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INVERSE LIMITS IN THE CATEGORY OF
COMPACT HAUSDORFF SPACES AND UPPER

SEMICONTINUOUS FUNCTIONS

IZTOK BANIČ ˛ and TINA SOVIČ

Abstract

We investigate inverse limits in the category CHU of compact Hausdorff spaces with upper
semicontinuous functions. We introduce the notion of weak inverse limits in this category and show
that the inverse limits with upper semicontinuous set-valued bonding functions (as they were defined
by Ingram and Mahavier [‘Inverse limits of upper semi-continuous set valued functions’, Houston J.
Math. 32 (2006), 119–130]) together with the projections are not necessarily inverse limits in CHU
but they are always weak inverse limits in this category. This is a realisation of our categorical approach
to solving a problem stated by Ingram [An Introduction to Inverse Limits with Set-Valued Functions
(Springer, New York, 2012)].
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1. Introduction

Ingram in his book [13] states the following problem:

Problem 6.63. What can be said about inverse limits with set-valued functions
if the underlying directed set is not a sequence of integers?

In this paper we present a categorical approach to solving the above problem.
Consider an inverse system (A, {Xα}α∈A, { fαβ}α,β∈A) of compact Hausdorff spaces

and continuous bonding functions. It is a well-known fact that the space

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)

=

{
(xγ)γ∈A ∈

∏
γ∈A

Xα | for all α, β ∈ A, α < β, xα = fαβ(xβ)
}
,

together with the projection mappings

pγ : lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)→ Xγ, pγ((xα)α∈A) = xγ,
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50 I. Banic and T. Soviˇ č [2]

is in fact an inverse limit in the category CHC of compact Hausdorff spaces with
continuous functions.

In the present paper we extend the category CHC to the category CHU of compact
Hausdorff spaces with upper semicontinuous (usc) functions in such a way thatCHC is
interpreted as a proper subcategory of CHU. This can be done since every continuous
function between compact Hausdorff spaces can be interpreted as a usc function.

As one of our main results we show that the inverse limits with upper
semicontinuous set-valued bonding functions

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)

=

{
(xγ)γ∈A ∈

∏
γ∈A

Xα | for all α, β ∈ A, α < β, xα ∈ fαβ(xβ)
}
,

together with the projections

pγ : lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)→ Xγ, pγ((xα)α∈A) = {xγ},

are not necessarily inverse limits in the category but they are always so-called weak
inverse limits in CHU.

In Section 2 we give the basic definitions that are used in the paper.
In Section 3 we give a detailed description of the category CHU of compact

Hausdorff spaces with usc bonding functions.
In Section 4 we give results about inverse limits in the category CHU.
In Section 5 we define objects in the category CHU that are called weak inverse

limits in this category. We also show that for any inverse system (A, {Xα}α∈A, { fαβ}α,β∈A)
in CHU, the corresponding inverse limit with usc set-valued bonding functions
together with projections is always a weak inverse limit in category CHU.

2. Definitions and notation

For any categoryK the class of objects ofK will be denoted by Ob(K), the class of
morphisms ofK by Mor(K), and the partial binary associative operation (composition
of morphisms) by ◦. For any X ∈ Ob(K) the identity morphism on X will be denoted
by 1X : X→ X.

Given a directed set A (which is is nonempty and equipped with a reflexive and
transitive binary relation ≤ with the property that every pair of elements has an
upper bound), a family of objects {Xα | α ∈ A} of K , and a family of morphisms
{ fαβ : Xβ→ Xα | α, β ∈ A, α ≤ β} of K , such that:

(1) for each α ∈ A, fαα = 1Xα ;
(2) for each α, β, γ ∈ A, from α ≤ β ≤ γ it follows that fαβ ◦ fβγ = fαγ,

we call this an inverse system (in K) and denote it by

(A, {Xα}α∈A, { fαβ}α,β∈A).
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[3] Inverse limits in the category of compact Hausdorff spaces and usc functions 51

We assume throughout the paper that A is cofinite, that is, every α ∈ A has at most
finitely many predecessors. For more details see [17].

