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A generalized theory of flow forcing by rough
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An analytical model is developed which explores the impact of irregular sea-floor
roughness on large-scale oceanic flows. The previously reported asymptotic ‘sandpaper’
theory of flow-topography interaction represents relatively swift currents and exhibits
singular behaviour in the weak flow limit. The present investigation systematically spans
a wider parameter space and identifies the principal dissimilarities in the topographic
regulation of slow and fast currents. The fast flows are controlled by the Reynolds stresses
produced by topographically generated eddies. In contrast, relatively weak flows are more
affected by the eddy-induced bottom form drag. The asymptotic models for fast and slow
currents are then combined to arrive at a concise description of flow forcing by small-scale
topography in homogeneous and multilayer models. The proposed closure is validated by
comparing corresponding topography-resolving and parametric simulations.
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1. Introduction

It is hard to name any other branch of oceanography that would enjoy such persistent
interest and broad acceptance of its significance but, at the same time, would remain
as underexplored as the flow-topography interaction theory. Particularly nascent is
our understanding of processes induced by the sea-floor roughness, defined here as
bathymetric features with a lateral extent of several kilometres. Rough topography affects
several aspects of ocean circulation. It tends to suppress baroclinic instability, thereby
controlling the intensity of mesoscale variability in the ocean (LaCasce et al. 2019; Radko
2020). Sea-floor roughness extends the lifespan of coherent vortices (Gulliver & Radko
2022), enhancing their ability to transport heat, salt, and nutrients. On a more conceptual
level, rough topography could be the key to one of the most fundamental problems in
geophysical fluid dynamics, the explanation of the direct cascade of energy and thermal
variance. Mechanical and thermodynamic forcing at the sea surface occurs on the scales
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of ocean basins, whereas the energy and thermal variance are ultimately dissipated
by molecular processes acting on the microscale (Wunsch & Ferrari 2004; Merryfield
2005). The small-scale eddies generated by rough topography could dynamically connect
microstructure with larger scales of motion (Dewar & Hogg 2010; Dewar, Berloff, & Hogg
2011) and, therefore, investigations of flow-topography interactions may lead to essential
insights into global energetics.

While there is little doubt about the overall importance of sea-floor roughness, a
consistent view of the specific mechanisms at play – and their relative impact on
large-scale patterns – is only beginning to emerge. Traditionally, much attention has been
paid to the effects of topographic pressure torque (Hughes & de Cuevas 2001; Jackson,
Hughes, & Williams 2006; Stewart, McWilliams, & Solodoch 2021), with particular
emphasis on lee-wave drag (Naveira Garabato et al. 2013; Eden, Olbers, & Eriksen 2021;
Klymak et al. 2021). Several observable phenomena are caused by the topographic steering
of low Rossby number flows (Marshall 1995; Wåhlin 2002). It is manifested, for instance,
in the formation of stationary Taylor columns that trap fluid above salient topographic
features (Taylor 1923; Johnson 1978). Yet another distinct mechanism of topographic
control involves small-scale eddies generated by large-scale currents interacting with
rough bathymetry. These eddies produce Reynolds stresses that, in turn, influence primary
flows. Several examples of such dynamics were presented by Holloway (1987, 1992), who
argued that the interaction between topography and eddies can, in some cases, reinforce
primary circulation patterns. In other systems, the topographic eddy stresses tend to
substantially slow down abyssal currents (Radko 2020; Gulliver & Radko 2022).

One of the key objectives of the flow-topography interaction theory is the development
of explicit closure models representing the impact of sea-floor roughness on large-scale
flows. The pragmatic motivation for this effort is related to the resolution limitations
of general circulation models. Despite advancements in high-performance computing,
roughness-resolving global models will not be used for extended climate simulations in the
foreseeable future. Thus, parameterizing the effects of small-scale bathymetry is the most
promising way forward. Adopting topographic closure models also enhances the prospects
of finding analytical solutions that conceptualize large-scale oceanic phenomena affected
by sea-floor roughness. Finally, as our study illustrates, the very process of developing such
parameterizations can be highly effective in terms of explaining the essential dynamics at
work.

In the present investigation, closure models for sea-floor roughness are developed using
techniques of multiscale analysis, a broad and active field with numerous fluid-dynamical
applications (e.g. Meshalkin & Sinai 1961; Manfroi & Young 1999, 2002; Balmforth &
Young, 2002, 2005; Mei & Vernescu 2010). The principal idea of multiscale methods
involves rewriting the governing equations using two sets of independent variables. In
our case, large scales describe primary flows, and small ones are based on the lateral
extent of topographic features that the model strives to parameterize. The crux of this
approach is the derivation of solvability conditions that describe the system entirely on
large scales. Strictly speaking, the theory assumes scale separation between the primary
flow components and those induced by rough topography. It is unclear how well this
assumption describes nature, but we assume and subsequently verify that the resulting
analytical model reflects behaviours that hold even without the scale separation. Our earlier
results in this area (e.g. Radko & Kamenkovich 2017; Radko 2020, 2022a,b) also indicate
that multiscale models perform remarkably well for a wide range of systems, including
those in which the lines between large and small scales are blurred.

Traditionally, multiscale methods have been applied to simple analytical small-scale
patterns (e.g. Gama, Vergassola, & Frisch 1994; Novikov & Papanicolau 2001;
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Figure 1. Schematic diagram illustrating the set-up of the sandpaper model. A large-scale flow interacts with

irregular sea floor, the pattern of which conforms to the Goff & Jordan (1988) spectrum.

Radko 2011a,b), ultimately leading to explicit large-scale equations. In the context
of flow-topography interaction problems, analytical progress has been made for
one-dimensional sinusoidal bathymetry (e.g. Benilov 2000, 2001; Vanneste 2003; Radko
2020). The representation of more realistic irregular two-dimensional topographic features
is more challenging and explicit solutions have mostly been derived for special cases (e.g.
Vanneste 2000; Goldsmith & Esler 2021). The fundamental limitation of such models is
their inherently qualitative connection to the observed or simulated phenomena.

Fortunately, a recent advancement opened the path for analytical treatments of realistic
patterns of small-scale topography. Radko (2022a,b) pointed out that multiscale methods
can be effectively applied to irregular bathymetry, provided that its statistical spectral
representation is known. The key step is the application of Parseval’s theorem (Parseval
1806), equating the spatial average of any quadratic quantity to integrals of Fourier
coefficients in wavenumber space. This link proved to be critical since ocean depth
variability is adequately represented by the observationally derived spectrum of Goff &
Jordan (1988). The resulting framework was termed the sandpaper model, a nickname
invoking associations with small, irregular, tightly packed particles of sandpaper – features
that are reminiscent of rough bathymetry in the ocean (figure 1). The sandpaper model has
led to an explicit representation of flow forcing by rough topography, essentially yielding
a rigorous asymptotics-based parameterization.

The previous versions of the sandpaper model (Radko 2022a,b) were successfully
tested for oceanographically relevant parameters on the canonical vortex spin-down
problem. These works, however, have also raised several fundamental questions that the
present investigation attempts to address. The primary concern is the generality of the
proposed solutions. The models of Radko (2022a,b) explored a specific sector in the
multidimensional parameter space characterized by rapid flows with asymptotically large
Reynolds numbers. However, there are clear signs that the solutions obtained for this
regime are not universal. For instance, the expressions for topographic forcing derived
by Radko (2022a,b) are inversely proportional to large-scale velocity. This singularity
suggests that forcing unphysically increases without bound with decreasing flow speed –
a tell-tale sign that a different asymptotic model is needed to capture the limit of weak
large-scale currents.

