule [217], for the affine algebra fusions. Such a rule for Ar

(1) is conjectured in [88],
although it is quite complicated even for A1

(1).
Identical numbers N ν

λμ appear in several other contexts, many of which we’ll see
below. Because of these isomorphisms, we know that the N ν

λμ defined by (6.1.1b) and
(6.2.1b) do indeed lie in N, for any affine algebra, as predicted by RCFT.

As mentioned before, the fusion product here is not the usual tensor product of affine
algebra modules. However, the fusion product has been interpreted algebraically (with
much effort) as a new kind of tensor product of affine algebra modules, in a series of
papers by Kazhdan and Lusztig; it was proved equivalent to fusions in [190].

Fusion multiplicities arise in the quantum cohomology or Gromov–Witten invariants
of Grassmannians [565], [57], often called the ‘quantum Schubert calculus’. Recall
that ‘points’ in the projective plane consist of lines through the origin; more gen-
erally, the Grassmannian Gr(m, n) consists of m-dimensional subspaces in Rn . The
(classical) Schubert calculus (see e.g. [217]) uses the cohomology ring of Gr(m, n)
to solve problems in enumerative geometry such as ‘How many lines in projective 3-
space P3(R) meet four given lines?’. On the other hand, the Gromov–Witten invariants
count surfaces lying in the Grassmannian, which satisfy certain conditions (see e.g.
[359]). The quantum cohomology ring (which counts spheres) of Gr(m, n) is isomor-
phic to the fusion ring of glm

(1) = (u1 ⊕ Am−1)(1) at level (nm, n − m), ‘orbifolded’
with a ‘projection/field-identification’ given by the order-m simple-current (J−n, J ); the
Gromov–Witten invariants are the fusion multiplicities. Now, there is a classical iso-
morphism Gr(m, n) ∼= Gr(n − m, n) (why?); this implies that there is a close relation
(‘rank–level duality’) between the fusion rings of Ar

(1) level k and Ak−1
(1) level r + 1.

There are analogous rank–level dualities for the other classical algebras [428]. This is one
of many symmetries of the g fusion multiplicities that has no analogue for the g tensor
product multiplicities. Another example is that any symmetry of the extended Coxeter–
Dynkin diagram is a symmetry of fusion multiplicities. In short, affine algebra fusion
multiplicities are mathematically more interesting than their classical counterparts.

We have long known that the representation theory of a Lie group G is related to
K-theory. For example, the equivariant K-theory K dim G

G (p) of the (trivial) action of
G on a point p is the representation ring (over Z). The analogue of this for fusion
rings is due to Freed–Hopkins–Teleman [193]: the fusion ring of Xr

(1) at level k is the
twisted equivariant K-theory h K dim G

LG (p) := k+h∨ K dim G
G (G), where G is the compact

simply-connected Lie group corresponding to Xr , G acts on itself by conjugation and
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k + h∨ ∈ Z = H 3
G(G,Z) is the twist h. The strength of this important formulation is also

its weakness: it pushes most technical difficulties under the carpet, but what remains is
a clean conceptual characterisation of the fusion ring.

Fusion multiplicities also arise as dimensions of spaces of generalised theta functions
[179] (see also the discussion in [565]), as tensor product multiplicities in Hecke algebras
at roots of 1 [255] and modular representations for, for example, the Lie algebra g for
fields Fp (see e.g. [392]). In Section 6.1.1 we give another appearance of the An−1

(1)

fusion multiplicities.
The Galois action for the affine algebras can be expressed geometrically using the

action of the affine Weyl group on the weight lattice of Xr . The parity εσ (λ) is quite
interesting (see e.g. [7] for cohomological and number-theoretic interpretations). For a
concrete example, consider A1

(1): (6.2.2a) shows explicitly that Sab lies in the cyclotomic
field Q[ξ4(k+2)]. Write {x} for the number congruent to x mod 2(k + 2) satisfying 0 ≤
{x} < 2(k + 2). Choose any Galois automorphism σ = σ�. Then if {�(a + 1)} < k + 2,
we will have aσ = {�(a + 1)} − 1, while if {�(a + 1)} > k + 2, we will have aσ = 2(k +
2)− {�(a + 1)} − 1. The parity εσ (a) depends on a contribution from

√
2

k+2 (which can
usually be ignored), as well as the sign +1 or −1, respectively, depending on whether
or not {�(a + 1)} < k + 2.

Affine algebra modular data corresponds to Wess–Zumino–Witten RCFT [245], where
a closed string lives on a Lie group manifold G. The action is given by the sum of two
terms: one is an integral over the world-sheet and corresponds to a so-called sigma model
[343] of a bosonic field living on G; the other is a topological Wess–Zumino term, an
integral over the volume bounded by the (compactified) world-sheet. Classically, the
sigma model by itself would be conformally invariant, but quantisation breaks this. It
was Witten who realised that conformal invariance would be retained if the Wess–Zumino
term was added. For topological reasons the Wess–Zumino term comes with an integral
prefactor (or coupling constant), which we call the level k.

Why is the level k always shifted by the dual Coxeter number h∨ in the formulae,
and the weights by the Weyl vector ρ? The ρ-shift appears even for the simple finite-
dimensional algebras (1.5.11), and arises from the combinatorics of geometric series. The
algebraic explanation of the h∨-shift was given after (3.2.15). Physically, in the Wess–
Zumino–Witten model, these ρ- and h∨-shifts also arise automatically: the former as a
quantum effect, due to normal-ordering or regularisation, much like the q1/24 shift in
the Dedekind eta; the latter as an effect of latent supersymmetry caused by decoupling
fermions (see e.g. section 8 of [248], or [206]).

The modular data (6.2.2) of A1
(1) level k is related to the dilogarithm by the remarkable

formula

1

L(1)

k∑
b=1

L

(
S2

0a

S2
ba

)
= ck − 24ha + 6a (6.2.4a)

for each a ∈ Pk
+, where ck = 3k/(k + 2) is the central charge and ha = a (a+2)

4(k+2) the con-
formal weight (recall (3.2.9)). L(x) here is Roger’s dilogarithm, which for 0 < x < 1 is
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given by

L(x) =
∞∑

n=1

x2

n2
+ 1

2
log x log (1− x). (6.2.4b)

We put L(1) := limx→1−L(x) = π/6. L(x) is strictly increasing, real-analytic, and obeys
L(x)+ L(1− x) = L(1) and

L(x)+ L(y) = L(xy)+ L

(
x − xy

1− xy

)
+ L

(
y − xy

1− xy

)
. (6.2.4c)

As was discovered by Lobachevsky and Schläffli in the nineteenth century, the dilog-
arithm is related to volumes of tetrahedra, and several other appearances have been
uncovered since. Equation (6.2.4a) is the tip of the iceberg; see [347] for several other
identities and some history. (6.2.4a) can be proved by studying the τ → 0 asymptotics
of certain character formulae. For a simple example, the two k = 1 A1

(1) characters can
be written

χiω1+(1−i)ω0 (τ ) =
∑

M+N+i even
M,N∈N

q (M+N )2/2

(q)M (q)N
, (6.2.5a)

where (q)N is the q-deformed factorial
∏N

n=1(1− qn). Similar expressions exist for all
other affine algebras and conjecturally all RCFT – see [14] for the state-of-the-art, and
below for a conjecture. Actually, (6.2.4a) is obtained from the asymptotics of these
character identities for certain non-unitary RCFTs, which have essentially the same S
matrix as (6.2.2a). An explanation of some of these identities (at least mod 1) has been
made by [164], who use the dilogarithm to express a natural map from H3(S̃L2(R),Z)
to R/Z.

Choose any r × r rational positive-definite matrix A = At , b ∈ Qr and d ∈ Q. Define

f A,b,d (τ ) :=
∑
n∈Nn

exp[2π iτ (nt An/2+ bt n + d)]

(q)n1 · · · (q)nr

. (6.2.5b)

Conjecture 6.2.1 (Nahm [444]) Let A be any n × n rational positive-definite matrix.
Then there are finitely many vectors b1, . . . , bm ∈ Qn and numbers d1, . . . , dm ∈ Q such
that the functions χi (τ ) := f A,bi ,di (τ ) are the entries of a vector-valued modular function
for SL2(Z), iff these χi (τ ) are the graded-dimensions of the m primaries of some (not
necessarily unitary) RCFT where di = hi − c/24, iff there is a corresponding element
of finite order in the Bloch group.

The precise statement involving the Bloch group would take us too far afield, but see [444]
for details. This beautiful conjecture has been verified only for r = 1 (which has three
different A). A plausibility argument suggesting that RCFT characters should always be
of that form involves considering their massive integrable perturbations [444]. Torsion
in the Bloch group has known connections with modularity.

The affine algebra g arises in the Wess–Zumino–Witten model, for the same reason the
Virasoro does (recall the discussion around (4.3.4)): to each g ∈ G we get a conserved
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current, and its conserved charges define the level-k representation of g. As before, we
get two commuting actions of g on the state-spaceH, recovering the finite decomposition
(4.3.6b).

For affine algebra modular data, the classification of modular invariants seems to be
just barely possible, and the answer is that (generically) the only modular invariants are
constructed in straightforward ways from symmetries of the Coxeter–Dynkin diagrams.
For instance, consider A1

(1):

Theorem 6.2.2 [91] Recall that Pk
+ = {0, 1, . . . , k}, and the simple-current is given

by Ja = k − a. Then the complete list of A1
(1) modular invariants is

Ak+1 =
k∑

a=0

|χa|2 for all k ≥ 1,

D k
2+2 =

k∑
a=0

χa χ
∗
J aa when

k

2
is odd,

D k
2+2 = |χ0 + χJ0|2 + |χ2 + χJ2|2 + · · · + 2|χ k

2
|2 when

k

2
is even,

E6 = |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2 for k = 10,

E7 = |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2
+ χ8 (χ2 + χ14)∗ + (χ2 + χ14)χ∗8 + |χ8|2 for k = 16,

E8 = |χ0 + χ10 + χ18 + χ28|2 + |χ6 + χ12 + χ16 + χ22|2 for k = 28.

A simple proof is given in [234]. The modular invariants An and Dn are generic, given
by (6.1.14), and correspond respectively to the order 1 (i.e. identity) and order 2 (i.e.
simple-current J ) Coxeter–Dynkin diagram symmetries. Physically, An and Dn are the
partition functions (4.3.8b) of Wess–Zumino–Witten models on the SU2(C) and SO3(R)
group manifolds, respectively. The exceptionals E6 and E8 correspond to strings living
on Sp4 and G2 manifolds, at level 1. The E7 exceptional is harder to interpret, but is the
first in an infinite series of exceptionals involving rank–level duality and D4 triality.

Around Christmas 1985, Zuber wrote to Kac about the A1
(1) modular invariant prob-

lem, and mentioned the modular invariants they knew at that point (what we now call
A� and Deven). A few weeks later, Kac wrote back saying he found one more invariant,
and jokingly pointed out that it must indeed be quite exceptional as the exponents of E6

appeared in it. By summer 1986, Cappelli–Itzykson–Zuber found E7, Dodd and then E8,
and at some point recalled by chance Kac’s cryptic remark. They rushed to the library
to find a list of the exponents of the other algebras, and were delighted to discover that
they all matched. Thus the A–D–E pattern (Section 2.5.2) to their modular invariants
was discovered!

The modular invariants for A1
(1) realise the A–D–E pattern, in the following sense [91].

The (dual) Coxeter number h = h∨ of the name Xn equals k + 2, and the exponents mi

of Xn equal 1 plus those a ∈ Pk
+ for which Zaa �= 0 (for the algebras An, Dn, En , the

integers mi are defined by writing the eigenvalues of the corresponding Cartan matrix
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(Definition 1.4.5) as 4 sin2(πmi
2h )). Probably what first led Kac to his observation about

the E6 exponents was that k + 2 (this is how k enters most formulae), for his exceptional,
equals the Coxeter number 12 for E6. More recently, deeper connections between A–
D–E and the A1

(1) modular invariants have been found, notably in subfactor theory
(Section 6.2.6). This modular invariant classification, however, has never been directly
reduced to the suggestion of Section 2.5.2.