Next we define inverse limits in K .

D 2.1. An object X ∈ Ob(K), together with morphisms {pα : X→ Xα | α ∈ A},
is an inverse limit of an inverse system (A, {Xα}α∈A, { fαβ}α,β∈A) in the category K , if:

(1) for all α, β ∈ A, it follows from α ≤ β that the diagram

X

pα

��

pβ

  AA
AA

AA
AA

Xα Xβ
fαβoo

(2.1)

commutes;
(2) for any object Y ∈ K and any family of morphisms {ϕα : Y → Xα | α ∈ A} it

follows that if the diagram
Y

ϕα

��

ϕβ

  AA
AA

AA
AA

Xα Xβ
fαβoo

(2.2)

commutes, then there is a unique morphism ϕ : Y → X such that for each α ∈ A
the diagram

Y
ϕ //

ϕα

��

X

pα~~~~
~~

~~
~~

Xα

(2.3)

commutes.

A map or mapping is a continuous function.
If X is a compact Hausdorff space, then 2X denotes the set of all nonempty closed

subsets of X.
The graph Γ( f ) of a function f : X→ 2Y is the set of all points (x, y) ∈ X × Y such

that y ∈ f (x).
A function f : X→ 2Y is upper semicontinuous if for each x ∈ X and for each open

set U ⊆ Y such that f (x) ⊆ U there is an open set V in X such that:

(1) x ∈ V;
(2) for all v ∈ V , f (v) ⊆ U.

The following is a well-known characterisation of usc functions between Hausdorff
compacta (see [14, p. 120, Theorem 2.1]).

T 2.2. Let X and Y be compact Hausdorff spaces and f : X→ 2Y a function.
Then f is usc if and only if its graph Γ( f ) is closed in X × Y.

To conclude this section we introduce the notion of inverse limits with usc set-
valued bonding functions as introduced by Mahavier in [16] and Ingram and Mahavier
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52 I. Banic and T. Soviˇ č [4]

in [14]. In the last section we use this notion as a motivation for defining inverse limits
with usc set-valued bonding functions for arbitrary inverse systems.

An inverse sequence of compact Hausdorff spaces Xk with usc bonding functions fk
is a sequence {Xk, fk}∞k=1, where fk : Xk+1→ 2Xk is usc for each k.

The inverse limit with usc set-valued bonding functions of an inverse sequence
{Xk, fk}∞k=1 is defined to be the subspace of the product space

∏∞
k=1 Xk of all x =

(x1, x2, x3, . . .) ∈
∏∞

k=1 Xk, such that xk ∈ fk(xk+1) for each k. The inverse limit of
{Xk, fk}∞k=1 is denoted by lim

←−−
{Xk, fk}∞k=1.

Since the introduction of such inverse limits, there has been much interest in the
subject and many papers have appeared [1–12, 15, 18–22].

3. The category CHU

The category CHU of compact Hausdorff spaces and usc functions consists of the
following objects and morphisms:

(1) Ob(CHU)—compact Hausdorff spaces;
(2) Mor(CHU)—the usc functions from X to Y are the set of morphisms from X to

Y , denoted by Mor(CHU)(X, Y).

We also define the partial binary operation ◦ (composition) as follows. For
each f ∈Mor(CHU)(X, Y) and each g ∈Mor(CHU)(Y, Z), g ◦ f ∈Mor(CHU)(X, Z)
is defined by

(g ◦ f )(x) = g( f (x)) =
⋃

y∈ f (x)

g(y)

for each x ∈ X.

T 3.1. CHU is a category.

P. First, we show that ◦ is well defined. Let f : X→ Y and g : Y → Z be any
morphisms. Let also x ∈ X be arbitrary and let U be an open set in Z such that
(g ◦ f )(x) ⊆ U. Since g is usc and f (x) ⊆ Y , for each y ∈ f (x) there is an open set
Wy in Y such that:

(1) y ∈Wy;
(2) for all w ∈Wy, g(w) ⊆ U.