To explore a wider range of parameters and ultimately develop a general model of
topographic forcing, we consider an asymptotic sector corresponding to slow flows
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with low Reynolds numbers. The properties of fast- and slow-flow models turned out
to be fundamentally different. For instance, the fast-flow regime (Radko, 2022a,b)
is characterized by the profound influence of the Reynolds stresses produced by the
interaction of large-scale currents with rough bathymetry. Slow currents, on the other hand,
are controlled by the eddy-induced form drag, and in this limit, the large-scale forcing
by rough topography is proportional to large-scale velocity. To offer a more universal
description of the flow field, we propose a hybrid closure for sea-floor roughness that
converges to the corresponding asymptotic expressions in the limits of fast and slow
currents. In contrast to the earlier parameterizations of Radko (2022a,b), which required
an ad hoc regularization for weak large-scale flows, the hybrid model is well behaved and
can be readily implemented in large-scale evolutionary equations.

The material is organized as follows. The governing equations for the homogeneous
model are described in § 2. Section 3 presents the asymptotic multiscale theory that leads
to an explicit closure for small-scale bathymetry. The analytical model is validated by
roughness-resolving simulations in § 4. The extension of the asymptotic analysis to the
multilayer framework is discussed in § 5. The results are summarized, and conclusions are
drawn, in § 6.

2. The homogeneous model

Our starting point is the homogeneous quasi-geostrophic rigid-lid model (e.g. Pedlosky
1987)

∂∇2ψ∗

∂t∗
+ J(ψ∗,∇2ψ∗)+ β∗ ∂ψ∗

∂x∗ + f ∗
0

H∗
0

J(ψ∗, η∗) = ν∗∇4ψ∗ − γ ∗∇2ψ∗, (2.1)

where ψ∗ is the streamfunction associated with the velocity field (u∗, v∗) =
(−∂ψ∗/∂y∗, ∂ψ∗/∂x∗), η∗ is the depth variation, J is the Jacobian, ν∗ is the lateral eddy
viscosity and γ ∗ is the Ekman bottom drag coefficient. Also, H∗

0 and f ∗
0 are the reference

values of the ocean depth and the Coriolis parameters, respectively, and β∗ ≡ ∂f ∗/∂y∗
is the meridional gradient of planetary vorticity. The asterisks represent dimensional
quantities.

We explore the impact of topographic patterns with the lateral extent O(L∗) on
large-scale flows with scales O(L∗

LS). We assume that fine topographic scales are limited
to a finite range [L∗

min, L∗
C], where L∗

C is the cutoff wavelength formally separating small
and large scales. The lower bound (L∗

min) is introduced to ensure that all relevant Rossby
numbers are low – the key assumption of the quasi-geostrophic framework. This leads to
the following ordering of spatial scales:

U∗

f ∗
0

� L∗
min < L∗ < L∗

C � L∗
LS, (2.2)

where U∗ is the velocity scale. The number of controlling parameters is reduced by
non-dimensionalizing (2.1) using 1/f ∗

0 and L∗ as the units of time and lateral extent,
respectively,

ψ∗ = f ∗
0 L∗2ψ, x∗ = L∗x, y∗ = L∗y, t∗ = t

f ∗
0
. (2.3)

The topographic height, however, is non-dimensionalized as

η∗ = H∗
0η. (2.4)
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A generalized theory of flow forcing by rough topography

To be specific, we consider the oceanographically relevant scales of

L∗ = 104 m, H∗
0 = 4000 m, f ∗

0 = 10−4 s−1. (2.5)

The non-dimensionalization reduces the governing equation (2.1) to

∂∇2ψ

∂t
+ J(ψ,∇2ψ)+ β

∂ψ

∂x
+ J(ψ, η) = ν∇4ψ − γ∇2ψ, (2.6)

where

β = β∗L∗

f ∗
0
, ν = ν∗

f ∗
0 L∗2 , γ = γ ∗

f ∗
0
. (2.7)

To explore the interaction between flow components of large and small lateral extents,
we introduce the scale-separation parameter

ε = L∗
C

L∗
LS

� 1. (2.8)

This parameter is used to define the new set of spatial scales (X, Y) that reflect the
dynamics of large-scale processes. These variables are related to the original ones through

(X, Y) = ε(x, y). (2.9)

The derivatives in the governing system (2.6) are replaced accordingly

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
→ ∂

∂y
+ ε

∂

∂Y
. (2.10)

Topographic patterns considered in the sandpaper model vary on both large and small
scales

η = ηL(X, Y)+ ηS(x, y). (2.11)

A natural way to separate bathymetry into the small- and large-scale components (Radko
2022a,b) is based on the Fourier transform of η

η =
√

LxLy

2π

∫∫
η̃(k, l) exp(ikx + ily) dk dl, (2.12)

where (k, l) are the wavenumbers in x and y, respectively, tildes hereafter denote Fourier
images and (Lx, Ly) is the domain size. Since the Fourier transform is linear, it can be
conveniently separated into the contributions from high and low wavenumbers as follows:

η =
√

LxLy

2π

∫∫
κ<2π/LC

η̃(k, l) exp(ikx + ily) dk dl︸ ︷︷ ︸
ηL

+
√

LxLy

2π

∫∫
κ>2π/LC

η̃(k, l) exp(ikx + ily) dk dl︸ ︷︷ ︸
ηS

,

(2.13)

where κ ≡ √
k2 + l2. The ηL component in (2.13) gently varies on large scales, and ηL

represents small-scale variability. The normalization factor
√

LxLy/2π in the definition of
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the Fourier transform is introduced to ensure that the Parseval identity (Parseval 1806), to
be used in subsequent developments, takes a convenient form

〈ab〉x,y =
∫∫

ã · conj(b̃) dk dl. (2.14)

Angle brackets hereafter represent mean values, with the averaging variables listed in the
subscript.

3. The multiscale analysis

We now explore flow-topography interactions using methods of multiscale mechanics. Our
earlier efforts in this area (Radko 2022a,b) have led to a consistent treatment of relatively
swift flows. However, the resulting theory was inapplicable for weak currents, motivating
the development of an analogous slow-flow model. To highlight the principal differences
and similarities between the two systems, we first review the key features of the fast-flow
model.