The modular invariants have also been classified, for example, for A2
(1) [232], and

they too seem quite interesting (Section 6.3.2). We are almost at the point where we
can safely conjecture the complete list of modular invariants for Xr

(1) at any k, for Xr

a simple algebra (see e.g. [236]). The most surprising thing about these affine alge-
bra modular invariant classifications is that there are so few surprises: almost every
modular invariant is ‘generic’, that is constructable using a few simple uniform meth-
ods such as Coxeter–Dynkin diagram symmetries. Unfortunately, the classification for
semi-simple algebras Xr1 ⊕ · · · ⊕ Xrs does not reduce to that for simple ones, and will be
hopeless.

Has A–D–E been discovered in the other modular invariant classifications? No, only
in those classifications trivially reducible to Theorem 6.2.2. There is, however, a rather
natural way to assign (multi-di)graphs to modular invariants, generalising the A–D–E
pattern for A1

(1). It is called a nim-rep, and is a representation of the fusion ring by
nonnegative integer matrices. More precisely, for each weight a ∈ Pk

+(A(1)
1 ) we want a

nonnegative integer matrix Ma such that

MaMb =
k∑

c=0

N c
abMc, (6.2.6)

whereN c
ab are the fusion multiplicities of (6.2.2c). We also requireM0 = I , and all these

matrices to be symmetric: Ma = (Ma)t . In Question 6.2.2 you are asked to find all such
assignments a �→Ma . Surprisingly, there is a near-perfect correspondence between
the A1

(1) modular invariants, and these nim-reps. Physically, nim-reps are associated
with boundary conformal field theory or D-branes in string theory. See [47], [236] and
references therein for the basic theory and examples of nim-reps. They are an integral
part of the combinatorial data of RCFTs. However, the simplicity of the correspondence
for A1

(1) is an accident due to the small size of the relevant Perron–Frobenius eigenvalue
here. In particular there appear to be far more nim-reps for A2

(1) than modular invariants.
Hanany–He [271] suggest that the A1

(1) A–D–E pattern can be related to subgroups
G ⊂ SU2(C) by orbifolding four-dimensional N = 4 supersymmetric gauge theory by
G, resulting in an N = 2 superconformal field theory whose ‘matter matrix’ can be read
off from the Coxeter–Dynkin diagram corresponding to G. The same game can be played
with finite subgroups of SU3(C), resulting in N = 1 superconformal field theories whose
matter matrices resemble the nim-reps of A2

(1). [271] use this to conjecture optimistically
a McKay-type correspondence between singularities of type Cn/G, for G ⊂ SUn(C),
and the modular invariants of An−1

(1). This in their view would be the form A–D–E takes
for higher-rank modular invariants. Their conjecture is still too vague to be probed.
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So far we have considered only integrable modules, which are necessarily at level
k ∈ N. But their modular behaviour can be mimicked at certain fractional levels, by the
so-called admissible modules [335]. It is tempting to guess that there should be natural
CFT and VOA interpretations for these, analogous to the integrable ones. The matrix S
there is symmetric, but has no column of constant phase and thus naively putting it into
Verlinde’s formula (6.1.1b) will necessarily produce some negative numbers (it appears
that they’ll always be integers though). A legitimate fusion ring has been obtained for
A1

(1) at fractional level in other ways [26], [184], and initial steps for A2
(1) have been

made in [221]. VOA interpretations for A1
(1) admissible modules are given in [2], [148].

Serious doubt, however, on the relevance of these efforts has been cast by [225], [378].
Sorting this out is a high priority.

Related roles for other Kac–Moody algebras are slowly being found. The twisted affine
algebras also have modular-like data, and arise naturally in the data for nim-reps [58],
[226]. Lorentzian Kac–Moody algebras have been proposed [171], [285] as the sym-
metries of ‘M-theory’, the conjectural 11-dimensional theory underlying superstrings.
Relations between strings and Borcherds–Kac–Moody algebras are discussed in [275],
[276], [134].

6.2.2 Vertex operator algebras

LetV be a ‘nice’ VOA (more on this shortly). The primaries a ∈ � label the finitely many
irreducible V-modules Ma . The relation between VOAs and SL2(Z) given in (4.3.9) was
anticipated by RCFT, and proved by Zhu (Theorem 5.3.8). It gives (among other things)
the modular matrices S and T . Do they define modular data? If so, does Verlinde’s
formula (6.1.1b) compute the dimensions of intertwiner spaces (6.1.17)?

Definition 6.2.3 By a rational vertex operator algebra (RVOA) we mean a weakly ratio-
nal vertex operator algebra V (Definition 5.3.2) obeying in addition

(i) V is simple (that is is an irreducible module for itself) and the contragredient V� is
isomorphic to V as a V-module;

(ii) M0 = {0} for all irreducible modules M �= V;
(iii) every N-graded weak module is completely reducible;
(iv) V is C2-cofinite (Definition 5.3.5).

C2-cofiniteness is a technical condition with many consequences. As we know, every
VOA is a module for itself; the contragredient of a module is discussed around (5.3.4a).
In any unitary RCFT, all conformal weights ha , a ∈ �, are positive except for a = 0, so
condition (ii) is then automatic. Condition (iii) is a little stronger than the usual complete
reducibility requirement.

This use of the term ‘rational’ is not standard, and different definitions of ‘RVOA’ can
be found in the literature (some of these are listed in appendix A of [224]). But the term
‘rational VOA’ should be limited to those VOAs that possess some variant of modular
data. The justification for our use of the term is the following recent theorem:
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Theorem 6.2.4 (Huang [297]) Let V be a VOA, rational in the sense of Defini-
tion 6.2.3. Let � label its (finitely many) irreducible modules, let N c

ab be the dimension
of the space V

( c
a b

)
of intertwiners, and let S be the matrix defined in Theorem 5.3.8,

satisfying (4.3.9a). Then Verlinde’s formula (6.1.1b) holds and S is symmetric. Also, the
category RepV of V-modules has a natural structure as a modular category.

The objects of the category RepV are V-modules, and the morphisms are V-module
homomorphisms. A modular category is described in Section 6.2.5 and is (among many
other things) a braided monoidal category. Theorem 6.2.4 is a corollary to Huang’s pro-
gramme of constructing geometric VOAs (Section 5.4.1) in genus≤ 1 from an algebraic
VOA. It appears that additional minor conditions on the VOA V will be needed [296] in
order that the higher-genus chiral blocks be constructed – once identified, these restric-
tions should be included in the definition of rationality for VOAs. Extending this work
to genus > 1 would be the final step in associating a modular functor – that is, a chiral
half of an RCFT, including all the Moore–Seiberg data – to a nice VOA.

Equation (6.1.1b) can be defined only if all SM0 �= 0, so Theorem 6.2.4 certainly
implies that. Some RVOAs (e.g. those associated with non-unitary RCFTs) won’t possess
modular data in the narrow sense of Definition 6.1.6. However, suppose in addition to
being rational that V has the (common) property that any irreducible module M �= V
has positive conformal weight hM (recall hM − c/24 is the smallest power of q in the
Fourier expansion of the graded dimension χM (τ ) = q−c/24 ∑∞

n=0 aM
n qn+hM ). This holds

for instance in all VOAs associated with unitary RCFTs. Then consider the behaviour of
χM (τ ) for τ → 0 along the positive imaginary axis: since each Fourier coefficient aM

n

is nonnegative, χM (τ ) will go to +∞. But this is equivalent to considering the limit of∑
N SM N χN (τ ) as τ → i∞ along the positive imaginary axis. By hypothesis, this latter

limit is dominated by SM0 a0
0q−c/24, at least when SM0 �= 0. So what we find is that,

under this hypothesis, the 0-column of S consists of nonnegative real numbers (and also
that the central charge c is positive). But Verlinde’s formula certainly requires that all
numbers in the 0-column of S be nonzero. Thus we get:

Corollary 6.2.5 Suppose V is a rational VOA and for all irreducible modules M,
Mn = 0 for all n < 0. Then (4.3.9) (more precisely Theorem 5.3.8) define modular
data.

Of course the affine algebra modular data discussed in Section 6.2.1 is a special case of
that considered here, corresponding to the integrable affine VOA V(g, k) constructed in
Section 5.2.2.

Verlinde’s formula (6.1.1b) is only a genus-0 special case of (6.1.2). What makes the
proof of Theorem 6.2.4 difficult is the difficulty in constructing chiral blocks in genus
> 0. At the time of writing, only special cases have been worked out in arbitrary genus
(see, e.g., theorem 6.2 in [573]). Moore–Seiberg bypassed this difficulty by assuming
the chiral blocks all exist and have all the required properties.

As mentioned in Section 5.3.5, one direction Huang’s Theorem could possibly
be extended is to ‘quasi-rational’ CFT [436]. These are VOAs with infinitely many
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irreducible modules, but with finite fusion products (5.3.3). They would correspond
to a ‘C1-cofiniteness’ condition and typically have infinite-dimensional Zhu’s algebra.
The easiest example is the Heisenberg VOA (5.2.5), associated with the oscillator alge-
bra u1

(1) (3.2.12). We find directly from (3.2.12c) that the graded dimension of V (λ)
obeys

χλ(τ + 1) = eπ i (λ2− 1
12 )χλ(τ ), (6.2.7a)

χλ(−1/τ ) =
∫ ∞

−∞
e2π i λμχμ(τ ) dμ. (6.2.7b)

In other words, on the Hilbert space L2(R) of square-integrable functions f (α), let S( f )
be the Fourier transform of f , and T ( f ) the function given by

T ( f )(α) = eπ i (α2− 1
12 ) f (α)

Then S and T define a unitary representation of SL2(Z) on the space L2(R) spanned by
the χλ (more precisely, they act on the space of functions χ f (τ ) = ∫∞

−∞ f (α)χα(τ )dα
for f ∈ L2(R)). In Verlinde’s formula (6.1.1b), the sum over� becomes an integral over
R, and yields the distribution

N ν
λμ = δ(ν − λ− μ),

in other words L(λ) × L(μ) = L(ν), so the ‘fusion ring’ L2(R) is given a convolution
product.

It can be hoped that this modular behaviour would be typical for a wide class of
other quasi-rational theories. The generalisation of Zhu’s Theorem 5.3.8 and Huang’s
Theorem 6.2.4 to such quasi-rational theories would be wonderful to see.

Modular invariants have a VOA interpretation. Let Ma and M ′i be the irreducible
modules of RVOAs V ⊂ V ′ sharing the same conformal vector ω. Then each M ′i is a
V-module. An RVOA is completely reducible, so each M ′i should be expressible as a
direct sum of Ma’s – these are called the branching rules. The sum of

∑
i∈�′ |χ ′M ′ i |2 is

invariant under that SL2(Z)-action; rewriting the χ ′M ′ i ’s there in terms of the χMa ’s via
the branching rules yields a nontrivial modular invariant for V .

For instance, the VOA L(ω0)′ corresponding to the affine algebra G2
(1) at level 1

contains the VOA L(28ω0) = L(0) for A1
(1) at level 28. We get the branching rules

L(ω0)′ = L(0)⊕ L(10)⊕ L(18)⊕ L(28),

L(ω2)′ = L(6)⊕ L(12)⊕ L(16)⊕ L(22).

Thus the Z ′ = I modular invariant for G2
(1) level 1 yields the A1

(1) modular invariant
E8 in Theorem 6.2.2.

So knowing the modular invariants for an RVOA V gives considerable information
concerning its possible ‘nice’ extensions V ′. For instance, we are learning from this that
the only finite extensions of a generic integrable affine algebra VOA are those studied in
[147] (‘simple-current extensions’), and whose modular data is given in [212].
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6.2.3 Quantum groups

The chiral data of affine algebras and Wess–Zumino–Witten models is also recovered
by quantum groups (deformations of the universal enveloping algebra U (g)), though the
reasons are still somewhat mysterious (i.e. indirect).

