
JFP 25, e24, 25 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000271

1

Counting and generating terms in the binary
lambda calculus�

KATARZYNA GRYGIEL

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,

Jagiellonian University, ul. Prof. �Lojasiewicza 6, 30-348 Kraków, Poland

(e-mail: grygiel@tcs.uj.edu.pl)

P IERRE LESCANNE

École normale supérieure de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA),

University of Lyon, 46 allée d’Italie, 69364 Lyon, France

(e-mail: pierre.lescanne@ens-lyon.fr)

Abstract

In a paper, entitled Binary lambda calculus and combinatory logic, John Tromp presents a

simple way of encoding lambda calculus terms as binary sequences. In what follows, we study

the numbers of binary strings of a given size that represent lambda terms and derive results

from their generating functions, especially that the number of terms of size n grows roughly

like 1.963447954 . . .n. In a second part we use this approach to generate random lambda terms

using Boltzmann samplers.

1 Introduction

In recent years, growing attention has been given to quantitative research in logic and

computational models. Investigated objects (e.g., propositional formulae, tautologies,

proofs, programs) can be seen as combinatorial structures, providing therefore the

inspiration for combinatorists and computer scientists. In particular, several works

have been devoted to studying properties of lambda calculus terms. From the

practical point of view, generation of random λ-terms is the core of debugging

functional programs using random tests (Claessen & Hughes, 2000) and the present

paper offers an answer to an open question (see introduction of Claessen & Hughes

(2000)) since we are able to generate closed typable terms following a uniform

distribution. But this work applies beyond λ-calculus to any system with bound

variables, like the first order predicate calculus (quantifiers are binders like λ) or

block structures in programming languages.

First traces of the combinatorial approach to lambda calculus date back to

the work of Jue Wang (2004), who initiated the idea of enumerating λ-terms. In

her report, Wang defined the size of a term as the total number of abstractions,

� This work was partially supported by the grant 2013/11/B/ST6/00975 founded by the Polish National
Science Center.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

2 K. Grygiel and P. Lescanne

applications and occurrences of variables, which corresponds to the number of all

vertices in the tree representing the given term.

This size model, although natural from the combinatorial viewpoint, turned out

to be difficult to handle. The question that arises immediately concerns the number

of λ-terms of a given size. This task has been done for particular classes of terms

by Bodini et al. (2013b) and Lescanne (2013).

The approach applied in the latter paper has been extended in Grygiel & Lescanne

(2013) by the authors of the current paper to the model in which applications and

abstractions are the only ones that contribute to the size of a λ-term. The same

model has been studied by David et al. (2013), where several properties satisfied by

random λ-terms are provided.

When dealing with the two described models, it is not difficult to define recurrence

relations for the number of λ-terms of a given size. Furthermore, by applying

standard tools of the theory of generating functions one obtains generating functions

that are expressed in the form of infinitely nested radicals. Moreover, the radii of

convergence are in both cases equal to zero, which makes the analysis of those

functions very difficult to cope with.

In this paper, we study the binary encoding of lambda calculus introduced in

Tromp (2006). This representation results in another size model. It comes from

the binary lambda calculus defined by Tromp, in which he builds a minimal self-

interpreter of lambda calculus1 as a basis of algorithmic complexity theory (Li

& Vitányi, 2008). Such a binary approach is more realistic from the functional

programming viewpoint. Indeed, for compiler builders it is counter-intuitive to assign

the same size to all the variables, because in the translation of a program written in

Haskell, Ocaml or LISP variables are put in a stack. A variable deep in the stack

is not as easily reachable as a variable shallow in the stack. Therefore, the weight

of the former should be larger than the weight of the latter. Hence it makes sense

to associate a size with a variable proportional to its distance to its binder. When

we submitted (Grygiel & Lescanne, 2013) to the Journal of Functional Programming,

a referee wrote: “If the authors want to use the de Bruijn representation, another

interesting experiment could be done: rather than to count variables as size 0, they

should be counted using their unary representation. This would penalize deep lexical

scoping, which is not a bad idea since ‘local’ terms are much easier to understand

and analyze than deep terms”. In this model, recurrence relations for the number of

terms of a given size are built using this specific notion of size. From that, we derive

corresponding generating functions defined as infinitely nested radicals. However,

this time the radius of convergence is positive and enables a further analysis of

the functions. We are able to compute the asymptotics of the number of all (not

necessarily closed) terms and we also prove an upper bound of the asymptotics

of the number of closed ones. Moreover, we define an unranking function, i.e., a

generator of terms from their indices from which we derive a uniform generator

of random λ-terms (general and typable) of a given size. This allows us to provide

1 An alternative to universal Turing machine.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 3

outcomes of computer experiments in which we estimate the number of simply

typable λ-terms of a given size.