3.1. Rapid flows
The barotropic sandpaper theory (Radko, 2022a) was based on the expansion in small
parameter εquantifying the disparity of large and small spatial scales (2.8). The flow was
assumed to be inviscid at the leading order with

Re = U∗L∗

ν∗ = O(ε−1). (3.1)

Nevertheless, even weak friction proved to be critical due to the catalytic nature of
rough topography, which amplified the effects of explicit dissipation by as much as 2–3
orders of magnitude. The expansion opened with a large-scale flow ψ̄(X, Y, t) and its
first-order correction was represented by a small-scale pattern ψS(x, y). The dynamics of
this perturbation was controlled by the homogenization of small-scale potential vorticity
(PV), with ψS rigidly controlled by topography and satisfying

∇2ψS + ηS(x, y) = 0. (3.2)

The closed evolutionary equation for ψ̄ was obtained as a solvability condition by
averaging the governing equation in small-scale variables. In terms of original variables
(2.9), the ψ̄ equation takes the form

∂

∂t
∇2ψ̄ + J(ψ̄,∇2ψ̄ + ηL)+ β

∂ψ̄

∂x
+ Dfast + γ∇2ψ̄ = ν∇4ψ̄, (3.3)

where Dfast represents cumulative effects of rough bathymetry. It originates from the
averaged nonlinear advective term 〈J(ψ ′,∇2ψ ′)〉x,y in the governing vorticity equation,
where ψ ′ = ψ − ψ̄ , and represents the eddy-induced mixing of momentum. Interestingly,
the topographic form drag does not affect the large-scale circulation at the leading order.
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In this fast-flow regime, topographic forcing reduces to

Dfast = Gfast

(
∂

∂x

(
v̄

ū2 + v̄2

)
− ∂

∂y

(
ū

ū2 + v̄2

))
, (3.4)

where (ū, v̄) = (−∂ψ̄/∂y, ∂ψ̄/∂x). The coefficient Gfast in (3.4) is fully determined by the
spectrum of small-scale topography and the explicit dissipation parameters

Gfast = 2π

∫
|η̃S|2

(γ
κ

+ νκ
)

dκ, κ =
√

k2 + l2, (3.5)

where η̃S is the Fourier image of the statistically isotropic small-scale component of
topography. In essence, this theory parameterizes the effects of sea-floor roughness on
larger scales of motion. However, the parameterization is derived directly from governing
equations without invoking any empirical assumptions, commonly used by other closure
models. The benefits brought by the sandpaper model include the opportunity to perform
efficient numerical experiments without having to resolve small-scale features of the
bottom relief if the spectrum of topography is known.

Unfortunately, there is one feature that seems unphysical and complicates the direct
implementation of (3.3)–(3.5) in numerical models – the unbounded increase of (3.4)
in the weak flow limit: V̄ ≡

√
ū2 + v̄2 → 0. Radko (2022a,b) has dealt with this

inconvenience by constraining Dfast in low-speed regions. While such regularization
served the immediate purpose, making it possible to perform parametric simulations, its
ad hoc character brought a certain sense of dissatisfaction. It implied that the model failed
to capture the dynamics of weak flows, and the following analysis seeks to rectify this
deficiency.

3.2. Weak flows
To offer an analogous description of the slow-flow limit, we now consider a regime in
which Reynolds numbers are asymptotically small

Re = U∗L∗

ν∗ = O(ε). (3.6)

This limit is captured by the expansion that opens with the O(ε) large-scale pattern

ψ̄ = εψ(1)(X, Y, T). (3.7)

The governing parameters are rescaled as follows:

β = ε4β0, γ = ε3γ0, ν = εν0, ηS = ε2ηS0, ηL = ε3ηL0, (3.8)

which affords the inclusion of all relevant effects in the evolutionary equation and broadly
reflects the typical values of parameters in the oceanographic context. The temporal
evolution in this regime is controlled by relatively slow processes driven by explicit
dissipation. Hence, the temporal variable is rescaled as T = ε3t, and the time derivative in
the governing system (2.6) is replaced accordingly

∂

∂t
→ ε3 ∂

∂T
. (3.9)

The interaction of the large-scale flow with low-amplitude rough topography forces the
small-scale streamfunction response at O(ε3) and the asymptotic series are extended
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accordingly

ψ = εψ(1)(X, Y, T)+ ε3ψ(3)(X, Y, x, y, T)+ O(ε4). (3.10)

Series (3.10) are then substituted in the governing equation (2.6) and terms of the same
order in ε are collected. The leading-order balance is realized at O(ε4)

∂ψ(1)

∂X
∂ηS0

∂y
− ∂ψ(1)

∂Y
∂ηS0

∂x
= ν0∇4ψ(3). (3.11)

The O(ε5) balance plays no role in the model development and is not listed here. The key
solvability condition leading to the evolutionary equation for ψ̄ is obtained by averaging
the O(ε6) balance in (x, y)

∂ς(1)

∂T
+ JX,Y(ψ

(1), ς(1)+ ηL0)+β0
∂ψ(1)

∂X
+ Dslow 0 + γ0ς

(1) = ν0

(
∂2ς(1)

∂X2 + ∂2ς(1)

∂Y2

)
,

(3.12)

where ς(1) ≡ ∂2ψ(1)/∂X2 + ∂2ψ(1)/∂Y2 and

Dslow 0 =
〈
∂ψ(3)

∂X
∂ηS0

∂y
− ∂ψ(3)

∂Y
∂ηS0

∂x

〉
x,y

. (3.13)

Here, Dslow 0 represents the topographic forcing of large-scale flows by rough bathymetry.
It originates from the term 〈J(ψ ′, ηS)〉x,y in the governing vorticity equation and represents
the eddy-induced form drag. In contrast to the fast-flow regime (§ 3.1), the Reynolds stress
does not affect the system evolution at this order.

To express Dslow 0 in terms of properties of the large-scale flow, we eliminate ψ(3)
between (3.11) and (3.13). This procedure is relegated to Appendix A, and the result is
an explicit expression for Dslow 0 in (A13). The final step in the model development is the
transition to the original un-rescaled variables, which reduces (3.12) to

∂

∂t
∇2ψ̄ + J(ψ̄,∇2ψ̄ + ηL)+ β

∂ψ̄

∂x
+ Dslow + γ∇2ψ̄ = ν∇4ψ̄, (3.14)

where

Dslow = ε6Dslow 0 = Gslow∇2ψ̄, Gslow = π

∫ |η̃S| 2

νκ
dκ. (3.15)

It should be emphasized that the relations between the topographic forcing and the current
speed in the fast-flow and slow-flow models are fundamentally different. In fast flows,
the topographic drag decreases with increasing speed, but in slow ones, it increases.
This dissimilar behaviour motivates the development of a hybrid model that captures the
transition between the two regimes and is readily implementable in numerical models.

3.3. Hybrid model
Two thousand years ago, Aristotle famously wrote ‘A whole is that which has a beginning,
middle, and end’. If we apply the same principle to the sandpaper theory, it becomes clear
that capturing the beginning (§ 3.2) and the end (§ 3.1) of the velocity range would still
leave our model incomplete, unless the middle part is properly represented. Thus, we now
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A generalized theory of flow forcing by rough topography

proceed with the development of the whole theory, but in doing so, we insist that the design
of the transitional model is consistent with both the ‘beginning’ and the ‘end’.

To formulate the hybrid model, we note that the expressions for the topographic forcing
in both fast-flow and slow-flow limits can be written as

D = curl(M). (3.16)

Vector M can be interpreted as the topographic momentum forcing. Its fast and slow limits
are defined as follows:

M fast = GfastV̄−1s, M slow = GslowV̄s, (3.17)

where s ≡ (ū V̄−1, v̄ V̄−1) is the unit vector aligned with the large-scale flow.
The structural similarity of the expressions in (3.17) suggests a natural design of the

hybrid model. We introduce an analytical function F(V̄) that asymptotes to GslowV̄ and
GfastV̄−1 in the limits of low and high velocities, respectively. The momentum forcing is
then represented accordingly

Mhybrid = F(V̄)s. (3.18)

To construct the appropriate function F(V̄), we first estimate the critical velocity VC that
marks the transition between the fast-flow and slow-flow regimes. This is accomplished by
considering the crossing point of the two asymptotic models

Dslow(VC) = Dfast(VC), (3.19)

which leads to

VC =
√

Gfast

Gslow
. (3.20)

This point of transition is determined by the intensity of dissipative processes. For systems
in which small-scale dissipation is controlled by lateral viscosity, we arrive at the scaling

VC ∼ νκη, (3.21)

where κη is the dominant wavenumber of rough topography. The dimensional counterpart
of (3.21) is equally remarkable in its simplicity: V∗

C∼ν∗κ∗
η .