Let W =
⋃

y∈ f (x) Wy. Since W is open in Y , f (x) ⊆W, and since f is usc, there is an
open set V in X such that:

(1) x ∈ V;
(2) for all v ∈ V , f (v) ⊆W.

Let v ∈ V be arbitrary. Then

(g ◦ f )(v) = g( f (v)) =
⋃

z∈ f (v)

g(z) ⊆ U

since for each z ∈ f (v), g(z) ⊆ U. Therefore ◦ is well defined.
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[5] Inverse limits in the category of compact Hausdorff spaces and usc functions 53

It is obvious that the composition ◦ of usc functions is an associative operation.
All that is left to show is that for each X ∈ Ob(CHU) there is a morphism 1X : X→

X such that 1X ◦ f = f and g ◦ 1X = g for any morphisms f : Y → X and g : X→ Z. We
can easily see that the identity map 1X : X→ X, defined by 1X(x) = {x} for each x ∈ X,
is the usc function satisfying the above conditions. �

4. Inverse limits in CHU

In this section we show that if (A, {Xα}α∈A, { fαβ}α,β∈A) is an inverse system of
compact Hausdorff spaces and usc set-valued bonding functions, then

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)

(see Definition 4.1), together with the projections, is not necessarily an inverse limit in
the category CHU.

Motivated by [14, 16], we define in Definition 4.1 objects in CHU called inverse
limits with usc set-valued bonding functions. Since such objects were first introduced
by Mahavier in [16] and Ingram and Mahavier in [14], where they were called inverse
limits with usc set-valued bonding functions, we continue to use the same name for
them.

D 4.1. Let (A, {Xα}α∈A, { fαβ}α,β∈A) be any inverse system in CHU. We call
the object

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A) =

{
x ∈

∏
α∈A

Xα | for all α < β, xα ∈ fαβ(xβ)
}

an inverse limit with usc set-valued bonding functions.

In the following theorem we prove that lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A) is really an object
of CHU.

T 4.2. Let (A, {Xα}α∈A, { fαβ}α,β∈A) be any inverse system in CHU. Then the
inverse limit with usc set-valued bonding functions

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)

is a compact Hausdorff space.

P. For each γ ∈ A, Xγ is a compact Hausdorff space, and therefore the product∏
γ∈A Xγ is a compact Hausdorff space. Since lim

←−−
(A, {Xα}α∈A, { fαβ}α,β∈A) is a

subspace of the Hausdorff space, it is also a Hausdorff space. We show that
lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A) is a closed subset of the compact space
∏

γ∈A Xγ to show
that it is compact.

For all α, β ∈ A, α < β, let

Gαβ = Γ( fαβ) ×
∏

γ∈A\{α,β}

Xγ =

{
x ∈

∏
γ∈A

Xγ | xα ∈ fαβ(xβ)
}
.
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Since the graph Γ( fαβ) of fαβ is by Theorem 2.2 a closed subset of Xβ × Xα, Gαβ is also
a closed subset of

∏
γ∈A Xγ. It is obvious that

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A) =
⋂

α,β∈A,α<β

Gαβ

and hence lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A) is a a closed subset of
∏

γ∈A Xγ. �

In the following example we construct an inverse limit with usc set-valued bonding
functions that is not an inverse limit in CHU regardless of the choice of morphisms
{pα : X→ Xα | α ∈ A}.

E 4.3. Let A = N, Xk = [0, 1], and let fk(k+1) = f for each k ∈ N, where f :
[0, 1]→ 2[0,1] is the function on [0, 1] defined by its graph

Γ( f ) = {(t, t) ∈ [0, 1] × [0, 1] | t ∈ [0, 1]} ∪ ({1} × [0, 1]).