Recall that Boltzmann samplers are programs for efficient generation of random

combinatorial objects. Based on generating functions, they are parameterized by the

radius of convergence of the generating function. In addition to a more realistic

approach of the size of the λ-terms, binary lambda calculus terms are associated

with a generating function with a positive radius of convergence, which allows us to

build a Boltzmann sampler, hence a very efficient way to generate random λ-terms.

In Sections 9 and 10, we introduce the notion of Boltzmann sampler and we propose

a Boltzmann sampler for λ-terms together with a Haskell program.

A version (Grygiel & Lescanne, 2014) of the first part of this paper was presented

at the 25th International Conference on Probabilistic, Combinatorial and Asymptotic

Methods for the Analysis of Algorithms.

2 Lambda calculus and its binary representation

In order to eliminate names of variables from the notation of λ-terms, de Bruijn

introduced an alternative way of representing equivalent terms.

Let us assume that we are given a countable set {1, 2, 3, . . .}, elements of which

are called de Bruijn indices. We define de Bruijn terms (called terms for brevity) in

the following way:

i. each de Bruijn index i is a term,

ii. if M is a term, then (λM) is a term (called an abstraction),

iii. if M and N are terms, then (MN) is a term (called an application).

For the sake of clarity, we will omit the outermost parentheses. Moreover, we

sometimes omit other parentheses according to the convention that application

associates to the left, and abstraction associates to the right. Therefore, instead of

(MN)P we will write MNP , and instead of λ(λM) we will write λλM.

Given a term λN we say that the λ encloses all indices occurring in the term N.

Given a term M, we say that an occurrence of an index i in the term M is free in

M if the number of λ’s in M enclosing the occurrence of i is less than i. Otherwise,

we say the given occurrence of i is bound by the ith lambda enclosing it. A term M

is called closed if there are no free occurrences of indices.

For instance, given a term λλ1(λ1 4), the first occurrence of 1 is bound by the

second lambda, the second occurrence of 1 is bound by the third lambda, and the

occurrence of 4 is free. Therefore, the given term is not closed.

Following John Tromp, we define the binary representation of de Bruijn indices

in the following way:

λ̂M = 00M̂,

M̂N = 01M̂N̂,

î = 1i0.

However, notice that unlike Tromp (2006) and Lescanne (1994), we start the de

Bruijn indices at 1 like de Bruijn (1972). Given a de Bruijn term, we define its size

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

4 K. Grygiel and P. Lescanne

as the length of the corresponding binary sequence, i.e.,

|n| = n + 1,

|λM| = |M| + 2,

|MN| = |M| + |N| + 2.

For instance, the de Bruijn term λλ1(λ1 4) is represented by the binary sequence

0000011000011011110 and hence its length is 19.

In contrast to models studied previously, the number of all (not necessarily closed)

λ-terms of a given size is always finite. This is due to the fact that the size of each

variable depends on the distance from its binder.

3 Combinatorial facts

In order to determine the asymptotics of the number of all/closed λ-terms of a given

size, we will use the following combinatorial notions and results.

We say that a sequence (Fn)n�0 is of

• order Gn, for some sequence (Gn)n�0 (with Gn �= 0), if

lim
n→∞

Fn/Gn = 1,

and we denote this fact by Fn ∼ Gn;

• exponential order An, for some constant A, if

lim sup
n→∞

|Fn|1/n = A,

and we denote this fact by Fn �� An.

Given the generating function F(z) for a sequence (Fn)n�0, we write [zn]F(z) to

denote the nth coefficient of the Taylor expansion of F(z), therefore [zn]F(z) = Fn.

The theorems below (Theorems IV.7 and VI.1 of Flajolet & Sedgewick (2008))

serve as powerful tools that allow us to estimate coefficients of certain functions that

frequently appear in combinatorial considerations.