The proposed model for F, which reflects the regime transition at V̄ = VC, is defined by

ln(FF−1
C ) = −

√
a2 + ln2(V̄V−1

C ), (3.22)

where FC ≡ √GfastGslow and a is an adjustable parameter. For V̄ � VC, the right-hand
side of (3.22) can be approximated by − ln(V̄V−1

C ), which implies that F ≈ GfastV̄−1. For
V̄ � VC, the leading-order balance of (3.22) becomes ln(FF−1

C ) ≈ ln(V̄V−1
C ) and F ≈

GslowV̄ . Parameter a in (3.22) controls the width of the intermediate region connecting
the slow and fast regimes. For small values of a, the transition is rapid and a relatively
minor variation in velocity can shift the system into the opposite regime. If a is large, the
transition is gentler, and the intermediate region is wide. Numerical simulations, some of
which will be presented in § 4, indicate that the intermediate zone tends to be relatively
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narrow, with only one order of magnitude separating clearly fast and clearly slow flows.
These features are well represented by

a = 1, (3.23)

which will be used in all subsequent calculations. The topographic momentum forcing
(3.18) in this case becomes

Mhybrid = FC exp
(

−
√

1 + ln2(V̄V−1
C )

)
s. (3.24)

The corresponding D-term takes the form

Dhybrid = ∂

∂x

[
v̄ V̄−1FC exp

{
−
√

1 + ln2(V̄V−1
C )

}]
− ∂

∂y

[
ū V̄−1FC exp

{
−
√

1 + ln2(V̄V−1
C )

}]
,

(3.25)

which makes it possible to represent the effects of small-scale topography by adopting the
parametric model

∂

∂t
∇2ψ̄ + J(ψ̄,∇2ψ̄ + ηL)+ β

∂ψ̄

∂x
+ Dhybrid + γ∇2ψ̄ = ν∇4ψ̄. (3.26)

3.4. The energetics
The coefficients of the fast and slow drag laws, Gslow and Gfast, were obtained previously
(e.g. § 3.2) by performing formal multiscale expansions. However, a simpler and perhaps
more intuitive derivation can also be offered by considering the energetics of the
flow-topography interaction as follows.

For both slow and fast flows, the energy equation can be derived directly from the
original vorticity equation by multiplying (2.6) by ψ and averaging the result in x and
y. For simplicity, we focus on lateral dissipation and ignore the Ekman bottom drag, which
results in

∂E
∂t

= −ν〈ψ∇4ψ〉x,y ≈ −ν〈ψS∇4ψS〉x,y, (3.27)

where E = 1
2 〈|∇ψ |2〉x,y. In (3.27), we assume that the energy is dissipated most effectively

by small-scale patterns produced by topography. One can similarly derive an energy
equation for the parametrized models

∂Ē
∂t

= −〈Dψ̄〉x,y, (3.28)

where Ē = 1
2 〈|∇ψ̄ |2〉x,y. The crux of the energy-based approach is the requirement that

parametric models properly represent the net energy loss, which leads to

〈Dψ̄〉x,y = ν〈ψS∇4ψS〉x,y. (3.29)

For the slow-flow model, the parameterization is sought in the form

D = Gslow∇2ψ̄, (3.30)

and the dominant balance is

∂ψ̄

∂x
∂η

∂y
− ∂ψ̄

∂y
∂η

∂x
= ν∇4ψS. (3.31)
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The counterparts of (3.30) and (3.31) in the fast-flow model are

D = Gfast∇
(

∇ψ̄
|∇ψ̄ |2

)
, η = −∇2ψS. (3.32)

When (3.29) is combined with (3.30) and (3.31) under the assumption that ∂ψ̄/∂x
and ∂ψ̄/∂y do not contain small scales, we arrive at Gslow = (π/ν)

∫
(|η̃S| 2/κ) dκ .

Likewise, combining (3.29) and (3.32) yields Gfast = 2πν
∫ |η̃S|2κ dκ . Both results are

fully consistent with the formal asymptotic expansion for γ = 0.

4. Validation

4.1. The set-up of experiments
We now assess the performance characteristics of all three models – fast flow, slow
flow and hybrid – using topography-resolving simulations. The numerical configuration
is illustrated in figure 1. The model is initiated with zonal large-scale flow, the speed of
which varies in y. The sea floor is irregular and conforms to the observationally derived
spectrum of Goff & Jordan (1988)

P∗
η = h∗2(μ− 2)

(2π)3k∗
0l∗0

(
1 +

(
k∗

2πk∗
0

)2

+
(

l∗

2πl∗0

)2
)−μ/2

. (4.1)

Following Nikurashin et al. (2014), we assume

μ = 3.5, k∗
0 = 1.8 × 10−4 m−1, l∗0 = 1.8 × 10−4 m−1, h∗ = 305 m. (4.2)

After non-dimensionalization, (4.1) reduces to

Pη = C

(
1 +

(
κ

2πL∗k∗
0

)2
)−μ/2

, C = μ− 2

(2π)3

(
h∗

H∗
0k∗

0L∗

)2

. (4.3)

The model topography is represented by a sum of Fourier modes with random phases
and spectral amplitudes conforming to (4.3). The range of small-scale variability Lmin <
2πκ−1 < LC is specified by assigning Lmin = 0.3 and LC = 3, which is dimensionally
equivalent to L∗

min = 3 km and L∗
C = 30 km. The components of topography with

wavelengths outside of this interval are excluded. The non-dimensional root-mean-square
depth variation corresponding to this spectrum is ηrms = 6.14 × 10−2. Simulations are
performed using the de-aliased pseudo-spectral model employed in our previous studies
(Radko 2021, 2022a) on the computational domain of size (Lx, Ly) = (100, 100). All
topography-resolving experiments employ a mesh with (Nx,Ny) = (4096, 4096) grid
points. The lateral viscosity is ν = 5 × 10−3, which is equivalent to ν = 50 m2 s−1, and
γ = β = 0. These parameters correspond to Gslow = 8.72 × 10−3, Gfast = 1.88 × 10−5,
and VC = 4.65 × 10−2.

The following simulations are initiated by the velocity field (uini, vini) given by

uini = Uini tanh(5 sin(2πyL−1
y )), vini = 0, (4.4)

which conforms to the periodic boundary conditions of the spectral model. The pattern
of uini is presented in figure 2(a), and the corresponding streamfunction ψini is shown
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3Ly/8

Ly/8

–Ly/2
–Uini 0 Uini –Uini Ly/4 0 Uini Ly/4

uini ψini

Ly/2

0

(a) (b)

–Ly/2

Ly/2

0y

Figure 2. The meridional patterns of the velocity (a) and the streamfunction (b) that are used to initiate
topography-resolving simulations. The dashed lines in (a) mark the region Ω used for the analysis of the
topographic spin-down mechanisms.

in figure 2(b). The pattern represents an almost uniform flow in the region

Ω = {1
8 Ly < y < 3

8 Ly}, (4.5)

which is meridionally bounded by strong shears. Region Ω , marked by dashed lines in
figure 2(a), will be used as the testing site for the parameterizations introduced in § 3. Note
that the large-scale pattern in figure 2 is symmetric with respect to the x-axis. Therefore,
to avoid redundancy, the following analysis is focused on the northern ( y > 0) part of the
domain.