Over the years large numbers of two-dimensional models in statistical mechanics were
found that are exactly solvable (completely integrable). Gradually it became clear that
the underlying reason was the so-called (quantum) Yang–Baxter equation [394]:

R12 R13 R23 = R23 R13 R12, (6.2.8)

where R : V ⊗ V → V ⊗ V is linear and where, for example, R13 : V ⊗ V ⊗ V →
V ⊗ V ⊗ V sends v1 ⊗ v2 ⊗ v3 ∈ V ⊗ V ⊗ V to

∑
i ai ⊗ v2 ⊗ bi , where R(v1 ⊗ v3) =∑

i ai ⊗ bi . (Generalisations of (6.2.8) exist but this is enough for us.) The Yang–
Baxter equation should make us think of braids (recall Figure 1.29) and indeed an easy
result is:

Proposition 6.2.6 Given a solution R to (6.2.8), we obtain a representation of the
braid group Bn on V ⊗ · · · ⊗ V (n times) by sending the braid generator σi to (τ R)i,i+1,
defined by (τ R)i,i+1(v1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · vi−1 ⊗ (

∑
j b j ⊗ a j )⊗ vi+1 ⊗ · · · ⊗ vn,

where R(vi ⊗ vi+1) =∑
j a j ⊗ b j .

The ‘transpose’ τ in Proposition 6.2.6 is the flip of the two copies of V ; we see it again
in Definition 6.2.8. The reader should try to prove the proposition, but it’s also proved
in section 15.2A of [98].

We are interested in families R = R(q) of solutions to (6.2.8), depending on a complex
parameter q . Write q = ei�. If we Taylor expand R(ei�) =∑∞

n=0 �nrn and retain only
the first-order terms in �, we obtain the classical Yang–Baxter equation for r := r1:

[r12, r13]+ [r12, r23]+ [r13, r23] = 0. (6.2.9)

Being a sum of commutators, it’s reminiscent of Lie algebras and indeed Lie theory
provides classes of solutions [98], [394]. Roughly, quantum groups were proposed by
Drinfel’d and Jimbo around 1985 as a Lie-like symmetry underlying (6.2.8), that is, as
providing a way to solve the quantum Yang–Baxter equation using q-deformations of
Lie theory.

The idea of deformations [279] is a beautiful one. For example, consider n-space Rn

and fix a vector q ∈ Rn (the ‘deformation parameter’). Define the new multiplication
by scalars to be k ·q x := kx + (1− k)q and vector addition to be x +q y := x + y − q
(where the operations on the right sides are the usual Rn ones). The zero-vector here
is 0q := q . This defines a new vector-space structure on the same underlying space.
However, it is of course isomorphic (as a vector space) to the original one, since the
dimension hasn’t changed.

The finite-dimensional complex semi-simple Lie algebras g are also rigid in this sense
(see Question 6.2.3(b)). However, nontrivial deformations of their universal enveloping
algebras U (g) (Section 1.5.3) do exist.
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Consider for concreteness g = A1, with basis e, f, h of (1.4.2b). Define

[e, f ] = qh − q−h

q − q−1
, (6.2.10a)

qhe = q2eqh, (6.2.10b)

qh f = q−2 f qh . (6.2.10c)

Here by, for example, ‘qh’ we mean the Taylor expansion in powers of h. These equations
define the quantum group Uq (A1), a one-parameter deformation of U (A1). Given this,
we get a solution R(q) to (6.2.8):

R(q) =
∞∑

n=0

q
n(n+1)

2
(1− q−2)n

'n(q !
(q−he)n ⊗ (qh f )ne

h⊗h
2 , (6.2.10d)

where 'n(q ! = 'n(q'n − 1(q · · · '1(q for 'k(q = (qk − q−k)/(q − q−1). Nevertheless,
these equations look random and opaque (to this author at least). The next few paragraphs
aim to make some sense out of them.

Definition 6.2.7 Let k be a ring (take k = C if this generality makes you uncomfort-
able). A Hopf algebra A is:

(i) An associative algebra over k with unit 1 and multiplication μ.
(ii) A co-associative co-algebra over k, i.e. with co-multiplication � : A → A ⊗ A

and co-unit ε : A → k.
(iii) The algebra and co-algebra structures are compatible, i.e. � and ε are algebra

homomorphisms, and μ and 1 (regarded as a map ι : k → A sending x �→ x1)
are co-algebra homomorphisms.

(iv) A has a map S : A → A, called the antipode, which obeys

μ ◦ (id ⊗ S) ◦� = ι ◦ ε = μ ◦ (S ⊗ id) ◦�.
We’ve seen ‘algebra’ before. A Hopf algebra may or may not be commutative as an
algebra. A ‘co-algebra’ is an ‘algebra with the arrows reversed’: just as an algebra has a
bilinear map A ⊗ A → A (multiplication), so a co-algebra has a linear map A → A ⊗ A
(co-multiplication), and similarly for unit and co-unit.

Perhaps [51] or the introduction to [398] can help make this definition seem more
natural. Hopf algebras are algebras with a rich representation theory. If M, N are modules
of a generic algebra A, then their usual vector-space tensor product M ⊗ N always has a
natural structure as an A ⊗ A-module, but generally not an A-module. But if A has a co-
product, we get the A-module structure by the formula a.(m ⊗ n) := �(a).(m ⊗ n). The
antipode converts left modules into right modules, and is used to define the representation
M∗ dual to a given representation M . It plays the role of inverse in the algebra. See also
Question 6.2.4.

For example, a universal enveloping algebra U (g) forms a Hopf algebra with co-
product given by �(x) = x ⊗ 1+ 1⊗ x for x ∈ g and �(1) = 1⊗ 1; co-unit ε(x) = 0
for x ∈ g and ε(1) = 1; and antipode S(x) = −x for x ∈ g and S(1) = 1. In a similar
way, the space F(G) of functions on a Lie group G is also a Hopf algebra (in fact a dual
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of U (g)). U (g) is co-commutative, whereas F(G) is commutative; in fact, these U (g)
are the only co-commutative, and F(G) the only commutative, Hopf algebras (modulo
certain technical assumptions). This is in fact why Drinfel’d [160] cooked up the name
‘quantum group’ for these q-deformations. Uq (g) is a non-co-commutative deformation
of U (g), so we could imagine that just as the dual of U (g) consists of the functions on
a group G, the dual of Uq (g), which will be a non-commutative Hopf algebra, should
correspond to something like the functions on a group-like object Gq , which would be
some sort of q-deformed version of G. This picture is in the same spirit as Connes’
non-commutative geometry. In any case the term ‘quantum group’ has inappropriately
slipped from Gq to apply directly to Uq (g).

The co-product, etc. for these Uq (g) are explicitly given in proposition 6.5.1 of [98]
in full generality. Although Uq (g) is not co-commutative, it is nearly so:

Definition 6.2.8 A quasi-triangularisable Hopf algebra A is a Hopf algebra with
invertible element R ∈ A ⊗ A such that τ (�(a)) = R�(a)R−1 for all a ∈ A, as well
as

(�⊗ id)(R) =R13R23 ∈ A ⊗ A ⊗ A,

(id ⊗�)(R) =R13R12 ∈ A ⊗ A ⊗ A.

This element R is called the universal R-matrix (or braiding) of A. Of course if A is
co-commutative, then R = 1⊗ 1 works. The point: the element R satisfies the quan-
tum Yang–Baxter equation (6.2.8). This is the origin of the word ‘triangular’ in Defini-
tion 6.2.8: an alternate name for the Yang–Baxter equation is the star–triangle relation. So
given any representation of A,Rmaps to a matrix satisfying (6.2.8) – this representation-
independent aspect of R justifies the word ‘universal’. Any non-co-commutative quasi-
triangularisable Hopf algebra is now called a quantum group.

Drinfel’d [160] found a remarkable way, independent of the Yang–Baxter equation, to
construct quantum groups from any Hopf algebra A. The quasi-triangular Hopf structure
is put on the space A ⊗ (A∗)op, where (A∗)op is the dual Hopf algebra A∗ except that
its co-multiplication is changed from �∗ to its transpose τ ◦�∗. A nice discussion
is in [480]; a general categorical interpretation is the ‘centre construction’ [338]. In
particular, the quantum group Uq (g) of (6.2.10) arises as a simple quotient of the quantum
double of Uq (B+), where B+ is the Borel subalgebra of g, generated by hi and ei . See
section 4.6 of [207] , where this is discussed very explicitly. The point is that Uq (B+) is
very easy to understand, so this gives an explicit way to compute R for Uq (g).

As usual we’re interested in representation theory. Recall that the modules of A1

and U (A1) are identical. There is only one one-dimensional A1-module: everything
gets sent to 0. However, there are exactly two one-dimensional representations of the
quantum group Uq (A1): e.v = f.v = 0 and qh .v = ±v. Call these ψ±. ψ+ is just the
deformation of the trivial U (A1)-representation, but ψ− has no classical (i.e. q → 1)
analogue. The existence of ψ− is the only difference between the representation theory
of Uq (A1) and U (A1) (or A1): every finite-dimensional irreducible Uq (A1) module is
uniquely expressible as the tensor product of a one-dimensional representation ψ± with

https://doi.org/10.1017/9781009401548.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.007


Examples 381

some highest-weight representation Lq (m), for m ∈ N, where Lq (m) is a deformation
of L(m) with the same Weyl character. This generalises to any Uq (g).

We’re more interested in Uq (g) ‘at a root of unity’. The meaning of this is very subtle,
but is explained very thoroughly in chapter 9 of [98] (we are interested in their second
construction, the ‘restricted integral form’ Ures

q (g), which is a quotient of Uq (g)); see
also [10], [392]. The representation theory is also subtle, and most treatments (e.g. that
of [98]) assume from the start that the order of the root of unity must be odd. See, for
example, [392], [10] for their modules. There are now indecomposable modules that are
not irreducible, a common situation in algebra (recall Question 1.1.6). The trick of how to
proceed was discovered by physicists: throw the sick modules away! In particular, when
we evaluate the Weyl characters at the root of unity q, the result is called the quantum
dimension of the module. We keep those modules with nonzero quantum dimension, and
discard the others. This prescription works because the direct product of any Ures

q (g)-
module with any sick one is a direct sum of sick ones. We can call this ‘the reduced
representation ring of the quantum group Uq (g) specialised to the root of unity q’. See
section 4.5 of [207] for examples (though note that his q is the square of ours).

The result is somewhat surprising: this reduced representation ring, for q = eπ i/m(k+h∨)

(where m is defined below), is isomorphic to that of the fusion ring of g(1) at level k
[190]. Here, m = 1 for g = Ar , Dr , E6, E7, E8; m = 2 for g = Br ,Cr , F4; and m = 3
for g = G2.

More generally, much of the chiral data of the Wess–Zumino–Witten theories are
recovered by the corresponding quantum group at a root of unity [253], [207]: along
with the fusion multiplicities, also the braiding and fusing matrices of Section 6.1.4, and
the associated knot invariants of Section 6.2.5. Explanations for these ‘coincidences’ are
given in, for example, chapter 11 of [253], but they are all unsatisfying in that they are
so indirect.

6.2.4 Twisted #6: finite group modular data

In many respects, a finite group G behaves much like a compact connected Lie group, and
so we may hope that they possess an analogue of Section 6.2.1. Indeed that is beautifully
the case.

For any finite group G (Section 1.1), let K1, . . . , Kh be its conjugacy classes, and
write ki for

∑
g∈Ki

g ∈ CG. These ki ’s form a basis for the centre of CG. Write

ki k j =
∑
�

c�i j k�; (6.2.11a)

then the structure constants c�i j are nonnegative integers, and we obtain

c�i j =
‖Ki‖ ‖K j‖
‖G‖

∑
ch∈Irr G

ch(gi ) ch(g j ) ch(g�)

ch(e)
, (6.2.11b)

where gi ∈ Ki . This resembles (6.1.1b), with Sab replaced by Si,ch = ch(gi ) and the
vacuum 0 by the identity e. Unfortunately, the other axioms of modular data fail.
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However, the group algebra CG is a Hopf algebra, with co-multiplication �(g) =
g ⊗ g, co-unit ε(g) = 1 and antipode S(g) = g−1. The way to obtain true modular data
is to take the quantum double of CG. Its Hopf dual, the space F[G] of functions G →
C, is also a Hopf algebra, for example, with co-product �( f )(g1, g2) = f (g1g2). The
construction of the double D(G) is described nicely in [406]; we will simply describe
its modular data.