Also let X = lim
←−−

(N, {[0, 1]}k∈N, { fk`}k,`∈N) and let {pi : X→ Xi | i ∈ N} be any set of
morphisms in CHU, such that the diagrams (2.1) always commute. We show that X
with {pi : X→ Xi | i ∈ N} is not an inverse limit of (N, {[0, 1]}k∈N, { fk`}k,`∈N) in CHU.
Let Y = [0, 1] be an object in CHU and let {ϕk : Y → Xk | k ∈ N} be the family of
morphisms where ϕk(t) = [0, 1] for each k and each t ∈ Y . The diagram (2.2) always
commutes. We distinguish the following two cases.

(1) If there is a positive integer i0, such that 1 < pi0 (x) for each x ∈ X, then suppose
that Φ is any morphism Y → X. Then ϕi0 (t) = [0, 1] but 1 < pi0 (Φ(t)) for any
t ∈ Y . Therefore the diagram (2.3) does not commute for α = i0.

(2) If for each positive integer i there is xi ∈ X such that 1 ∈ pi(xi), then let s ∈ X be
an accumulation point of the sequence {xi}∞i=1. We show first that pi(s) = [0, 1]
for each i. Let k be any positive integer. Then for each ` > k, it follows from

[0, 1] ⊇ pk(x`) = fk`(p`(x`)) ⊇ fk`(1) ⊇ [0, 1]

that pk(x`) = [0, 1]. Let {ni}
∞
i=1 be any increasing sequence of positive integers

such that:
• ni > k for each i;
• lim

i→∞
xni = s.

It follows from pk(xni ) = [0, 1] that {xni} × [0, 1] ⊆ Γ(pk) for each i. This means
that for each t ∈ [0, 1], the point (xni , t) ∈ Γ(pk). Therefore limi→∞(xni , t) =

(s, t) ∈ Γ(pk) for each t, since Γ(pk) is a closed subset of X × [0, 1]. It follows
that {s} × [0, 1] ⊆ Γ(pk) and hence pk(s) = [0, 1].

Next, let Φ, Ψ : Y → X be the morphisms in CHU, defined by

Φ(t) = X,

Ψ(t) = {s}
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for each t ∈ Y . It follows from

pk(Φ(t)) = pk(X) = [0, 1] = ϕk(t)

and

pk(Ψ(t)) = pk({s}) = [0, 1] = ϕk(t)

that the diagram (2.3) commutes for both ϕ = Φ and ϕ = Ψ. Therefore there is
no unique morphism ϕ such that all diagrams (2.3) commute.

Note that in the second part of Example 4.3, Ψ(t) ⊆ Φ(t) = (
∏∞

k=1 ϕk(t)) ∩ X holds
true for each t ∈ Y . The following lemma shows that such an inclusion is not accidental.
It will be used in the proof of Theorem 5.5.

L 4.4. Let (A, {Xα}α∈A, { fαβ}α,β∈A) be any inverse system in CHU and let X =

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A). Suppose that for an object Y of CHU and a family of
morphisms {ϕα : Y → Xα | α ∈ A} the diagram (2.2) commutes for any α and β, α < β.
Then ϕ : Y → X, defined by ϕ(y) = (

∏
γ∈A ϕγ(y)) ∩ X for each y ∈ Y, is a morphism

in CHU such that for each α ∈ A the diagram (2.3) commutes. Even more, for any
morphism Ψ : Y → X such that pα(Ψ(y)) = ϕα(y) for each α ∈ A and for each y ∈ Y,
Ψ(y) ⊆ ϕ(y) holds true for all y ∈ Y.

P. We show that ϕ satisfies all the conditions in the following steps.

(1) The set
∏

γ∈A ϕγ(y) is a closed subset of
∏

α∈A Xα, so that ϕ(y) is a closed subset
of X for any y ∈ Y .