4.2. Testing the sandpaper theory
The theoretical description (§ 3) greatly simplifies for zonal large-scale flows, leading to

∂

∂t
∂2ψ̄

∂y2 + D + ν
∂4ψ̄

∂y4 = 0. (4.6)

We neglect the explicit frictional term and integrate (4.6) in y, which yields

∂ ū
∂t

= −Mx, (4.7)

where Mx is the x-component of the momentum forcing term defined by (3.16). Our
objective is to evaluate fast-flow, slow-flow and hybrid sandpaper models. For zonal
currents, these reduce to

Mx fast = Gfast

ū
, Mx slow = Gslowū, Mx hybrid = FC exp

(
−
√

1 + ln2(ūV−1
C )

)
. (4.8)

Equation (4.7) offers a convenient opportunity to directly connect simulations and
theory since ∂ ū/∂t can be easily diagnosed from the topography-resolving simulations,
while Mx can be computed from (4.8). To this end, we perform a series of simulations
initiated by (4.4) and performed with various values of Uini. Each simulation is extended
for a period of t0 = 100, which is sufficient for the establishment of balanced flows that the
sandpaper theory strives to represent. During this interval, the large-scale velocity remains
zonal and spatially uniform within the diagnostic area Ω . Longer integration periods lead
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10–4

10–5

Mx

10–4 10–3 10–2

uav
10–1 100

Figure 3. The estimates of the topographic momentum forcing Mx based on a series of topography-resolving
simulations (red dots) are plotted as a function of large-scale velocity on the logarithmic scale. Also shown
are the corresponding theoretical predictions based on the slow-flow, fast-flow and hybrid sandpaper models,
which are indicated by the dashed line with a positive slope, the dashed line with a negative slope and the solid
curve, respectively.

to the development of Kelvin–Helmholtz instabilities, which lead to non-zonal flows,
violating the assumptions on which (4.7) and (4.8) are based. The average velocity is
evaluated over the second half of the integration interval, which excludes the transient
flow-adjustment phase

uls = 〈u〉x, y⊂Ω, uav = 〈uls〉0.5t0<t<t0, (4.9)

and uav is used in theoretical estimates of Mx based on (4.8). The corresponding numerical
values of Mx are determined from

Mx = −
〈
∂uls

∂t

〉
0.5t0<t<t0

= 2
t0
(uls|t=0.5t0 − uls|t=t0). (4.10)

The results (figure 3) reveal the consistency of the proposed closure models and
simulations. For relatively low large-scale velocities uav < 0.01, the numerical estimates
of Mx closely match the slow-flow theory. For uav > 0.1, simulations approach the
fast-flow model. The hybrid model is remarkably accurate throughout the entire range
of velocities in figure 3 – values that span more than three orders of magnitude and cover
all oceanographically relevant values.

It should be noted that the non-monotonic momentum forcing (figure 3) might have
major observable consequences. For instance, this damping pattern could affect the
statistics of velocity in the deep ocean, preferentially suppressing flows with speeds
close to VC. In this regard, it would be desirable to uncover observational evidence of
a minimum in the probability distribution function for the abyssal flow speeds that can be
unambiguously attributed to the sandpaper effect.

While the foregoing diagnostics (figure 3) have convincingly validated our closure
models, it is still interesting to determine how well the sandpaper theory captures the
physical mechanisms at play. For that, we first turn to one of the simulations in the fast-flow
range. Figure 4 presents the flow pattern realized at t = 100 in the experiment performed
with Uini = 0.5. The key feature of the fast-flow theory is the homogenization of the
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(b) (c)

u(x, y)
0.5

0.4

0.3

0.2

0.1

0
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y
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26.0

ζ(x, y) –η(x, y)

25.5

0.2

0.1

0

–0.1

–0.2

25.0
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24.5

24.0
–1 0

x
1

26.0

25.5

25.0

24.5

24.0
–1 0

x
1

–40 –30 –20 –10 0
x

10 20 30 40

Figure 4. The representative fully developed fast-flow state (Uini = 0.5, t = 100). Panel (a) shows the zonal
velocity in the northern ( y > 0) part of the computational domain. Panel (b) presents the magnified view of
vorticity in the square area marked in (a). The corresponding pattern of −η is shown in (c).

small-scale potential vorticity (3.2). This tendency is spectacularly manifested in patterns
of ς (figure 4b) and −η (figure 4c) plotted over a small area marked in figure 4(a) –
patterns that are nearly identical in all fine detail.

To offer a more quantitative analysis of the homogenization tendency, we compute the
correlation coefficient

c1 = − 〈ςη〉Ω√
〈ς2〉Ω〈η2〉Ω

. (4.11)

For the state shown in figure 4, c1 = 0.9470, which supports (3.2). In addition to the
instantaneous correlation, we also introduce its temporal average

C1 = 〈c1〉0.5t0<t<t0 . (4.12)

The instantaneous correlation coefficients exhibit very limited variation in time in the fully
developed flows, and generally C1 ≈ c1. For the simulation in figure 4, C1 = 0.9468.

For the slow-flow regime, the leading-order balance according to the asymptotic theory
(§ 3.2) is between Aad = uls(∂η/∂x) and Adiss = ν∇4ψ . Aad can be physically interpreted
as the tendency of water columns to change their rotation rate due to stretching (squeezing)
after being advected by the large-scale flow into the deeper (shallower) regions. Term
Adiss, on the other hand, represents the frictional spin down. The anticipated balance of
Aad and Adiss is readily confirmed by figure 5, which presents these quantities for one
of the slow-flow simulations (Uini = 5 × 10−3). In figure 5, Aad and Adiss are plotted
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(a) (b)26.0

Aad (x, y) Adiss(x, y)

25.5

6

2

4

0

–2

–4

–6

25.0
y

24.5

24.0
–1 0

x
1

26.0

25.5

25.0

24.5

24.0
–1 0

x
1

(×10–3)

Figure 5. The representative fully developed slow-flow state (Uini = 5 × 10−3, t = 100). The advective (Aad)

and diffusive (Adiss) components of the expected leading-order balance are shown in (a) and (b), respectively.

1.0

0.8

0.6

0.4

C1,2

0.2

0
10–4 10–3 10–2

uav
10–1 100

Figure 6. The correlation coefficients C1 (red curve) and C2 (blue curve) are plotted as functions of the average
flow speed uav . In relatively swift flows, C1 ≈ 1, which is consistent with (3.2) and reflects the homogenization
of PV. In weak flows, C2 ≈ 1, which supports the advective-dissipative balance (3.11).

over a small area −1 < x < 1, 24 < y < 26, making it possible to visually compare their
very similar patterns. For a more quantitative assessment, we introduce the instantaneous
correlation coefficient (c2) and its temporal average (C2)

c2 = 〈AadAdiss〉Ω√
〈A2

ad〉Ω〈A2
diss〉Ω

, C2 = 〈c2〉0.5t0<t<t0 . (4.13)

For the experiment in figure 5, we obtain c2 = 0.933 at t = 100 and C2 = 0.941.
In figure 6, we consolidate the estimates of time-mean correlation coefficients (C1,C2)

from all zonal-flow experiments and plot them as a function of uav . The results illustrate
the transition from the advective-dissipative balance realized at low speeds (C1 � 1,
C2 ≈ 1) to the homogenization of PV for swift currents (C1 ≈ 1, C2 � 1).