Let � be the set of all pairs (a, ch), where the a are representatives of the conjugacy
classes of G and ch is the character of an irreducible representation of the centraliser
CG(a). (Recall that CG(a) is the set of all g ∈ G commuting with a.) � parametrises the
irreducible modules of the double D(G). Put [393], [136]

S(a,ch),(a′,ch′) =
1

‖CG(a)‖ ‖CG(a′)‖
∑

g∈G(a,a′)

ch′(g−1ag) ch(ga′g−1), (6.2.12a)

T(a,ch),(a′,ch′) = δa,a′δch,ch′
ch(a)

ch(e)
, (6.2.12b)

where G(a, a′) = {g ∈ G | aga′g−1 = ga′g−1a} and e ∈ G is the identity. For the
‘vacuum’ 0 take (e, 1). Then (6.2.12) is modular data. Manifestly, N-valued descrip-
tions of the fusion multiplicity N (c,ch′′)

(a,ch),(b,ch′) exist (see section 2 of [391], who realises
the fusion ring as the Grothendieck ring for G-equivariant vector bundles). For Lusztig,
(6.2.12) arose in his determination of irreducible characters of Chevalley groups. The
higher-genus fusion multiplicities in (6.1.2) also have interpretations as multiplicities of
representations of D(G) in D(G)⊗ · · · ⊗D(G) [35].

For instance, the modular data associated with the finite group S3 is

S = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 −3
2 2 4 −2 −2 −2 0 0
2 2 −2 4 −2 −2 0 0
2 2 −2 −2 −2 4 0 0
2 2 −2 −2 4 −2 0 0
3 −3 0 0 0 0 3 −3
3 −3 0 0 0 0 −3 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.2.13a)

T = diag(1, 1, 1, 1, e2π i/3, e−2π i/3, 1,−1). (6.2.13b)

See [115] for several more explicit examples.
This modular data can be twisted [138], [135], [34], [115] by a 3-cocycle α ∈

H 3(G,C×). Indeed this twisted modular data is absolutely as fundamental as (6.2.12) –
recall the discussion in Sections 4.3.4 and 5.3.6. This cocycle α plays the same role here
that level does in affine algebra modular data, as H 3(G,C×) ∼= Z when G is simply-
connected and simple. This sort of twist has a generalisation to arbitrary chiral data
[118].

One of the remarkable features of affine algebra modular data – its ubiquity – is
shared by finite group modular data. Most important for us, it arises in the orbifold of
holomorphic VOAs (recall Section 5.3.6). Let G be a finite group of automorphisms
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Fig. 6.7 Colourings at a crossing.

of a holomorphic VOA V – all finite groups arise in this way (Question 6.2.7). Let
VG be the space of fixed points of G; it inherits a VOA structure from V . Then
the modular data of V is trivial but that of VG is expected to be (6.2.12) or some
twisted version (see Conjecture 5.3.10). This modular data also appears in the crossed-
product construction in von Neumann algebras (Section 6.2.6). In physics, it arises in
(2+ 1)-dimensional Chern–Simons theory with finite gauge group G [138], [194], as
well as (2+ 1)-dimensional quantum field theories where a continuous gauge group has
been spontaneously broken to a finite group [31] (adding a Chern–Simons term here
corresponds to the cohomological twist).

This modular data is quite interesting for nonabelian G, and deserves more study. It
seems very effective at distinguishing groups – in fact, it is known to distinguish all groups
of order < 128. Conversely, there are non-isomorphic groups of order 215 · 34 · 5 · 7
with identical modular data up to reordering primaries [175]. Finite group modular data
behaves very differently from the affine algebra data (see e.g. [115], [457], [178]). For
instance, Eiichi Bannai has found that the alternating group A5, which has only 22
primaries, has a remarkably high number (8719) of modular invariants. By contrast,
affine algebras have relatively few modular invariants.

6.2.5 Knots

The Jordan curve theorem states that all knots in R2 are trivial. Are there any nontrivial
knots in R3?

In Figures 1.9 and 1.10 are some knots in R3, flattened into the plane of the paper. A
moment’s consideration will confirm that the second knot of Figure 1.9 is indeed trivial.
What about the trefoil?

A knot diagram cuts the knotted S1 into several connected components (arcs), whose
endpoints lie at the various crossings (double-points of the projection). By a 3-colouring,
we mean to colour each arc in the knot diagram either red, blue or green, so that at each
crossing either one or three distinct colours are used. For example, the first two colourings
in Figure 6.7 are allowed, but the third isn’t. By considering the ‘Reidemeister moves’
(Figure 1.12), which tell us how to move between equivalent knot diagrams, different
diagrams for equivalent knots (such as the two in Figure 1.9) are seen to have equal
numbers of distinct 3-colourings. Hence, the number of 3-colourings is a knot invariant.

For example, consider the diagrams in Figure 1.9 for the trivial knot: clearly, all arcs
must be given the same colour, and thus there are precisely three distinct 3-colourings.
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Fig. 6.8 The Wirtinger presentation of the knot group.

On the other hand, the trefoil has nine distinct 3-colourings – the bottom two arcs of
Figure 1.10 can be assigned arbitrary colour, and that choice fixes the colour of the top
arc. Thus the trefoil is nontrivial!

Essentially what we are doing here is counting the number of homomorphisms ϕ from
the knot group π1(R3 \ K ) of knot K to the symmetric group S3. The reason is that any
(oriented) knot diagram gives a presentation for π1(R3 \ K ), where there is a generator
xi for each arc and a relation of the form xi x j = xk xi for each crossing (Figure 6.8). See
section 3.D of [478] for more details and a proof. For example, the knot group of the
right knot of Figure 1.9 has presentation

〈x1, . . . , x7 | x1x2 = x4x1, x5x1 = x3x5, x5x4 = x3x5, x2x1 = x5x2,

x2x7 = x2x2, x2x7 = x6x2, x2x5 = x6x2〉,
which is isomorphic to Z. By contrast, the knot group of the trefoil isB3 (Question 6.2.8).
Incidentally, the complement R3 \ K of a knot determines the knot, and the extent to
which the knot group determines the knot is also understood (see section 1 of [61]).
Therefore, in this sense the trefoil and B3 are intimately connected (recall Section 2.4.3).

S3 is generated by the transpositions (12), (23), (13). The homomorphism ϕ : π1(R3 \
K ) → S3 is defined using, for example, the identification r ↔ (12), b ↔ (23), g ↔ (13),
and the above 3-colouring condition at each crossing is equivalent to requiring that ϕ
obeys each relation in the Wirtinger presentation. Our homomorphism ϕ will be onto
iff at least two different colours are used. By considering more general (non-abelian)
colourings, the target (S3 here) can be made to be any other group G, resulting in a
different knot invariant.

In the early 1980s, knot theory was dormant; by the late 1980s it was flourishing. But
as a consequence, we suddenly had too many knot invariants. Reshitikhin and Turaev
[473] brought order to this chaos, by proving that whenever we have a ribbon category V,
we get invariants of (framed) knots and links, that is of knotted and linked ribbons. The
reason for their result, as we explain in Section 1.6.2, is the universality of the topological
category Ribbon of ribbons (Theorem 1.6.2). Given any knotted link, coloured with the
objects of V, their functor associates the link with some morphism Hom(∅, ∅) of V,
and isotopic links get assigned the same morphism. This morphism is the desired link
invariant. For example, the 3-colouring invariant comes from a ribbon category associated
with the modular data (6.2.13).

We can express their result slightly differently. Suppose we have a representation
of every braid group Bn (e.g. Proposition 6.2.6 says we get this from a solution to
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Fig. 6.9 The Sab and Taa matrix entries in modular categories.

the quantum Yang–Baxter equation). To every braid we get a link by closing it up, as in
Figure 1.14. Unfortunately, different braids can get assigned the same link. As we explain
in Section 1.2.3, the two Markov moves capture precisely this redundancy. Thus we get
a link invariant from our braid representations if we can construct a quantity invariant
with respect to these two moves. The first move β ′ ↔ ββ ′β−1 suggests we assign to the
braid the trace of its representing matrix; unfortunately, that usually won’t respect the
second move, β ↔ βT±1

m .
However, [473] explain how to enhance the braid representation coming from

any quasi-triangularisable Hopf algebra (Definition 6.2.8), to get link invariants. See
section XI.3.1 of [534] for details. Thus, combining their construction with the Drinfel’d
double, which associates a quasi-triangularisable Hopf algebra with any Hopf algebra,
we can construct (or recover) enormous numbers of link invariants.

So far we have discussed invariants of links embedded in R3 (equivalently, S3). Much
more difficult is to construct invariants of links in arbitrary 3-manifolds, but it is precisely
this that is relevant to our story. There are (at least) two ways to do this: one uses ‘Dehn
surgery’ to construct the manifold from S3 [474], and the other uses triangulation by
tetrahedra [535]. We allude to the Turaev–Viro theory [535] elsewhere. In the early 1960s
Lickorish and Wallace established that any closed compact oriented 3-manifold M can
be obtained by surgery on the 3-sphere S3 along some framed link L (see section II.2.1
of [534] for details). The idea is to construct an invariant for M from the link invariant of
L in S3. For instance, the 3-manifold S1 × S2 arises from S3 by surgery along the trivial
ribbon. The problem is that different links give rise to the same manifold. However, this
redundancy is completely captured by the so-called ‘Kirby moves’ (see section II.3.1 of
[534] for details). Once again, Reshitikhin and Turaev [474] find the necessary refinement
to ribbon categories, as well as the precise expression for the 3-manifold invariant,
which will make the quantity invariant under the Kirby moves. The result is called a
modular category (see chapter 2 of [534] for complete details). Roughly speaking, it is
a ribbon category with the additional property of direct sum, with a finite set of ‘simple
objects’ (closed under ∗) and a complete reducibility property, whose Hopf link invariant
(Figure 6.9) is nondegenerate. More generally, this procedure gives us link invariants in
any 3-manifold. Again, the ultimate source of these topological invariants is a universality
property of the appropriate topological category. All of these universalities have as their
source the universality of Braid for braided monoidal categories (Theorem 1.6.1).

Any RCFT gives a modular category (in fact two of them, one for each chiral half). For
an RCFT, the simple objects are the objects that are the chiral primaries, the monoidal
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structure is the fusion product and duality is charge-conjugation. Modular data is obtained
directly from the Hopf link and twist, as in Figure 6.9. There are thus three different
incarnations of the S-matrix in RCFT: the modular transformation (4.3.9a), Verlinde’s
formula (6.1.2), and the Hopf link. In fact, the notion of a modular category is equivalent
to that of Segal’s modular functor (Section 4.4.1) [534], [32]. For a sufficiently nice VOA
V , the simple objects are the irreducible V-modules. The 3-colouring invariant of Figure
6.7 comes from a holomorphic orbifold VOA, and as such can be modified to yield a
link invariant in any 3-manifold.

For instance, we get S3 knot invariants from the quantum group Uq (Xr ) with generic
parameter, but to get invariants for any closed 3-manifold requires specialising q to a
root of unity. Modular categories are far less common than ribbon categories, but they
can be obtained by an analogue of the Drinfel’d double.

6.2.6 Subfactors

The final general source of modular data that we discuss is from subfactor theory. The
relations of subfactors to knots is reviewed in, for example, [317], [318], [319], while
reviews of the relation between subfactors and CFT can be found in [177], [66].

Recall the definitions in Section 1.3.2. Let N ⊂ M be an inclusion of type II1 factors.
We call N a subfactor, provided N includes the identity of M . Jones’ motivation for
looking at subfactors came from their formal similarity with Galois theory. After all, the
very notation dimM (H) for the ‘coupling constant’ of Section 1.3.2 suggests thinking of
a type II1 factor as a non-commutative analogue of ‘field of scalars’.