Fact 1

If F(z) is analytic at 0 and R is the modulus of a singularity nearest to the origin,

then

[zn]F(z) �� (1/R)n.

Fact 2

Let α be an arbitrary complex number in � \ ��0. The coefficient of zn in

f(z) = (1 − z)α

admits the following asymptotic expansion!:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α(α − 1)

2n
+

α(α − 1)(α − 2)(3α − 1)

24n2
+ O

(
1

n3

))
,

where Γ is the Euler Gamma function.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 5

-- Iverson symbol

iv b = if b then 1 else 0

-- Tromp size

a114852Tab :: [[Integer]]

a114852Tab = [0,0..] : [0,0..] : [[iv (n - 2 < m) +

a114852Tab !! (n-2) !! (m+1) +

s n m

| m <- [0..]] | n <- [2..]]

where s n m = let ti = [a114852Tab !! i !! m | i <- [0..(n-2)]] in

sum $ zipWith (*) ti (reverse ti)

tromp m n = a114852Tab !! n !! m

Fig. 1. The function tromp computing the Sm,n.

4 The sequences Sm,n

Let us denote the number of λ-terms of size n with at most m distinct free indices

by Sm,n.

First, let us notice that there are no terms of size 0 and 1. Let us consider a λ-term

of size n+ 2 with at most m distinct free indices. Then we have one of the following

cases.

• The term is a de Bruijn index n + 1, provided m is greater than or equal to

n + 1.

• The term is an abstraction whose binary representation is given by 00M̂, where

the size of M is n and M has at most m + 1 distinct free variables.

• The term is an application whose binary representation is given by 01M̂N̂,

where M is of size i and N is of size n − i, with i ∈ {0, . . . , n}, and each of the

two terms has at most m distinct free variables.

This leads to the following recursive formula2:

Sm,0 = Sm,1 = 0, (1)

Sm,n+2 = [m � n + 1] + Sm+1,n +

n∑
k=0

Sm,kSm,n−k. (2)

The sequence (S0,n)n�0, i.e., the sequence of numbers of closed λ-terms of size n,

can be found in the On-line Encyclopedia of Integer Sequences under the number

A114852. Its first 20 values are as follows:

0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 6, 5, 13, 14, 37, 44, 101, 134, 298, 431.

More values are given in Figure 5. The values of Sm,n can be computed by the

function we call tromp given in Figure 1.

2 Given a predicate P , [P (�x)] denotes the Iverson symbol, i.e., [P (�x)] = 1 if P (�x) and [P (�x)] = 0 if
¬P (�x).

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

6 K. Grygiel and P. Lescanne

Now let us define the family of generating functions for sequences (Sm,n)n�0:

�m(z) =

∞∑
n=0

Sm,n z
n.

Most of all, we are interested in the generating function for the number of closed

terms, i.e.,

�0(z) =

∞∑
n=0

S0,n z
n.

Applying the recurrence on Sm,n, we get

�m(z) = z2
∞∑
n=0

Sm,n+2z
n

= z2
∞∑
n=0

[m � n + 1]zn + z2
∞∑
n=0

Sm+1,n z
n + z2

∞∑
n=0

n∑
k=0

Sm,kSm,n−k z
n

= z2
m−1∑
k=0

zk + z2�m+1(z) + z2�m(z)2

=
z2 (1 − zm)

1 − z
+ z2�m+1(z) + z2�m(z)2.

Solving the equation

z2�m(z)2 − �m(z) +
z2 (1 − zm)

1 − z
+ z2�m+1(z) = 0 (3)

gives us

�m(z) =
1 −

√
1 − 4z4

(
1−zm

1−z
+ �m+1(z)

)
2z2

. (4)

This means that the generating function �m(z) is expressed by means of infinitely

many nested radicals, a phenomenon which has already been encountered in previous

research papers on enumeration of λ-terms, see e.g., Bodini et al. (2011). However,

in Tromp’s binary lambda calculus we are able to provide more results than in other

representations of λ-terms.

First of all, let us notice that the number of λ-terms of size n has to be less than

2n, the number of all binary sequences of size n. This means that in the considered

model of λ-terms the radius of convergence of the generating function enumerating

closed λ-terms is positive (it is at least 1/2), which is not the case in other models,

where the radius of convergence is equal to zero.