(2) Next we show that for any y ∈ Y , the set ϕ(y) is nonempty. Let y ∈ Y be arbitrarily
chosen. Next, for each positive integer n, let An ⊆ A be the set of all elements
α ∈ A that have exactly n − 1 predecessors. For any α ∈ A1 we arbitrarily choose
tα ∈ ϕα(y). For any β ∈ A2 there is an α ∈ A1 such that α < β. For any such α
and β it follows from tα ∈ ϕα(y) ⊆ fαβ(ϕβ(y)) that there is tβ ∈ ϕβ(y) such that tα ∈
fαβ(tβ). We choose and fix such tβ for each β ∈ A2. Suppose that we have already
constructed tα ∈ ϕα(y) for all α ∈ An. Then for any β ∈ An+1 there is an α ∈ An

such that α < β. For any such α and β it follows from tα ∈ ϕα(y) ⊆ fαβ(ϕβ(y))
that there is tβ ∈ ϕβ(y) such that tα ∈ fαβ(tβ). We choose and fix such tβ for each
β ∈ An+1.

Then obviously x = (tα)α∈A ∈ ϕ(y) and therefore ϕ(y) is nonempty.
(3) We show that ϕ is a usc function. Let y ∈ Y be an arbitrary point and let

U = (Uγ1 × Uγ2 × Uγ3 × · · · × Uγn ) ×
∏

γ∈A\{γ1,γ2,...,γn}

Xγ

be an open set in X such that ϕ(y) ⊆ U, where for each i = 1, 2, 3, . . . , n, Uγi is
an open set in Xγi . It follows from the definitions of ϕ and U that ϕγi (y) ⊆ Uγi
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for each i = 1, 2, 3, . . . , n. Since each ϕγi is usc, there is an open set Vi in Y such
that:

(a) y ∈ Vi;
(b) for each x ∈ Vi, ϕγi (x) ⊆ Uγi ,

for each i. We define V =
⋂n

i=1 Vi. Then V is an open set in Y for which:

(a) y ∈ V;
(b) for each x ∈ V , ϕ(x) =

∏
γ∈A ϕγ(x) ⊆ U

hold true. Therefore ϕ is a usc function and so it is a morphism from Y to X.
(4) Next we show that the diagram (2.3) commutes, that is, for any α ∈ A and any

y ∈ Y , ϕα(y) = (pα ◦ ϕ)(y) holds true. Choose any α ∈ A and any y ∈ Y . Obviously

pα(ϕ(y)) = pα
((∏
γ∈A

ϕγ(y)
)
∩ X

)
⊆ pα

(∏
γ∈A

ϕγ(y)
)

= ϕα(y).

Next we show that ϕα(y) ⊆ pα(ϕ(y)). Let z ∈ ϕα(y) be arbitrarily chosen. We
show that z ∈ pα(ϕ(y)) by showing that there is a point x ∈ ϕ(y) such that z ∈
pα(x). Let k be the positive integer such that α ∈ Ak. For each γ ∈ Ak \ {α} let
tγ ∈ ϕγ(y) be arbitrary and let tα = z. For each γ ∈ Ak−1 we choose tγ ∈ ϕγ(y)
such that if α ∈ Ak−1, β ∈ Ak, and α < β, then tα ∈ fαβ(tβ). This can be done since
fαβ(ϕβ(y)) = ϕα(y) and therefore fαβ(tβ) ⊆ ϕα(y).

Continuing in the same fashion, we choose for each i = 1, 2, 3, . . . , k − 1 and
each γ ∈ Ai an element tγ ∈ ϕγ(y) such that tα ∈ fαβ(tβ) for each α ∈ Ai, β ∈ Ai+1,
α < β.

Next, for each β ∈ Ak+1 and for each α ∈ Ak such that β > α, since tα ∈ ϕα(y) =

fαβ(ϕβ(y)), there is tβ ∈ ϕβ(y), such that tα ∈ fαβ(tβ).
We continue inductively in the same fashion and choose for each i = k + 1, k +

2, k + 3, . . . and each β ∈ Ai+1 an element tβ ∈ ϕα(y) such that tα ∈ fαβ(tβ) for each
α ∈ Ai, such that α < β.

Let x ∈
∏

γ∈A Xγ be such an element that pγ(x) = {tγ} for each γ ∈ A. It follows
from the construction of x that x ∈ ϕ(y) and z ∈ pα(x).