In particular, let G be a finite group acting on some type II1 factor N . Then the
crossed-product N×G is also a type II1 factor, iff each g ∈ G, g �= e, is ‘outer’. By an
outer automorphism g of N we mean that there are no unitary operators u ∈ N such that
g.x = uxu∗ for all x ∈ N . Any locally compact (e.g. finite) group G acts on, for example,
the hyperfinite type II1 factor by outer automorphisms, so this isn’t a major restriction.
This yields a Galois correspondence between subgroups H of G, and subalgebras of M
containing the algebra MG of fixed points, given by H ↔ M H . This is analogous to the
relation between subfields K ⊂ L and Galois groups in Section 1.7.2. So what is the
subfactor analogue of the index [L : K]?

Jones’ answer is the Jones index of the subfactor N ⊆ M :

[M : N ] := dimN (L2(M)) ≥ 1, (6.2.14)

where L2(M) is the Hilbert space of Question 1.3.6. For instance, for any n ≥ 1, [N ⊗
Mn(C) : N ] = n2. If H ≤ G are finite groups of outer automorphisms, then [M×G :
M×H ] = ‖G‖/‖H‖ = [M H : MG], where the crossed-product M×H and fixed-point
M H factors are discussed in Section 1.3.2.

The following theorem was completely unexpected.

Theorem 6.2.9 [316] For any number

d ∈ {4 cos2(π/n)}∞n=3 ∪ [4,∞],
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there is a subfactor N ⊆ M of the unique hyperfinite type II1 factor M, with index
[M : N ] = d. Conversely, the index of any subfactor of a (not necessarily hyperfinite)
type II1 factor will be in that set.

In fact, the following rigidity is true: if M is the hyperfinite type II1 factor, then at
most four inequivalent subfactors N ⊆ M can possess the same index < 4. The reader,
with Section 2.5.2 fresh in mind, may recognise the discrete sequence of indices in
Theorem 6.2.9 as the square of the Perron–Frobenius eigenvalues of the A–D–E graphs –
is this a coincidence?

The key to proving Theorem 6.2.9, as well as the further developments, is the so-
called basic construction, which appears to have been found independently by a number
of people in the late 1970s. Let N ⊆ M be an inclusion of type II1 factors. Even though
M and N are isomorphic as factors, there is rich combinatorics surrounding how N is
embedded in M . The Hilbert space L2(N ) is naturally contained in L2(M). Let eN be the
orthogonal projection of L2(M) onto L2(N ). Then M and eN generate the von Neumann
algebra 〈M, eN 〉′′ acting on the space L2(M). If the index [M : N ] is finite, then 〈M, eN 〉′′
will also be a type II1 factor, with index [〈M, eN 〉′′ : M] = [M : N ]. Moreover, since the
trace (normalised so that tr(1) = 1) on a type II1 factor is unique, we can unambiguously
speak of the trace tr(eN ), and we find it equals 1/[M : N ]. For later convenience define
τ := 1/[M : N ].

For example, taking N to be the fixed points MG , for some finite group G of outer auto-
morphisms, then eN = (1/‖G‖)∑g g, tr(eN ) = 1/‖G‖ and 〈M, eN 〉′′ = M×G. This
demonstrates the naturalness of this construction. What is the von Neumann algebra
generated by M and e? The answer is the crossed-product M×G.

We can repeat the basic construction indefinitely. Put M0 := N , M1 := M and define
inductively

Mi+1 := 〈Mi , ei−1〉′′,
where ei := eMi−1 is the orthogonal projection from L2(Mi ) onto L2(Mi−1). We thus get
a tower M0 ⊂ M1 ⊂ · · · of type II1 factors, and a sequence e1, e2, . . . of projections.
The limit M∞ := ∪∞n=0 Mn is also a type II1 factor, with a unique (normalised) trace tr,
which restricts to the unique trace on each Mn . Thus each tr(en) = τ . The algebra A∞,τ

spanned by the projections ei obeys the relations

e2
i = e∗i = ei , (6.2.15a)

ei ei±1ei = τei , (6.2.15b)

ei e j = e j ei if |i − j | ≥ 2, (6.2.15c)

tr(xen+1) = tr(x) τ, (6.2.15d)

where x is in the (finite-dimensional semi-simple) algebra An,τ generated by
1, e1, . . . , en−1. In fact these are the complete list of relations for An,τ , because the
(normalised) trace tr on any type II1 factor obeys tr(xx∗) ≥ 0 with equality only if
x = 0. The (easy) proofs of all these statements are in [319]. The point is that the tower
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M0 ⊂ M1 ⊂ · · · and the projections e1, e2, . . . depend only on the original subfactor.
Positive-definiteness of the trace on An,τ gives the discrete values of Theorem 6.2.9.

Of course we are now trained to recognise (6.2.15b) and (6.2.15c) as having to do with
the braid groups. In particular, if we try to send the braid group generator σi to aei + b,
we obtain the solution a = t + 1, b = −1, where t satisfies t + t−1 + 2 = τ−1. Thus to
any finite index type II1 subfactor, we get a representation of the braid group!

We know how to go from a braid group representation to a link invariant: we need
to associate a number with each braid that is invariant under the two Markov moves
(Section 1.2.3). For a braid β ∈ Bn , the combination

Jβ(t) =
(
−
(√

t + 1√
t

))n−1√
t

degβ
tr(β) (6.2.16)

works (verify this), where ‘degβ’ is defined in Section 1.1.4 and ‘tr(β)’ means the trace
of the corresponding element in Mn . This function Jβ is the famous Jones polynomial.

Witten showed that the Jones polynomial can be recovered from the topological field
theory (or modular category) associated with affine algebra A1

(1) at level k ∈ N, when
the highest weight ω1 + (k − 1)ω0 is assigned to each strand of the link. Of course,
there is no need to restrict to A1

(1) or that weight, and other choices yield other link
invariants.

Can the subfactor approach also recover these other link polynomials, or is it inherently
‘rank 1’? Is the full topological field theory (or if you prefer, the CFT or modular category)
obtainable from the subfactor, or does the subfactor only see the link polynomials? The
answer to both questions is yes; the construction was originally due to Ocneanu, and is
explained carefully in [177] (see also [354] for a very accessible treatment of certain
parts of the theory). The starting point is the realisation that the projections ei are only
a small part of the full tower M0 ⊂ M1 ⊂ M2 ⊂ · · · .

Subtleties in any representation theory arise through the interplay of addition with
multiplication, and with contragredient (dual). Addition (direct sum) of modules comes
for free here. Unfortunately, the modules of factors (which we briefly described at the
end of Section 1.3.2) don’t have an obvious tensor product, and in any case are rather
colourless (e.g. there is a unique nontrivial module for type III factors).

The right objects to study here are bimodules. We call a Hilbert space X = M X N an
M–N bimodule if M acts on the left and N on the right. The point is that they have a
natural multiplication: the relative tensor product (‘Connes fusion’) M X N ⊗N YP will
be an M–P bimodule. The multiplicative identity (playing the role of the trivial one-
dimensional module) is M L2(M)M , usually abbreviated to M MM . Given any bimodule

M X N , the conjugate Hilbert space X is naturally an N–M bimodule: nxm := m∗xn∗.
Moreover, the possibilities for bimodules are far richer than for modules.

Let N ⊂ M be an inclusion of II1 factors with finite Jones index [M : N ].
Recall the tower M0 = N ⊂ M = M1 ⊂ M2 ⊂ · · · arising from the basic construc-
tion. Let �M denote the set of equivalence classes of irreducible M–M submod-
ules of ⊕n≥1 M L2(Mn)M , and �N that for the irreducible N–N submodules of
⊕n≥0 N L2 (Mn)N . We require these sets to be finite (‘finite depth’). Write HC

AB for the
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N−N

M−NN−M

xM−My

Fig. 6.10 The principal and dual principal graphs associated with S3.

(finite-dimensional) intertwiner space HomM−M (C, A ⊗M B). For any A, B ∈ �M ,
the product A ⊗M B can be decomposed into a finite sum

∑
C∈�M

N C
ABC , where

N C
AB = dimHC

AB ∈ N are the multiplicities. Indeed, all axioms of a fusion ring will
be obeyed, except usually commutativity and self-duality.

Returning to the Galois theory analogy, the Jones index merely corresponds to the
degree of the field extension. To what corresponds the Galois group? Ocneanu’s answer
is an intricate subfactor invariant called a paragroup [453] (see especially chapter 10
of [177]). It consists of two graphs (the principal and dual principal), whose vertices
are bimodules for M and N ; an order-2 involution of the vertices corresponding to
the contragredient map A �→ A; and a ‘connection’, that is an assignment of complex
numbers to closed paths in the graphs, reminiscent of 6 j-symbols, describing the change
between natural bases. The graphs are obtained from the fusion rings; their Perron–
Frobenius eigenvalues equal the square-roots of the Jones index. For example, when the
Jones index is< 4 (corresponding to eigenvalue< 2), those two graphs are equal, and are
one of An, Deven, E6 or E8 (recall Figure 1.4) – it cannot be the tadpole Tn for elementary
reasons, but Dodd and E7 are excluded for their inability to support a connection. Two
inequivalent connections are possible on the E6 and E8 graphs, corresponding to different
subfactors. Thus Theorem 6.2.9 indeed constitutes another realisation of A–D–E, and
for the ultimate reason suggested in Section 2.5.2.

A paragroup is a generalised (‘quantised’) sort of group. Figure 6.10 gives the
graphs for R ⊂ R×G (for R the hyperfinite II1 factor and G = S3). The M–M
bimodules are parametrised by the irreducible characters chi of G, with precisely
chi (e) edges connecting the i th node to the root of the graph. The N–N bimod-
ules are parametrised by elements of the group. The contragredient involution and
fusion rings are the ones familiar to aficionados of character tables: complex-conjugate
and the character ring, and g �→ g−1 and the group ring CG. The connection
explicitly recovers the group structure, much as in the topological field theory of
Section 4.4.2. On the otherhand, the graphs for RG ⊂ R are switched. More gener-
ally, given any subgroup H < G, we get subfactors RG ⊂ RH and R×H ⊂ R×G, and
their paragroups give a group-like interpretation to G/H even when H is not normal.

We say subfactors Ni ⊂ Mi are equivalent if there is an isomorphism θ : M1 → M2

with θ (N1) = N2. When M is hyperfinite type II1, the paragroup identifies N ⊂ M up to
equivalence. Hence, when G is a finite abelian group, RG ⊂ R is equivalent to R ⊂ R×G
(when instead G is nonabelian, they are merely dual).

The paragroup yields a topological invariant for manifolds, generalising the Turaev–
Viro one [535] (see [354] for a very readable treatment of this part of the theory).
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However, it doesn’t directly correspond to the data of an RCFT (e.g. the fusion rings
of Figure 6.10 aren’t self-dual). To get RCFT data, we must pass from N ⊂ M to
the ‘asymptotic inclusion’ 〈M, M ′ ∩ M∞〉 ⊂ M∞, where M∞ is the (weak completion
of the) union of all Mn . Asymptotic inclusion plays the role of Drinfel’d’s quantum-
double here, and corresponds physically to taking the continuum limit of the lattice
model, yielding the CFT from the underlying statistical mechanical model (see sec-
tion 12.6 of [177]). All chiral data of the VOA or RCFT, including the link invariants,
are obtainable from the asymptotic inclusion. For instance, the Jones index [M : N ]
equals 1/S2

00.
A very similar (but simpler) theory has been developed for type III factors. Bimodules

now are equivalent to ‘sectors’, that is equivalence classes of endomorphismsλ : N → N
(the corresponding subfactor is λ(N ) ⊂ N ). This use of endomorphisms is the key dif-
ference (and simplification) between the type II and type III fusion theories. Given
λ,μ ∈ End(N ), we define 〈λ,μ〉 to be the dimension of the vector space of intertwin-
ers, that is all t ∈ N such that tλ(n) = μ(n)t ∀n ∈ N . The endomorphism λ ∈ End(N )
is irreducible if 〈λ, λ〉 = 1. Let � be a finite set of irreducible sectors. The fusion
product is given by composition λ ◦ μ; addition can also be defined, and the fusion
multiplicity N ν

λμ is then the dimension 〈λ ◦ μ, ν〉. The ‘vacuum’ 0 is the identity idN .
Restricting to a finite set � of irreducible sectors, closed under fusion, the result is
again a (noncommutative non-self-dual) fusion ring (after all, why should the composi-
tions λ ◦ μ and μ ◦ λ be related). The missing ingredients are nondegenerate braidings
ε±(λ,μ) ∈ Hom(λ ◦ μ,μ ◦ λ), which say roughly that λ and μ nearly commute (the ε±

must also obey some analogue of the Yang–Baxter equation (6.2.8)). Provided we have
a nondegenerate braiding (which we can obtain from asymptotic inclusion as before),
Rehren [470] proved that we will automatically have modular data. When we have a
hyperfinite type III1 subfactor N ⊂ M with a braided system of endomorphisms, there
is a simple expression (see [65] and references therein) for the corresponding modular
invariant (Definition 6.1.8) using ‘α-induction’ (a process of inducing an endomorphism
from N to M using the braiding ε±): we get Zλμ = 〈α+λ , α−μ 〉. The nim-rep is defined
similarly [65].