5 The number of all λ-terms

Let us now consider the sequence enumerating all binary λ-terms, i.e., including terms

that are not closed. Let S∞,n denote the number of all such terms of size n. Repeating

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 7

the reasoning from the previous section, we obtain the following recurrence relation:

S∞,0 = S∞,1 = 0,

S∞,n+2 = 1 + S∞,n +

n∑
k=0

S∞,kS∞,n−k.

The sequence (S∞,n)n∈� can be found in On-line Encyclopedia of Integer Sequences

with the entry number A114851. Its first 20 values are as follows:

0, 0, 1, 1, 2, 2, 4, 5, 10, 14, 27, 41, 78, 126, 237, 399, 745, 1292, 2404, 4259.

More values are given in Figure 5.

Obviously, we have Sm,n � S∞,n for every m, n ∈ �. Moreover, lim
m→∞

Sm,n = S∞,n.

Let �∞(z) denote the generating function for the sequence (S∞,n)n∈�, that is

�∞(z) =

∞∑
n=0

S∞,nz
n.

Notice that for m � n − 1 we have Sm,n = S∞,n. Therefore,

�∞(z) =

∞∑
n=1

Sn,nz
n,

which yields that [zn]�n,n = [zn]�∞,n. Furthermore, �∞(z) = lim
m→∞

�m(z) for all

z ∈ (0, ρ), where ρ is the dominant singularity of �∞(z).

Theorem 1

The number of all binary λ-terms of size n satisfies

S∞,n ∼ ρ−n · C

n3/2
,

where ρ
.
= 0.509308127 and C

.
= 1.021874073.

Proof

The generating function �∞(z) fulfills the equation

�∞(z) =
z2

1 − z
+ z2�∞(z) + z2�∞(z)2.

Solving the above equation gives us

�∞(z) =
(1 − z)(1 − z2) −

√
(1 − z)(1 − z − 2 z2 + 2 z3 − 3 z4 − z5)

2z2(1 − z)
.

The dominant singularity of the function �∞(z) is given by the root of smallest

modulus of the polynomial

R∞(z) = 1 − z − 2 z2 + 2 z3 − 3 z4 − z5.

The polynomial has three real roots:

0.509308127 . . . , −0.623845142 . . . , −3.668100004 . . . ,

and two complex ones that are approximately equal to 0.4 + 0.8i and 0.4 − 0.8i.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

8 K. Grygiel and P. Lescanne

Therefore, ρ
.
= 0.509308127 is the singularity of �∞ nearest to the origin. Let us

write �∞(z) in the following form:

�∞(z) =
1 − z2 −

√
ρ(1 − z

ρ
) · Q(z)

2z2
,

where Q(z) is a rational function defined for all |z| � ρ.

We get that the radius of convergence of �∞(z) is equal to ρ and its inverse
1
ρ

.
= 1.963447954 gives the growth of S∞,n. Hence, S∞,n �� (1/ρ)n.

Fact 2 allows us to determine the subexponential factor of the asymptotic

estimation of the number of terms. Applying it, we obtain

[zn]�∞(z) = ρ−n[zn]�∞(ρz) ∼ ρ−n[zn]
−

√
1 − z ·

√
ρQ(ρz)

2ρ2z2
∼ ρ−n · n−3/2

Γ(− 1
2
)

· C̃,

where the constant C̃ is given by

C̃ =
−

√
ρ · Q(ρ)

2ρ2

.
= −0.288265354.

Since
C̃

Γ(− 1
2
)

.
= 1.021874073, the theorem is proved. �

6 The number of closed λ-terms

Proposition 1

Let ρm denote the dominant singularity of �m(z). Then for every natural number m

we have

ρm = ρ0,

which means that all functions �m(z) have the same dominant singularity.

Proof

First, let us notice that for every m, n ∈ � we have Sm,n � Sm+1,n. This means that the

radius of convergence of the generating function for the sequence (Sm,n)n∈� is not

smaller than the radius of convergence of the generating function for (Sm+1,n)n∈�.

Therefore, for every natural number m, we have

ρm � ρm+1.

Additionally, from Equation (4) we see that every singularity of �m+1(z) is also a

singularity of �m(z). Hence, the dominant singularity of �m(z) is less than or equal

to the dominant singularity of �m+1(z), i.e., we have

ρm � ρm+1.