(5) Suppose that ψ : Y → X is a morphism in CHU such that for each α ∈ A
and for each y ∈ Y , pα(Ψ(y)) = ϕα(y). Let y ∈ Y be arbitrary and let z ∈ ψ(y).
Obviously z ∈ X since ψ is a morphism from Y to X. It follows from pα(z) ⊆
pα(ψ(y)) = ϕα(y) (for each α) that z ∈

∏
γ∈A ϕγ(y). Therefore z ∈ ϕ(y) and hence

ψ(y) ⊆ ϕ(y). �

5. Weak inverse limits in CHU

In this section we introduce the notion of weak inverse limits in CHU and show
that lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A), together with the projections, is always a weak inverse
limit in CHU.
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In Definition 5.1 we define a weak commutation of a diagram in the category CHU.

D 5.1. Let X, Y, Z ∈ Ob(CHU) and let f : X→ Y , g : X→ Z and h : Z→ Y be
any morphisms in CHU. The diagram

X

f
��

g

��??
??

??
?

Y Z
h

oo

weakly commutes if, for any x ∈ X, f (x) ⊆ (h ◦ g)(x).

E 5.2. Let f : [0, 1]→ 2[0,1], g : [0, 1]→ 2[0,1] be identity functions on [0, 1]
and let h : [0, 1]→ 2[0,1] be defined by

h(x) = [0, 1]

for all x ∈ [0, 1]. Then the diagram

[0, 1]

f
��

g

##GG
GG

GG
GG

G

[0, 1] [0, 1]
h

oo

weakly commutes but does not commute.

In the following definition we generalise the notion of inverse limits in CHU.

D 5.3. An object X ∈ Ob(CHU), together with morphisms {pα : X→ Xα | α ∈
A}, is a weak inverse limit of an inverse system

(A, {Xα}α∈A, { fαβ}α,β∈A)

in CHU, if:

(1) for all α, β ∈ A, it follows from α ≤ β that the diagram (2.1) weakly commutes;
(2) for any object Y ∈ CHU and any family of morphisms {ϕα : Y → Xα | α ∈ A}

it follows that if the diagram (2.2) commutes, then for any morphism Ψ :
Y → X such that for each α ∈ A and for each y ∈ Y , pα(Ψ(y)) = ϕα(y), Ψ(y) ⊆
(
∏

γ∈A ϕγ(y)) ∩ X holds true for all y ∈ Y .

Note that each inverse limit in CHU is always a weak inverse limit in CHU.

E 5.4. Let X = lim
←−−

(N, {[0, 1]}k∈N, { fk`}k,`∈N) be the inverse limit with usc set-
valued bonding functions that we defined in Example 4.3. Then X, together with the
projection mappings, is obviously not an inverse limit but it is a weak inverse limit in
CHU.
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We show in the following theorem that the inverse limits with upper semicontinuous
set-valued bonding functions together with projections are always weak inverse limits
in CHU.

T 5.5. Let (A, {Xα}α∈A, { fαβ}α,β∈A) be any inverse system in CHU. Then the
inverse limit with usc set-valued bonding functions

lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A),

together with projections

pγ : lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A)→ Xγ, pγ((xα)α∈A) = {xγ},

is a weak inverse limit of the inverse system (A, {Xα}α∈A, { fαβ}α,β∈A) in CHU.

P. Let X = lim
←−−

(A, {Xα}α∈A, { fαβ}α,β∈A). First, we prove that the diagram (2.1)
weakly commutes. Choose any x ∈ X and let α < β. Then

pα(x) = {xα} ⊆ fαβ({xβ}) = ( fαβ ◦ pβ)(x).

Next, suppose that for an object Y ∈ CHU and a family of morphisms {ϕα : Y →
Xα | α ∈ A} the diagram (2.2) commutes. By Lemma 4.4, for any morphism Ψ : Y → X
such that for each α ∈ A and for each y ∈ Y , pα(Ψ(y)) = ϕα(y), Ψ(y) ⊆ (

∏
γ∈A ϕγ(y)) ∩ X

holds true for all y ∈ Y . �
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