Wassermann and collaborators (see e.g. [554]) have explicitly constructed the affine
algebra subfactors, recovering the affine algebra modular data, at least for Ar

(1) and
Br

(1). To any subgroup–group pair G < H , the subfactor R×G ⊂ R×H of crossed-
products has a (in general non-commutative) fusion-like ring. But sometimes it will have a
braiding – for example, the diagonal embedding G < G × G recovers the finite group
modular data of Section 6.2.4.

These approaches cannot reconstruct the full RCFT or VOA. To give a simple example,
the VOA associated with any even self-dual lattice or the Moonshine module corresponds
to the trivial subfactor N = M , where M is the unique hyperfinite type II1 factor. The
way to get more information uses nets of subfactors.

There are two standard axiomatisations of quantum field theory (Section 4.2.4). The
Wightman axioms, applied to two-dimensional CFT, yield quite naturally a VOA (see
chapter 1 of [330]). Algebraic quantum field theory [269], on the other hand, leads to
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subfactors. In particular, to any open set O in Minkowski space R1,1 we are to assign
a von Neumann algebra A(O) ⊂ L(H) of observables localised to O, obeying various
properties (such as O1 ⊂ O2 implies A(O1) ⊂ A(O2)). The axioms imply these A(O)
will all be type III1 factors. In two dimensions, choosing ‘light-cone’ coordinates x0 ± x1,
we can take these O to be the product I × J of open intervals I,J ⊂ R. This means
that for most purposes the theory decomposes into a one-dimensional net A(I) – the
chiral theory. The one-dimensional ‘space-time’ R is compactified to S1, and requiring
the theory to be covariant with respect to Diff(S1), the result is called a local conformal
net. The theory of these one-dimensional nets should be equivalent to that of VOAs, and
that of the two-dimensional ones to the full RCFT, though most details of this equivalence
are still to be established. Nevertheless, some aspects of the theory will likely remain
much more accessible using, for example, subfactors than VOAs (in particular, orbifolds
seem simpler in subfactor theory). For references and results, see, for example, [341],
[340], [568], [332] and references therein.

Question 6.2.1. Prove equation (6.2.3a).

Question 6.2.2. Find all nim-reps for A1
(1) at each level k = 1, 2, 3, . . . (Hint: Verify that

the Perron–Frobenius eigenvalue of M1 is S10/S00 = 2 cos(π/(k + 2)) < 2.)

Question 6.2.3. (a) Find a continuous one-parameter deformation of the three-
dimensional complex Lie algebra span{x, y, z}with brackets [xy] = x , [xz] = [yz] = 0.
(b) Verify that any continuous deformation of A1 is trivial.

Question 6.2.4. Let M, N be left A-modules, where A is a Hopf algebra. Prove that
HomK (M, N ) is a left A-module.

Question 6.2.5. (a) When does the character table of a finite group, with rows and columns
appropriately normalised and ordered, equal the S-matrix of modular data?
(b) Let G be finite and abelian. Is the fusion ring for the quantum double D(G) (see
Section 6.2.4) isomorphic to the group ring of G × G?

Question 6.2.6. Let G be any finite group and consider the modular data of (6.2.12).
Find the conjugation C , the simple-currents J and their action and monodromy ϕJ , and
identify the group of all simple-currents. Identify the Galois action and parities.

Question 6.2.7. Prove that any finite group can be realised as a subgroup of the group of
automorphisms of a holomorphic VOA. (Hint: think of self-dual lattices.)

Question 6.2.8. Identify the knot group π1(R3 \ T ) of the trefoil, using the Wirtinger
presentation of Figure 6.8.

Question 6.2.9. Prove, using the Reidemeister moves, that the Wirtinger presentation
yields the same group no matter which knot diagram is chosen for the given knot.

Question 6.2.10. Recall (6.2.15). Find all values a, b such that σi �→ aei + b, i =
1, . . . , n − 1, yields a representation of the braid group Bn in An,τ .
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6.3 Hints of things to come

String theory has profoundly affected geometry (e.g. elliptic genus and mirror symmetry),
algebra (e.g. VOAs) and topology (e.g. knot invariants), but so far it has had little impact
on number theory. That may have something to do with the knowledge and interests
of the individuals who have developed its mathematical side. There are in fact several
indications of deep relations with number theory, waiting to be developed. In this section
we sketch some of these.

6.3.1 Higher-genus considerations

String theory tells us that CFT can live on any surface �. The VOAs, including the
geometric VOAs of Section 5.4.1, capture CFT in genus 0. The graded dimensions and
traces considered above concern CFT quantities (‘chiral blocks’) at genus 1: τ �→ e2π iτ

maps H onto a cylinder, and the trace identifies the two ends. But there are analogues of
all this at higher genus [573] (though the formulae can rapidly become awkward). We
have alluded to this throughout the book so will only add some quick remarks here. Our
main point is that this is surely the direction for important future research, with direct
implications to Moonshine.

For example, the graded dimension of the V � CFT in genus 2 is computed in [533],
and involves, for example, Siegel theta functions. The higher-genus mapping class group
representations coming from the A1

(1) RCFT are studied in [220]. A more radical sug-
gestion, using projective limits, is given in Section 4.3.3.

The orbifold theory in Sections 5.3.6 and 7.3.2 is genus 1: each sector (g, h) corre-
sponds to a homomorphism from the fundamental group Z2 of the torus into the orbifold
group G (e.g. G = M) – g and h are the targets of the two generators of Z2 and so must
commute. More generally, the sectors correspond to homomorphisms ϕ : π1(�) → G,
and for each we get a higher-genus trace Z(ϕ), which are functions on the Teichmüller
space Tg (generalising the upper half-plane H for genus 1). The action (7.3.3) of SL2(Z)
on N(g,h) generalises to the action of the mapping class group on π1(�) and Tg .

For example, we can count the number of inequivalent homomorphisms π1(�) → G,
for G a compact genus-g surface. This number is given by Verlinde’s formula (6.1.2)
together with the expression (6.2.12a) [194]:

N (g,0) =
∑

h

∑
ch∈Irr(CG (h))

(‖CG(h)‖
ch(e)

)2(g−1)

, (6.3.1)

where we sum over representatives h of the various conjugacy classes of G.

6.3.2 Complex multiplication and Fermat

A few years ago Philippe Ruelle was walking in a library in Dublin. He spotted a yellow
book in the mathematics section, called Complex Multiplication [367]. A strange title
for a book by Lang! Ruelle flipped it to a random page, which turned out to be 26. There
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he found what we would call the Galois selection rule (6.1.15a) for A2
(1), analysed

and solved for the cases where k + 3 is coprime to 6. Lang, however, knew nothing of
modular invariants; he was reviewing work by Koblitz–Rohrlich [351] on decomposing
the Jacobians of the Fermat curve xn + yn + zn = 0 into their prime pieces, called
‘simple factors’.

Fix n > 3. Let Fn denote the nth Fermat curve, that is the projective complex curve
xn + yn + zn = 0. We will describe some similarities with the modular data of A2

(1) at
level k = n − 3.

First, let’s review some A2
(1) chiral data. Call a pair (r, s) ∈ N× N admissible if

1 ≤ r, s and r + s < n. The integrable highest weights λ ∈ Pk
+(A(1)

2 ) are in one-to-one
correspondence with the admissible pairs, given by λ(r,s) := (n − r − s − 1)ω0 + (r −
1)ω1 + (s − 1)ω2. For any admissible (r, s), define

Hr,s = {� ∈ Z×n | 〈�r〉 + 〈�s〉 < n},
where Z×N is (as always) the multiplicative group (mod N ) of integers coprime to N , and
〈a〉 is the unique integer 0 ≤ 〈a〉 < n congruent to a (mod n). Then Z×3n is the Galois
group over Q of the field generated by all entries Sλμ of the A2

(1) level-k matrix S. The
Galois selection rule (6.1.15a) says that if Z is a modular invariant, then

Zλ(r,s),λ(r ′ ,s′ ) �= 0 ⇒ Hr,s = Hr ′,s ′ .

The hard part of the A2
(1) modular invariant classification involves solving this condition

Hr,s = Hr ′,s ′ [232].
Before we compare this to Fn , let’s introduce some geometric terminology. An abelian

variety is a torus of the form Cm/L , where L is a 2m-dimensional lattice in Cm , which
admits an embedding into projective space. This means there is a Hermitian form on
Cm (defined in Section 1.1.3), whose imaginary part takes integer values when restricted
to L . Most tori (when m > 1) don’t satisfy this Hermitian form condition, though it is
automatic when m = 1. We say two abelian varieties Cm/L and Cm/L ′ are isogenous if
there exists a continuous group homomorphism from one to the other that is surjective;
equivalently, if there is an invertible complex-linear endomorphism of Cm taking the
lattice L onto a sublattice of L ′. Isogeny is an equivalence relation preserving most
things of interest.

Now suppose an abelian variety Cm/L contains another, Cn/L ′, of dimension n < m.
Then the Hermitian form can be used to show that the original variety is isogenous to
the product of Cn/L ′ with some Cm−n/L ′′ (roughly, L ′′ is the orthogonal complement
of L ′ in L). Continuing in this way, we get that any abelian variety is isogenous to the
product of simple factors, where simple factor means an abelian variety containing no
proper abelian subvariety.

A very special property that an abelian variety may possess is complex multipli-
cation. The general definition is a little too complicated to get into here (see chap-
ter 1.4 of [367]), so let’s restrict to one-dimensional abelian varieties, that is the torus
Aτ = C/(Z+ τZ). We say Aτ has complex multiplication if its endomorphism ring
End(Aτ ) is strictly greater than Z; equivalently, if there is a non-integer z ∈ C such that
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z(Z+ τZ) ⊂ Z+ τZ (hence the name). It turns out that if Aτ has complex multiplica-
tion, then (among other things) j(τ ) is an algebraic integer. This illustrates just how rare
complex multiplication is: only countably many Aτ have it. It also illustrates its number-
theoretic significance, which only becomes more profound as the dimension rises.

We get an abelian variety from any complex projective curve, by taking the Jacobian
(Section 2.1.4), which is of complex dimension equal to the genus. In the case of the
Fermat curve Fn , the genus is

( n−1
2

)
, which equals the cardinality ‖Pk

+(A(1)
2 )‖. A bijection

between Pk
+(A(1)

2 ) and a basis of holomorphic 1-forms is

λ(r,s) ↔ ω(r,s) := xr−1 ys−1 dx

yn−1
,

for any admissible (r, s). For each (r, s) let [r, s] denote the Hr,s-orbit {(〈�r〉, 〈�s〉)}�∈Hr,s .
Then the Jacobian Jac(Fn) is isogenous to the product, over all orbits [r, s], of a ‖Z×m‖/2-
dimensional abelian variety A[r,s], for m = n/gcd(r, s, n − r − s). All A[r,s] have com-
plex multiplication, which simplifies the following analysis.

We wish to decompose Jac(Fn) into a product of simple factors. Thus we need to
know when the A[r,s] are isogenous to one another, and also when they are simple. Both
questions reduce to knowing when Hr,s = Hr ′,s ′ , which as we mentioned earlier is also
the key step in the A2

(1) modular invariant classification.
Similarly, Itzykson discovered traces of the A2

(1) exceptionals – these occur when
k + 3 = 8, 12, 24 – in the Jacobian of F24. See [46] for additional observations.