These two inequalities show that dominant singularities of all functions �m(z) are

the same. In particular, for every m we have ρm = ρ0. �

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 9

Proposition 2

The dominant singularity of �0(z) is equal to the dominant singularity of �∞(z), i.e.,

ρ0 = ρ
.
= 0.509308127.

Proof

Since the number of closed binary λ-terms is not greater than the number of all

binary terms of the same size, we conclude immediately that ρ0 � ρ.

Let us now consider the functionals Φ∞ and Φm for every m ∈ �. By Equation (4),

for every m the functional Φm applied to �m+1 gives us �m, while Φ∞ is the limit of

the sequence (Φm)m∈�:

Φm(F) =
1 −

√
1 − 4z4(1−zm

1−z
+ F)

2z2
,

Φ∞(F) =
1 −

√
1 − 4z4(1

1−z
+ F)

2z2
.

In particular, when m = 0, we have

Φ0(F) =
1 −

√
1 − 4z4F

2z2
.

By Equation (4) and the definition of Φm, we have

�m(z) = Φm(�m+1(z)).

The Φm’s and Φ∞ are monotonic over functions over (0, 1), which means that for

every z ∈ (0, 1) we have

F(z) � G(z) ” => ” Φm(F(z)) � Φm(G(z)),

F(z) � G(z) ” => ” Φ∞(F(z)) � Φ∞(G(z)).

For each m ∈ �, let us consider the function �̃m(z) defined as the fixed point of

Φm. In other words, �̃m(z) is defined as the solution of the following equation:

�̃m(z) = Φm(�̃m(z)).

Notice that Sm,n � Sm+1,n � S∞,n, for the reasons that given a size n, there are less

trees with at most m free variables than trees with at most m + 1 free variables and

less trees with at most m + 1 free variables than trees with any numbers of free

variables. For z ∈ (0, ρ) we can claim that �m(z) � �m+1(z) � �∞(z). Applying Φm

to the first inequality, we obtain, for z ∈ (0, ρ),

Φm(�m(z)) � �m(z)

Then we get

Φk+1
m (�m(z)) � Φk

m(�m(z)) � · · · � Φm(�m(z)) � �m(z)

and since

�̃m(z) = lim
k→∞

Φk
m(�m(z)) = inf

k∈�
Φk

m(�m(z))

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

10 K. Grygiel and P. Lescanne

we infer

�̃m(z) � �m(z) � �∞(z).

Since �̃m(z) satisfies

2z2�̃m(z) = 1 −
√

1 − 4z4
(1 − zm

1 − z
+ �̃m(z)

)
,

we get

z2�̃2
m(z) − (1 − z2)�̃m(z) +

z2(1 − zm)

1 − z
= 0.

The discriminant of this equation is:

Δm = (1 − z2)2 − 4z4(1 − zm)

1 − z
.

The values for which Δm = 0 are the singularities of �̃m(z). Let us denote the

main singularity of �̃m(z) by σm. From Equation (6) we see that

σm � ρm � ρ.

The value of σm is equal to the root of smallest modulus of the following

polynomial:

Pm(z) := (z − 1)Δm = 4z4(1 − zm) − (1 − z)3(1 + z)2.

In the case of the function �̃∞(z), we get the polynomial

P∞(z) = −1 + z + 2 z2 − 2 z3 + 3 z4 + z5 = −R∞(z),

whose root of smallest modulus is the same as for R∞(z), hence it is equal to ρ.

Now, let us show that the sequence (σm)m∈� of roots of smallest modulus of

polynomials Pm(z) is decreasing and that it converges to ρ. As a hint, Figure 2

illustrates plots of polynomials Pm’s (for several values of m) in the interval [0.3, 1].

It shows the roots of the Pm’s at the intersection of the curves and of the horizontal

axis, between ρ (for P∞) and 1 (for P0).

Notice that Pm(z) = P∞(z) − 4zm+4. Given a value ζ such that ρ < ζ < 1 (for

instance ζ = 0.8), Pm(z) converges uniformly to P∞(z) in the interval [0, ζ]. Therefore,

σm → ρ when m → ∞. By σm � ρm � ρ, we get ρm → ρ, as well. Since all the ρm’s

are equal, we obtain that ρm = ρ for every natural m. �

The number of closed terms of a given size cannot be greater than the number

of all terms. Therefore, we immediately obtain what follows.