Figures 7 and 8 present an even more stringent test of the hybrid sandpaper model
(§ 3.3). Here, we examine the non-zonal flow initiated by

uini = Uini tanh(5 sin(2πyL−1
y )), vini = 0.1Uini sin(2πxL−1

x ), (4.14)
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Figure 7. The snapshots of the streamfunction at t = 200, 500 and 2000 in the topography-resolving (a,c,e)
and parametric (b,d, f ) simulations.

and compare the topography-resolving simulation with the corresponding parametric
solution based on (3.26). In the following experiments, we use Uini = 0.2, which places
the initial current in the category of fast flows. However, as the simulations are extended in
time and velocities throughout the domain gradually reduce, these systems transition first
into the intermediate-flow and, subsequently, the slow-flow regime. Thus, the analysis of
the entire evolutionary pattern makes it possible to assess the performance of the hybrid
sandpaper model in all three dynamically dissimilar regimes.
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0

0.005

0.010

0.015

0.020

500 1000 1500 2000

t

E

Figure 8. The time series of mean kinetic energy. The topography-resolving, parametric and flat-bottom
simulations are indicated by red, blue and black curves, respectively.

Since the parametric simulation does not require resolving rough topography and
the associated small-scale flow features, it was performed on a relatively coarse grid
with (Nx,Ny) = (256, 256). Both simulations, topography resolving and parametric, were
extended for 2000 time units. The results leave no doubt about the efficacy of the
sandpaper theory. The flow fields in these simulations (figure 7) closely follow each
other for most of the integration interval. Only in their final stages (t > 1000) do these
solutions visibly diverge. The temporal records of the kinetic energy (figure 8) further
reinforce and quantify this conclusion. Until t = 1000, which is dimensionally equivalent
to t∗ ≈ 100 days, the relative differences in the kinetic energy does not exceed 5 %. We
also emphasize the dramatic dissimilarity in the evolution of the corresponding flat-bottom
simulation, also shown in figure 8. During these experiments, the kinetic energy in the
topography-resolving and parametric simulations plunged by more than two orders of
magnitude. In the flat-bottom run, it reduced by merely 12 %.

4.3. Other evolutionary patterns
A series of simulations exemplified by the experiments in § 4.2 indicate that the
slow-hybrid-fast framework adequately describes the evolution of large-scale flows for
the oceanographically relevant range of submesoscale eddy viscosities 1 m2 s−1 � ν∗ �
100 m2 s−1 (e.g. Li, Sun, & Xu 2018). The defining feature of these systems is relatively
low values of the effective Taylor numbers Ta ≡ f ∗2

0 L∗4/ν∗2 � O(106). However, some
reflection suggests that expanding the analysis beyond this strongly dissipative regime is
bound to reveal a fundamentally different dynamics.

In particular, we note that a large-scale current can transition into a PV-homogenized
state satisfying (3.2) only if it is relatively swift to begin with: U � η. This implies that
the fast-flow model (§ 4.1) cannot in principle represent the regime in which

U∗ � η∗f ∗
0 L∗

H∗
0

. (4.15)
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Likewise, the advective-dissipative balance uls(∂η/∂x) ≈ ν∇4ψ – the cornerstone of the
slow-flow theory – is unlikely to be realized in systems with weak friction

ν∗ � η∗f ∗
0 L∗2

H∗
0

. (4.16)

Thus, the present version of the sandpaper theory (§ 3) does not capture systems with
parameters concurrently satisfying both (4.15) and (4.16).

To bring some insight into the dynamics of such flows, we perform a series of
simulations analogous to those in figure 4 in which Ro is systematically decreased and
Re is increased. These experiments reveal two well-defined evolutionary patterns, the
Taylor-column and the topographic Rossby wave regime, and various outcomes that are
less clear cut. The Taylor-column regime tends to be realized for 10−4 < Uini < 10−3

and Ta � 1020. In this scenario, the initially uniform flow gradually reorganizes into
recirculating patterns with fluid trapped in their interior. A representative experiment is
shown in figure 9(a). Here we present a magnified view of the streamfunction over a
small area −1 < x < 1, 24 < y < 26, superimposed on the contours of the topography.
These diagnostics reveal the alignment of the flow along the isobaths in a spectacular
manifestation of the topographic steering effect. The eddies in figure 9(a) are quasi-steady
and centred directly above the underwater hills and valleys. However, when the initial
velocity is further reduced to Uini < 10−4, the Taylor-column regime gives way to the
continuously oscillating pattern that we interpret as a disorganized field of topographic
Rossby waves (figure 9b). In contrast to the Taylor-column regime, strong perturbations
in figure 9(b) are mostly concentrated on the topographic slopes. Large-scale flows in the
Taylor-column and topographic-wave regimes are characterized by comparable spin-down
rates. While of limited relevance to the ocean, slow non-dissipative systems exemplified
by the states in figure 9 are of interest in their own right and should be explored further for
completeness.

5. The multilayer model

The governing equations for the multilayer quasi-geostrophic rigid-lid model (e.g.
Pedlosky 1987) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂q∗
1

∂t∗
+ J(ψ∗

1 , q∗
1)+ β∗ ∂ψ

∗
1

∂x∗ = ν∗∇4ψ∗
1 , q∗

1 = ∇2ψ∗
1 + f ∗

0
2

g′∗H∗
1
(ψ∗

2 − ψ∗
1 ),

∂q∗
i

∂t∗
+ J(ψ∗

i , q∗
i )+ β∗ ∂ψ

∗
i

∂x∗ = ν∗∇4ψ∗
i ,

i = 2, . . . , (n − 1)
q∗

i = ∇2ψ∗
i + f ∗

0
2

g′∗H∗
i
(ψ∗

i−1 + ψ∗
i+1 − 2ψ∗

i ),

∂q∗
n

∂t∗
+ J(ψ∗

n , q∗
n)+ β∗ ∂ψ

∗
n

∂x∗

= ν∗∇4ψ∗
n − γ ∗∇2ψ∗

n ,

q∗
n = ∇2ψ∗

n + f ∗
0

2

g′∗H∗
n
(ψ∗

n−1 −ψ∗
n )+ f ∗

0
η∗

H∗
n
,

(5.1)

where ψ∗
i is the streamfunction in layer i and H∗

i is the reference layer thickness.
The reduced gravity is denoted by g′∗ = g∗(Δρ∗/ρ∗

0 ), where g∗ ≈ 9.8 m s−2 is the
standard gravity, and ρ∗

0 is the reference density. We assume identical density differences
between adjacent layers Δρ∗ = ρ∗

i − ρ∗
i−1, although the generalization to variable Δρ∗ is

straightforward.
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Figure 9. Representative flow patterns in the Taylor-column (a) and topographic-wave (b) regimes. The initial
velocity of Uini = 2 × 10−3 was used in (a), whereas the simulation in (b) was performed with Uini = 2 ×
10−4. In both cases, ν = 10−6 and t = 1000. The isobaths with η = −0.07, 0 and 0.07 are indicated by the
dashed, heavy solid and light solid curves, respectively.