The point is that the combinatorial heart of two very different problems – the decom-
position of the Jacobian of Fermat curves into simple factors, and the classification of
RCFT associated with A(1)

2 – are identical. Nevertheless, this must seem a little ad hoc.
What is needed are other independent probes of this (still hypothetical) relationship. One
possibility, suggested by the presence of complex multiplication, is the following.

Basic data associated with an algebraic variety V is its zeta-function L(V, s), which
counts its points over various finite fields. Isogenous varieties have equal zeta-functions.
The Mellin transform of the zeta-function (Section 2.3.1) formally gives a q-series
fV (τ ) =∑

n anqn . For a typical variety V , fV won’t have any special properties, but
when V has complex multiplication, the zeta-function decomposes into a product of
Hecke L-functions, and their q-series do have modularity properties [505], [506].

Thus, associated with the abelian varieties A[r,s] – by virtue of complex multiplication –
are various sorts of modular forms. And associated with the weights λ(r,s) – by virtue
of being integrable highest weights of an affine algebra – are various sorts of modular
forms.

Problem How are the modular forms associated with the zeta-functions of the factors
A[rs] in the Jacobian of the Fermat curve Fn related to the modular forms associated
with integrable highest-weight modules of A2

(1) at level n − 3?

The easiest n to check will be n = 4, 6, 8, 12, since for them Jac(Fn) is isogenous to a
product of elliptic curves. A somewhat related project, concerning A1

(1), is proposed in
[490], though nothing definite has been achieved there yet.

https://doi.org/10.1017/9781009401548.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.007


Hints of things to come 395

In any case, these Fermat↔ A2
(1) ‘coincidences’ are still not understood. It is tempt-

ing to guess that, more generally, the Ar
(1) level-k modular invariant classification is

somehow related to the hypersurface xn
1 + · · · + xn

r = zn , for n = k + r + 1, but this is
probably too naive. As with other meta-patterns, the most realistic hope wouldn’t be
to find a direct connection between Fermat curves and the RCFTs associated with sl3.
Rather, the idea is to identify the combinatorial nugget common to both. The real hope
would be that this ‘coincidence’ lies in a series: A–D–E for sl2, Fermat for sl3, . . . , and
that this would lead to insights into sl4 RCFT and beyond.

Complex multiplication in CFT has been the subject of other work – see [435] for
several references. Let’s mention two examples. Arithmetic varieties related to number
fields seem to be naturally selected in the study of black holes in Calabi–Yau compacti-
fications of string theory [435]. It has been conjectured [268] that superconformal field
theory with target space given by a Calabi–Yau manifold M will be rational iff both M
and its mirror have complex multiplication.

6.3.3 Braided # 6: the absolute Galois group

The absolute Galois group of the rationals is the group of symmetries of the field of
algebraic numbers. It is the most important, and poorest understood, group in algebraic
number theory. But it also has deep contacts with geometry (through the generalised
Riemann existence theorem), and there have been several proposals conjecturing its
relevance to RCFT (see e.g. [128], [435], [268] and references therein), and even quantum
field theory [106], [93].

Recall the discussion of algebraic numbers and Galois groups in Section 1.7. The
algebraic closure Q of the rationals is the set of all algebraic numbers, or equivalently
the union of all finite-dimensional field extensions of Q. The absolute Galois group of Q
is �Q := Gal(Q/Q). It’s uncountably infinite, and extremely complicated. Only two of
its elements have names: the identity and complex conjugation. If K is any finite Galois
extension of Q, then its Galois group G = Gal(K/Q), which will be a finite group, is
a homomorphic image of �Q and so is a quotient �Q/N of �Q. Much effort has been
devoted to discovering which groups G can arise as Galois groups over Q (see [548] for
a review of the so-called inverse Galois problem).

Conjecture 6.3.1 Any finite group G is a quotient of �Q.

This conjecture shows just how complicated�Q is. Incidentally, there are many nontrivial
points of contact between braid groups and inverse Galois theory (see e.g. [549]).
�Q is an example of a profinite group, that is a projective limit of finite groups (here,

of the Galois groups G). We define projective limit in Section 2.4.1 – the indexing set
here are the fields K, ordered by inclusion, to which is attached its Galois group G. This
just means that σ ∈ �Q consists of a choice of Galois automorphism σK for each finite
extension K ⊇ Q, which obeys the obvious compatibility constraint (if K ⊂ L, then σL

restricted to K must equal σK). Thus, if the conjecture is true, �Q would be the limit
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lim←G of all finite groups, in this sense. Of course any finite group is also a quotient of
some free group Fn , and so we may wonder if �Q and Fn are somehow related.

Thanks to their realisations as fundamental groups, the braid groupBn acts faithfully on
Fn (Question 6.3.5) – in other words, Bn can be regarded as a subgroup of Aut(Fn). This
can be seen as follows. Recall the space Cn of (1.2.6). We have the obvious projection
π : Cn+1 → Cn , given by forgetting the (n + 1)th point. Hence π induces an action
of the fundamental group π1(Cn) of the base on the fundamental group of the fibre
π−1(z1, . . . , zn) = C \ {z1, . . . , zn}, that is an action of the pure braid group Pn on Fn .
The action of Bn is obtained similarly. We will find that similar reasoning allows us to
replace Bn by �Q, and Fn by its profinite completion.

Let X be an algebraic variety defined over Q – that is, X is defined as the set of
solutions (z1, . . . , zn) ∈ Cn to a collection of polynomials pi (z1, . . . , zn) = 0, and the
polynomials have coefficients in Q. Let X (Q) be the set of points (z1, . . . , zn) ∈ X with
all coordinates zi ∈ Q. Fix a base-point p ∈ X (Q) (assuming one exists).

Let N be a finite-index normal subgroup of π1(X, p). Then by the geometric Galois
correspondence (Section 1.7.2), N corresponds to a finite Galois cover fN : X N → X
of X , with π1(X N ) ∼= N and the quotient π1(X, p)/N can be identified with the set of
homeomorphisms γ : X N → X N satisfying fN ◦ γ = fN . Each γ , restricted to the finite
set f −1

N (p), will be a permutation, and this permutation uniquely determines it.
By the generalised Riemann existence theorem (Grauert–Remmert, 1958), each finite

cover X N of X is an algebraic variety defined over Q. Thus each automorphism σ ∈ �Q

permutes the finite covers of X (or if you prefer, the normal subgroups N ): it acts on X N

by acting simultaneously on the coefficients of all the defining polynomials of X N .
Grothendieck [267] explained that �Q acts on the profinite completion π̂1(X, p) of

the fundamental group of X , called the algebraic fundamental group of X . This means
the following. The profinite completion Ĝ of a group G is the projective limit lim←G/N
over all finite quotients G/N (i.e. N runs over all normal subgroups of finite index in G).
An element g ∈ Ĝ consists of a choice gN N of coset in G/N for each such N , such that
whenever N1 is a subgroup of N2 then gN1 N2 = gN2 N2. This should remind us of the
construction of the p-adic integers Ẑp – indeed, Ẑ =∏

p Ẑp is the profinite completion
of Z. Profinite completion is the algebraic analogue of the topological completion of a
space by Cauchy sequences (as in the construction of R from Q). Its purpose is the same:
just as R fills in the ‘gaps’ in Q, so does Ĝ supply the missing elements in G. For example,√

2 exists in Ẑ7 but not in Z. Of course, being a projective limit, the profinite completion
is also an ‘integration’ of all G/N , that is a way of treating them all simultaneously. A
solution in Ẑ to a polynomial equation gives us simultaneously a solution modulo any n.

For example, �̂ ∈ Ẑ corresponds, for each n ∈ N, to an integer �̂n defined modulo n,
subject to the obvious compatibility condition. Then an element �̂ is invertible, written
�̂ ∈ Ẑ×, iff for each n > 1, �̂n is invertible mod n. Hence any �̂ ∈ Ẑ× has a well-defined
action on finite-order roots of unity: given any nth root of unity ξ , ξ �̂ is defined to be ξ �̂n .
In fact, consider the field Qab obtained by taking the union of all cyclotomic fields (or
equivalently, by Theorem 1.7.1, all abelian extensions of Q). Its Galois group Gal(Qab/Q)
can be naturally identified with the multiplicative group Ẑ× in this way. This is just the
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action of�Q restricted to cyclotomic fields – call this restriction the cyclotomic character
χ cyclo : �Q → Ẑ× (this is a ‘character’ in the sense of a one-dimensional representation,
not as a trace of a higher-dimensional character). This action has a large kernel – in fact,
Ẑ× is isomorphic to the abelianisation �Q/[�Q�Q].

Let γ̂ ∈ π̂1(X, p), that is for each finite-index normal subgroup N of π1(X, p), we
have a coset representative γ̂N of some coset γ̂N N ∈ π1(X, p)/N and these γ̂N – which
we are to think of as permutations of finite sets f −1

N (p) – are compatible in the appropriate
way. Then for any σ ∈ �Q and γ̂ ∈ π1(X, p)/N , the action σ.γ̂ is defined by

(σ.γ̂ )N = σ ◦ γ̂σ−1 N ◦ σ−1, (6.3.2)

where σ acts on the points in f −1
N (p) ⊂ Q

n
component-wise, and acts on the normal

subgroups N as above. As we will see, choosing the variety X appropriately, (6.3.2)
includes the profinite analogue of the braid group action on Fn mentioned earlier: the
image of �Q in Aut F̂n lies in this image of B̂n . Equation (6.3.2) generalises to an action
of �Q on the fundamental groupoids π1(X, p, q) of (homotopy equivalence classes of)
paths in X with endpoints p, q ∈ X (Q).

Now, generically π1(X, p) is isomorphic to the mapping class group �g,n , when X is
a surface of genus g with n punctures. By the modular tower we mean the collection of
moduli spaces Mg,n , where the different spaces are related by the obvious topological
actions such as forgetting marked points, or sewing surfaces together (‘tower’ means a
family of objects linked by homomorphisms). In Section 2 of his Esquisse d’un Pro-
gramme, Grothendieck conjectured that�Q acts on the profinite completion of this tower
(i.e. on the profinite completion of all�g,n , and respecting those topological actions), and
is in fact the full automorphism group of this completion, and that this provides an effec-
tive, almost combinatorial, way to study�Q, not directly related to its action on algebraic
numbers. He conjectured that his profinite modular tower could be reconstructed from
M0,3,M0,4,M1,1, with all relations obtained from M0,5 and M1,2.

For example, the ordered moduli space M0,4 is the thrice-punctured sphere P1(C) \
{0, 1,∞} and can be defined over Q – indeed, it is just �(2)\H and has defining equa-
tion z1z2

2(z2 − 1)2 = z2
2 − z2 + 1. Its fundamental group is F2, the free group on two

generators. Therefore, �Q acts on F̂2. In fact, this action is known to be faithful (Belyi,
1987), so �Q is a subgroup of Aut F̂2. Similarly, we get an action of �Q on B̂n , which
we will give shortly. This action yields one on B̂n/Z (B̂n), and for n = 3 the latter equals
the completion ̂PSL2(Z) of the modular group (recall (1.1.10b)).