The non-dimensionalization of (5.1) is based on (2.3), and the lowest layer depth H∗
n is

used as a unit of topographic height

η∗ = H∗
nη. (5.2)

In non-dimensional units, system (5.1) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂q1

∂t
+ J(ψ1, q1)+ β

∂ψ1

∂x
= ν∇4ψ1, q1 = ∇2ψ1 + F1(ψ2 − ψ1),

∂qi

∂t
+ J(ψi, qi)+ β

∂ψi

∂x
= ν∇4ψi,

i = 2, . . . , (n − 1)
qi = ∇2ψi + Fi(ψi−1 + ψi+1 − 2ψi),

∂qn

∂t
+ J(ψn, qn)+ β

∂ψn

∂x
= ν∇4ψn − γ∇2ψn,

qn = ∇2ψn + Fn(ψn−1 − ψn)+ η,

(5.3)
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where Fi = f 2
0 L2/g′Hi is the inverse Burger number.

The fast-flow limit (3.1) was considered by Radko (2022b), resulting in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ q̄1

∂t
+ J(ψ̄1, q̄1)+ β

∂ψ̄1

∂x
= ν∇4ψ̄1, q̄1 = ∇2ψ̄1 + F1(ψ̄2 − ψ̄1),

∂ q̄i

∂t
+ J(ψ̄ i, q̄i)+ β

∂ψ̄ i

∂x
= ν∇4ψ̄ i,

i = 2, . . . , (n − 1),
q̄i = ∇2ψ̄ i + Fi(ψ̄ i−1 + ψ̄ i+1 − 2ψ̄ i),

∂ q̄n

∂t
+ J(ψ̄n, q̄n)+ β

∂ψ̄n

∂x
+ Dfast

= ν∇4ψ̄n − γ∇2ψ̄n,

q̄n = ∇2ψ̄n + Fn(ψ̄n−1 − ψ̄n)+ ηL.

(5.4)

The topographic forcing term (Dfast) appears only in the bottom layer equation, and it takes
the form of

Dfast = Gfast

(
∂

∂x

(
vn

u2
n + v2

n

)
− ∂

∂y

(
un

u2
n + v2

n

))
, Gfast = 2π

∫
|η̃S|2

(γ
κ

+ νκ
)

dκ,

(5.5)
where (un, vn) = (−∂ψn/∂y, ∂ψn/∂x).

The theory development for slow-flow limit (3.6) parallels its barotropic counterpart
(§ 3.2) and is presented in the abbreviated form. We adopt the scaling system in (3.6) and
(3.9), and rescale Fi as

Fi = ε2F(0)i . (5.6)

The solution in each layer i is then sought in terms of power series

ψi = εψ
(1)
i (X, Y, T)+ ε3ψ

(3)
i (X, Y, x, y, T)+ O(ε4). (5.7)

The leading-order O(ε4) balance in all layers except for the lowest one is trivially satisfied
by

ψ
(3)
i = 0, i = 1, . . . , (n − 1), (5.8)

whereas for the bottom layer, it takes the form

∂ψ
(1)
n

∂X
∂ηS0

∂y
− ∂ψ

(1)
n

∂Y
∂ηS0

∂x
= ν0∇4ψ(3)n . (5.9)

The evolutionary large-scale equations are obtained by averaging the O(ε6) balances in
(x, y). The resulting expressions are then rewritten in terms of the original variables,
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leading to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ q̄1

∂t
+ J(ψ̄1, q̄1)+ β

∂ψ̄1

∂x
= ν∇4ψ̄1, q̄1 = ∇2ψ̄1 + F1(ψ̄2 − ψ̄1),

∂ q̄i

∂t
+ J(ψ̄ i, q̄i)+ β

∂ψ̄ i

∂x
= ν∇4ψ̄ i,

i = 2, . . . , (n − 1)
q̄i = ∇2ψ̄ i + Fi(ψ̄ i−1 + ψ̄ i+1 − 2ψ̄ i),

∂ q̄n

∂t
+ J(ψ̄n, q̄n)+ β

∂ψ̄n

∂x
+ Dslow

= ν∇4ψ̄n − γ∇2ψ̄n,

q̄n = ∇2ψ̄n + Fn(ψ̄n−1 − ψ̄n)+ ηL,

(5.10)

where ψ̄i = εψ
(1)
i , and

Dslow = Gslow

(
∂v̄n

∂x
− ∂ ūn

∂y

)
, Gslow = π

∫ |η̃S| 2

νκ
dκ. (5.11)

Systems (5.4) and (5.10) represent the limits of slow and fast flows. A challenge that
naturally arises at this point is the development of a universal framework that would apply
to a wide range of velocities. We also insist that such a framework must be fully consistent
with (5.4) and (5.10) in the limits of high and low velocities, respectively. Fortunately, the
structural similarity of the topographic forcing terms (5.5) and (5.11) to their homogeneous
counterparts (§ 3) makes it possible to adopt the previously developed and tested hybrid
model (3.25) with only minimal modifications

Dhybrid = ∂

∂x

[
v̄n V̄−1

n FC exp
{
−
√

1 + ln2(V̄nV−1
C )

}]

− ∂

∂y

[
ūn V̄−1

n FC exp
{
−
√

1 + ln2(V̄nV−1
C )

}]
, (5.12)

where V̄n = √ū2
n + v̄2

n . Replacing Dfast and Dslow in (5.4) and (5.10) by the hybrid
expression (5.12) completes the development of a general theory of flow forcing by rough
topography – the main objective of our study.

To simplify the implementation of the proposed theory in future investigations, we also
include the dimensional expression of the topographic forcing

D∗
hybrid = ∂

∂x∗

⎡
⎣ v̄∗

n

V̄∗
n

F∗
C exp

⎧⎨
⎩−
√

1 + ln2
(

V̄∗
n

V∗
C

)⎫⎬
⎭
⎤
⎦

− ∂

∂y∗

⎡
⎣ ū∗

n

V̄∗
n

F∗
C exp

⎧⎨
⎩−
√

1 + ln2
(

V̄∗
n

V∗
C

)⎫⎬
⎭
⎤
⎦ , (5.13)

where V̄∗
n = √ū∗2

n + v̄∗2
n , V∗

C =
√

G∗
fast/G

∗
slow, F∗

C =
√

G∗
fastG

∗
slow and

G∗
fast = 2πf ∗2

0
H∗2

n

∫
|η̃∗

S|2
(
γ ∗

κ∗ + ν∗κ∗
)

dκ∗, G∗
slow = πf ∗2

0
H∗2

n

∫ |η̃∗
S|2

ν∗κ∗ dκ∗. (5.14)

Term (5.13) can be introduced in the bottom layer equation in (5.1) to represent the effects
of unresolved bathymetry. We also note that adding D∗

hybrid to the potential vorticity
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equation is equivalent to modifying the horizontal momentum equations as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂u∗

n

∂t∗
+ u∗

n
∂u∗

n

∂x∗ + v∗
n
∂u∗

n

∂y∗ − f ∗v∗
n = − 1

ρ∗
n

∂p∗
n

∂x∗ − M∗
x + ν∗∇2u∗

n,

∂v∗
n

∂t∗
+ u∗

n
∂v∗

n

∂x∗ + v∗
n
∂v∗

n

∂y∗ + f ∗u∗
n = − 1

ρ∗
n

∂p∗
n

∂y∗ − M∗
y + ν∗∇2v∗

n ,

(5.15)

where p∗
n is the pressure field in the bottom layer, and⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
M∗

x = ū∗
n

V̄∗
n

F∗
C exp

{
−
√

1 + ln2
(

V̄∗
n

V∗
C

)}
,

M∗
y = v̄∗

n

V̄∗
n

F∗
C exp

{
−
√

1 + ln2
(

V̄∗
n

V∗
C

)}
.