Does Moonshine (or if you prefer, RCFT or VOAs) see this same�Q-action? After all,
modular data possesses a nice Galois action (6.1.7), as does the spectrum of the theory
(6.1.15b). Also, Grothendieck’s modular tower, with generators (0, 3), (0, 4), (1, 1) and
relations (0, 5) and (1, 2), reminds one of the Moore–Seiberg data of Section 6.1.4. There
are a few difficulties with this hope. For instance, we should take profinite limits of these
actions – for example, lift our action on SL2(Z) to one on ŜL2(Z). Can that have any
natural meaning to RCFT? Also, and most disappointingly, the modular data always lies
in cyclotomic fields, so the Galois action (6.1.7) in RCFT really only sees the rather
uninteresting action of the abelianisation �Q/[�Q�Q] ∼= Ẑ×, as explained earlier.
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The first difficulty is easy to address. Subject to Conjecture 6.1.7, we obtain the
following universal actions of �Q on modular data: for any σ ∈ �Q,

σ.T = T χ cyclo(σ ), (6.3.3a)

σ.S = T χ cyclo(σ )ST χ cyclo(σ−1)ST χ cyclo(σ )S2. (6.3.3b)

In order for (6.3.3) to make sense, these equations must live in the profinite completion
of SL2(Z). This is the meaning of the profinite completions here: the ‘integration’ of the
data of all RCFT (or VOAs) necessary for universal formulae. The generators S, T of
SL2(Z) also generate ŜL2(Z), though in the topological sense (i.e. just as 1 topologically
generates Ẑ). Since the action (6.3.3) is continuous, it defines a �Q-action on ŜL2(Z). It

is very natural, in the sense that there is a map �Q → ŜL2(Z) given by

σ �→ Gσ := T χ cyclo(σ )ST χ cyclo(σ−1)ST χ cyclo(σ )S =
(
χ (σ ) 0

0 χ (σ−1)

)
∈ ŜL2(Z),

(6.3.4)
and σ.S equals the matrix multiplication Gσ S. This map (6.3.4) is also what gives the
Galois action (2.3.14) on modular functions for�(N ) or, in more suggestive language, the
meromorphic functions on lim←�(N )\H (see Section 2.4.1). Of course, in RCFT there
is a preferred basis for this ŜL2(Z)-representation (namely, that given by the VOA char-
acters), and in that basis the matrices become signed permutation matrices εσ (a) δaσ ,b.
It will be extremely interesting to find universal formulae for the Galois action on the
remaining Moore–Seiberg data. The difficulty is that, in obtaining (6.3.3), we were
guided by the presence of a preferred basis, and so (6.3.3) reduces to the usual Galois
action on the corresponding matrices. For the braiding and fusing matrices, typically
there isn’t a preferred basis, and so other principles must be our guide.

Why do cyclotomic fields exhaust RCFT, hence demanding that the RCFT Galois
action, unlike that on Grothendieck’s modular tower, be far from faithful? Is it trying to
tell us something? What other principles can guide us to a Galois action on the remaining
Moore–Seiberg data?

Those questions lead us to Drinfel’d [161]. Recall from Section 1.6.2 that the pure braid
group Pn acts on each set HomA1 ⊕ · · · ⊕ An, V ) in any braided monoidal category.
In particular, we can ask which subgroup of P3 × P2 acts on the set of all braided
monoidal categories, where β ∈ P3 and y ∈ P2 send the associativity constraint a :
(A ⊗ B)⊗ C → A ⊗ (B ⊗ C) and the commutativity constraint c : A ⊗ B → B ⊗ A,
respectively, of one such category to that of another. We require that β.a and γ.c satisfy
the various axioms, most importantly the pentagon and hexagon equations.

Dualising this, Drinfel’d suggested to act withP3 × P2 on the data of quasi-triangular
quasi-Hopf algebras A (defined in e.g. [98]). These algebras are co-commutative up to
conjugation by the R-matrixR ∈ A ⊗ A (as in Definition 6.2.8), and co-associative up to
conjugation by the associator � ∈ A ⊗ A ⊗ A (� measures how A fails to be Hopf). �
andR are required to obey the triangle, pentagon and hexagon equations of Section 1.6.2.
We met quasi-triangular Hopf algebras in Definition 6.2.8; it will be clear shortly why
Drinfel’d prefers quasi-Hopf algebras. Identify P2 with Z and P3 with F2 × Z (1.1.10c);
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then m ∈ P2 acts on the R-matrix by m.R = R.(R21R)m and, for example, a word
f (x, y) ∈ F2 < P3 acts on the associator by f.� = f (R21R12,�R32R23�

−1)−1�. The
other quantities in the algebra A are left unchanged. Unfortunately, this nice idea fails:
only the two elements (±1, 1) ∈ P2 × P3 satisfy the constraints and thus permute quasi-
triangular quasi-Hopf algebras (the nontrivial one sendingR toR21 and fixing everything
else).

Drinfel’d then proposed that there would be more solutions if we take profinite com-
pletions (indeed, this is a raison d’être of completions), so in place of P2

∼= Z and
P3
∼= Z× F2 we take P̂2

∼= Ẑ and P̂3
∼= Ẑ× F̂2. To get these profinite actions on the

R and �, it suffices to take the scalars of the algebras A to be formal power series
Q̂[[h]] rather than C. The hope is that by completing the groups, there is more chance of
nontrivial solutions to the triangle, pentagon and hexagon equations. The details would
take us too far afield, but the result is that there are indeed several solutions.

Drinfel’d was interested in this because, in an earlier paper, he had found, for each
choice of simple Lie algebra g, a universal formula for one solution (�,R) to those
equations, using Kohno’s monodromy theorem for the KZ connection. Unfortunately
this formula for � is quite complicated. In [161] he investigates two commuting actions
on the set of all solutions (�,R), which he uses to deduce the existence of a simpler
solution (see [39]). One of these actions was this pure braid group action.

Let ĜT , the Grothendieck–Teichmüller group, be the group of all pairs (λ, f ) ∈ Ẑ×
F̂2 (the Ẑ of P̂3 can’t contribute) satisfying those equations and thus permuting those
quasi-triangular quasi-Hopf algebras. ĜT is large, in fact as we will see �Q embeds as
a subgroup in it. Drinfel’d conjectured that ĜT should act on the profinite completion
of Grothendieck’s tower. For example, on B̂n , topologically generated as we know by
σ1, . . . , σn−1, we get the action by (λ, f ) ∈ ĜT given by

(λ, f ).σi = f
(
yi , σ

2
i

)−1
σλ

i f
(
yi , σ

2
i

)
, (6.3.5a)

(λ, f ).Z = Zλ, (6.3.5b)

where Z = (σn−1 · · · σ1)n topologically generates the centre of B̂n (just as it does that of
Bn) and yi = σi−1 · · · σ 2

1 · · · σi−1. This element yi arises in presentations of the genus-
0 mapping class groups �0,n or braid groups of the sphere [59]. The ‘profinite word’
f (yi , σ

2
i ) ∈ F̂2 means the value ϕ( f ) of the homomorphism ϕ : F̂2 → B̂n defined by

ϕ(x) = yi and ϕ(y) = σ 2
i .

Moreover, �Q maps injectively into ĜT and so can be identified with some subgroup
of ĜT . Conjecturally, �Q equals ĜT . For example, (−1, 1) corresponds to complex-
conjugation. See [305], [494], [493], [39] and section 16.4 of [98] for reviews of ĜT and
its action on, for example, the modular tower; [128] speculates on its relation to RCFT.

This is brought one step closer to RCFT by Kassel–Turaev [339]. It is relatively
straightforward to extend Drinfel’d’s action to certain braided monoidal categories. In
[339] a ‘pro-unipotent completion’ R̂ is defined for any ribbon category R. R̂ is itself
a ribbon category, with the same objects as R, but with each Hom(A, B) replaced by
some projective limit of its linearisation over Q̂ =∏

p Q̂p. For example, for the choice

https://doi.org/10.1017/9781009401548.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.007


400 Modular group representations

R = ribbon, Hom(∅, ∅) can be identified with the space of formal finite linear combi-
nations over Q̂ of framed oriented links in R3. Drinfel’d’s work yields an action of �Q

on the collection of these ribbon categories.
This category r̂ibbon obeys a universality property as in Theorem 1.6.2. Now, any

automorphism σ ∈ �Q acts on the data of r̂ibbon to produce a new ribbon category

r̂ibbonσ . Its objects and Hom(∅,∅) are unchanged. By universality, there is a functor
from r̂ibbon to r̂ibbonσ , sending Hom(∅, ∅) to itself. That is, we get an action of �Q

on the Q̂-span of links: a (framed oriented) link L is taken to some linear combination
(over Q̂) of links. �Q also acts on related spaces, such as Q̂-valued Vassiliev invariants
[339].

For example, complex-conjugation sends a link L to its mirror reflection (in general a
link is not isotopic to its mirror reflection – see footnote 6 in chapter 1). However, [339]
show that this �Q action is trivial on the commutator [�Q�Q], and thus really is an action
of Ẑ×.

This action is clearly very similar to that of RCFT. As we know, RCFT attaches the
matrix S to the Hopf link (Figure 6.9). Complex-conjugation (λ = −1 ∈ Ẑ×) sends the
Hopf link to its mirror image; the mirror image corresponds to S, which is what (6.3.3b)
reduces to for λ = −1.

Problem Identify the relation between [339] and the action (6.3.3) in RCFT. Can this
be used somehow to identify the Galois action on arbitrary Moore–Seiberg data?

We conjecture these actions are identical or at least very close. After all, they both
factor through to Ẑ× and agree with complex-conjugation applied to the Hopf link.
Theorem 4 of [40] should make it possible to compute the [339] action on the Hopf link
for any λ ∈ Ẑ×, thus allowing us to compare it directly to (6.3.3a). As we’ve learned,
there are topological underpinnings of chiral RCFT data (e.g. the modular categories of
[534], [32]) as well as full RCFT (see e.g. [211]); this seems the obvious way to attack
this problem.

At least as interesting as this Galois action on the Moore–Seiberg data is that we can
also hope that �Q (or at least Ẑ×) will act on the spaces B(g,n) of chiral blocks, since they
do on B(1,1), i.e. on the characters, which are modular functions (recall Section 2.3.3).

The Galois action (6.3.3) of RCFT is not directly related to Grothendieck’s (6.3.5).
The RCFT action would seem to be intimately related to Congruence Property 6.1.7, so
more relevant to RCFT than ŜL2(Z) should be the much simpler lim←SL2(Z)/�(N ) =
SL2(Ẑ).

So far in this subsection we’ve only addressed CFT ‘in the bulk’. What if anything does
Galois do to, for example, D-branes? Indeed, an action persists in boundary RCFT, though
it is more complicated [235]. In particular, this Galois action will no longer be abelian –
the algebraic numbers involved belong to exponent-2 extensions of the cyclotomic field
Qab. This complication opens the door to much more interesting mathematics.

It will be interesting to see if the Ẑ× action in [106] can be related to that of RCFT. We
are to think of RCFT as being to generic quantum field theory what semi-simple finite-
dimensional Lie algebras are to generic ones. In this spirit, this Galois action on RCFT,
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and its relation to �Q and Grothendieck’s Esquisse, can be regarded perhaps as a toy
model for the much more ambitious Cosmic Galois Group of [93], which conjecturally
underlies the multiple zeta values found by Kreimer and others in more physical quantum
field theories.

As a final remark, it is quite possible that the Galois actions explored in this subsection
are related to the Fermat remarks of last subsection (see in particular section II of
[304]). The Fermat curve FN = {x N + yN = 1} x N + yN = 1 is an abelian cover of
P1(C) \ {0, 1,∞}; in turn, its abelian covers are controlled by torsion points on its
Jacobian Jac(FN ), and in [304] the action of �Q on F̂2 is studied via those torsion points,
with results somewhat reminiscent of Section 6.3.2.

Question 6.3.1. Use the fact that the S and T matrices of (6.1.8) define modular data to
compute the sum

∑n
m=1 e2π im2/n . (Note: This is called a Gauss sum. A similar calculation

yields a generalisation of Gauss sums for any modular data.)

Question 6.3.2. Find all τ ∈ H such that the torus C/(Z+ Zτ ) is isogenous to C/(Z+
Zi).

Question 6.3.3. Prove that the elliptic curves y2 = x3 + ax and y2 = x3 + b both have
complex multiplication for any a, b.

Question 6.3.4. What is the profinite completion Ĝ for finite groups G?

Question 6.3.5. (a) Define σi .x j = x j if j �= i, i + 1, and σi .xi = xi+1 and σi .xi+1 =
x−1

i+1xi xi+1. Verify that this is a well-defined action. (It turns out that this action is
faithful.)
(b) Verify that for any β ∈ Bn , β fixes x1 · · · xn , and there is a permutation πβ and words
ai ∈ Fn such that β.xi = Ai xπβ A−1

i . (It turns out that, conversely, any automorphism β

obeying those two conditions must come from this braid group action. This gives a way
to solve the word problem in Bn .)

Question 6.3.6. Choosing X to be a sphere with two punctures, describe the associated
�Q-action (6.3.2).

https://doi.org/10.1017/9781009401548.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.007