(5.16)

Formulation (5.16) makes it possible to implement the hybrid parameterization of rough
topography in multilayer general circulation models (e.g. Bleck 2002).

6. Discussion

At the time of this writing, it is generally accepted that rough topography can strongly
influence the intensity and variability of large-scale and mesoscale flows in the ocean (e.g.
LaCasce et al. 2019; Radko 2020; Gulliver & Radko 2022). However, our understanding
of the specific mechanisms of bathymetric control and our ability to concisely represent it
in theoretical and coarse-resolution numerical models remain limited. Our recent efforts
(Radko 2022a,b) have led to the development of the analytical ‘sandpaper’ model that
captures the effects of irregular topographic features, provided that the spectrum of
sea-floor depth is known. The model of Radko (2022a,b) performed well for relatively
fast flows but exhibited unphysical behaviour in the low-speed limit. This complication
motivates the present attempt to formulate the second-generation sandpaper model that is
uniformly valid for all oceanographically relevant velocity values.

To this end, we have explored two fundamentally different regimes, represented by the
asymptotic limits of low and high flow speeds. Both limits were treated using conventional
multiscale methods (e.g. Mei & Vernescu 2010), leading to the analytical description
of large-scale forcing by rough bathymetry. We also took advantage of the dynamical
transparency of multiscale theories, which made it possible to unambiguously identify
the essential physical mechanisms at play. In the fast-flow regime, the key phenomenon
is the homogenization of potential vorticity. Homogenization controls the dynamics
of small-scale topographically generated eddies and the associated Reynolds stresses.
Surprisingly, the eddy stresses dominate the net topographic forcing of swift large-scale
flows, whereas the form drag, which is invoked in flow-topography interaction theories
more often, turned out to be largely inconsequential. However, the situation changes
cardinally for slow currents. In this regime, the small-scale dynamics is governed by the
balance between the torque associated with the stretching/squeezing of water columns and
their frictional spin down. The topographic form drag becomes the primary large-scale
forcing mechanism, while the Reynolds stresses are weak and dynamically insignificant.
These mechanisms control the flow-topography interaction in both homogeneous (§ 3) and
layered (§ 5) models.

From a pragmatic perspective, the key advancement brought by this study is a generic
hybrid model that encompasses both slow-flow and fast-flow limits. In essence, this
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model represents a rigorous asymptotics-based parameterization of the effects of rough
topography. It naturally lends itself to the implementation in layered oceanic general
circulation models, which are commonly used in climate prediction studies and for
operational forecasting. Despite continuous progress in high-performance computing,
roughness-resolving models will not be used for extended global simulations in the
foreseeable future. The sandpaper model, on the other hand, is expected to improve
the accuracy of simulations without the major increase in resolution and associated
computational costs.

The explicit nature of the sandpaper model also opens a pathway for in-depth theoretical
analyses of the myriad processes that are affected by the bottom roughness. Future studies
should address the impact of irregular topography on subtropical and subpolar gyres, the
Antarctic Circumpolar Current, large-scale waves, baroclinic and barotropic instabilities
and boundary currents – among many other oceanic systems. The existing evidence
indicates that the impact of bottom roughness is profound, and the sandpaper theory can
make such problems ultimately tractable.

On a more technical side, it would be highly desirable to transition from the
quasi-geostrophic framework to more general systems, including the shallow-water and,
eventually, full Navier–Stokes equations. The quasi-geostrophic approximation is assumed
here to minimize complexity and enhance dynamic transparency. However, the flow speed
at some locations in the ocean can exceed its formal applicability limits. Therefore, new
versions of the sandpaper theory should be capable of representing strongly nonlinear
systems with order-one Rossby numbers. Recent progress in this direction has been
encouraging. Gulliver & Radko (2023) abandoned the quasi-geostrophic approximation
and performed a series of simulations of flows over rough topography with the
barotropic Navier–Stokes model. The key features of these experiments – including the
PV-homogenization and the inverse velocity-drag relation – proved to be consistent with
the sandpaper theory.
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Appendix A. Auxiliary steps in the development of the asymptotic slow-flow model

The objective of the following analysis is the explicit expression of the topographic forcing
function (3.13) in terms of the properties of the large-scale flow. The calculations are
conveniently performed in the flow-following small-scale coordinate system:

{
x′ = x cos θ + y sin θ,
y′ = −x sin θ + y cos θ . (A1)

The flow-orientation variable θ in (A1) is defined by

cos(θ) = − 1
V
∂ψ(1)

∂Y
, sin(θ) = 1

V
∂ψ(1)

∂X
, (A2)
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where V =
√
(∂ψ(1)/∂Y)2 + (∂ψ(1)/∂Y)2. In the new coordinate system, (3.11) takes the

form

V
∂ηS0

∂x′ = ν0∇4ψ(3) (A3)

and (3.13) is written as

Dslow 0 = ∂

∂X
(DV sin θ + DU cos θ)− ∂

∂Y
(DV cos θ − DU sin θ), (A4)

where

DV =
〈
ψ(3)

∂ηS0

∂x′

〉
x′,y′
, DU =

〈
ψ(3)

∂ηS0

∂y′

〉
x′,y′
. (A5)

The DU term can be shown to be inconsequential based on its symmetries. Reversing the
x’-orientation of small-scale bathymetry ηS → ηS(−x′, y′) reverses the sign of ψ(3) →
−ψ(3)(−x′, y′), which, in turn, reverses the sign of DU . Thus, any statistical averaging
that assigns equal weights to a given pattern of ηS and its mirror image results in the net
cancellation of their contributions to DU .

To obtain an explicit expression for DV , we eliminate ∂ηS0/∂x′ in (A5) using (A3),
which yields

DV = V−1〈ψ(3)ν0∇4ψ(3)〉x′,y′ . (A6)

This expression is further simplified using the Parseval identity

DV = V−1
∫∫

ψ̃
(3) · conj(ν0κ

4ψ̃
(3)
) dk′ dl′, (A7)

where (k′, l′) are the small-scale wavenumbers in the flow-following coordinate system and
κ2 = k′2 + l′2. To evaluate the double integral in (A7), we use polar coordinates defined
as

k′ = κ cosϕ, l′ = κ sinϕ, (A8)

which further reduces (A7) to

DV = V−1
∫∫

|ψ̃(3)(κ, ϕ)|2ν0κ
4κ dκ dϕ. (A9)

Next, DV is expressed in terms of the spectrum of small-scale topography. This is
accomplished by applying the Fourier transform to (A3) and evaluating the squared
absolute values of both sides of the resulting equation

V2κ2 cos2 ϕ|η̃S0|2 = (ν0κ
4)2|ψ̃(3)|2. (A10)

In this study, we consider statistically isotropic spectra of topography, with |η̃S0|2
fully determined by κ . For such patterns, we can conveniently link topography and
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streamfunction by integrating (A10) in ϕ

πV2κ2|η̃S0|2 = (ν0κ
4)2
∫

|ψ̃(3)|2 dϕ, (A11)

which reduces (A9) to

DV = πV
∫
κ|η̃S0| 2

ν0κ2 dκ. (A12)

Finally, we compute (A4):

Dslow 0 = Gslow 0

(
∂2ψ(1)

∂X2 + ∂2ψ(1)

∂Y2

)
, (A13)

where

Gslow 0 = π

∫ |η̃S0| 2

ν0κ
dκ. (A14)
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