Theorem 2

The number of closed binary λ-terms of size n is of exponential order (1/ρ)n, i.e.,

S0,n �� 1.963448 . . .n .

Figure 3 shows values Sm,n · ρn · n3/2 for a few initial values of m and n up to 600

and allows us to state the following conjecture.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 11

Fig. 2. Plots of the Pm’s. The top curve is P∞, below there is P100, then P10, P9 etc. until P1

and P0.

Conjecture 1

For every natural number m, we have

Sm,n ∼ o
(
1.963448 . . .n · n−3/2

)
.

7 Unrankings

The recurrence relation (2) for Sm,n allows us to define the function generating

λ-terms. More precisely, we construct bijections sm,n, called unranking functions,

between all non-negative integers not greater than Sm,n and binary λ-terms of size

n with at most m distinct free variables (Karttunen, 2015). This approach is also

known as the recursive method, originating with Nijenhuis and Wilf (1978) (see

especially Chapter 13).

Let us recall that for n � 2 we have, by Equation (2),

Sm,n = [m � n − 1] + Sm+1,n−2 +

n−2∑
j=0

Sm,jSm,n−2−j .

The encoding function sm,n takes an integer k ∈ {1, . . . , Sm,n} and returns the term

built in the following way.

• If m � n − 1 and k is equal to Sm,n, the function returns the string 1n−10.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

12 K. Grygiel and P. Lescanne

Fig. 3. Sm,nρ
nn3/2 up to n = 600 for m = 0 (bottom) to 10 (top).

• If k is less than or equal to Sm+1,n−2, then the corresponding term is in the form

of abstraction 00M̂, where M̂ is the value of the unranking function sm+1,n−2

on k.

• Otherwise, i.e., if k is greater than Sm+1,n−2 and less than Sm,n for m � n + 1

or less than or equal to Sm,n for m < n + 1, the corresponding term is in the

form of application 01M̂N̂. In order to get strings M̂ and N̂, we compute the

maximal value
 ∈ {0, . . . , n − 2} for which

k − Sm+1,n−2 =
(
−1∑

j=0

Sm,jSm,n−2−j

)
+ r with r � Sm,
Sm,n−2−
.

The strings M̂ and N̂ are the values sm,
(k
′) and sm,n−2−
(k

′′), respectively, where

k′ is the integer quotient upon dividing r by Sm,n−2−
, and k′′ is the remainder.

Notice that in this definition, extremal values of k are considered first. Namely,

first the maximal value Sm,n (for m � n − 1) is considered, then values from the set

{1, . . . , Sm+1,n−2} are taken into account, and finally, in the third case, the remaining

values.

In Figure 4, the reader may find a Haskell definition of the data type Term and

a program (Peyton Jones, 2003) for computing the values sm,n(k). In this program,

the function sm,n(k) is written as unrankT m n k and the sequence Sm,n is written as

tromp m n.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 13

data Term = Index Int

| Abs Term

| App Term Term

unrankT :: Int -> Int -> Integer -> Term

unrankT m n k

| m >= n - 1 && k == (tromp m n) = Index (n - 1)

| k <= (tromp (m+1) (n-2)) = Abs (unrankT (m+1) (n-2) k)

| otherwise = unrankApp (n-2) 0 (k - tromp (m+1) (n-2))

where unrankApp n j r

| r <= tmjtmnj = let (dv,rm) = (r-1) ‘divMod‘ tmnj

in App (unrankT m j (dv+1)) (unrankT m (n-j) (rm+1))

| otherwise = unrankApp n (j + 1) (r -tmjtmnj)

where tmnj = tromp m (n-j)

tmjtmnj = (tromp m j) * tmnj

Fig. 4. The data type Term and a program for computing values of the function sm,n.

8 Number of typable terms

The unranking function allows us to traverse all the closed terms of size n and to

filter those that are typable (see Hindley (1997)) in order to count them and similarly

to traverse all the terms of size n to count those that are typable.

The comparison of the numbers of λ-terms and the numbers of typable λ-terms

is presented in Figure 5. From left to right:

1. the numbers S0,n of closed terms (typable and untypable) of size n,

2. the numbers T0,n of closed typable terms of size n,

3. the numbers S∞,n of all terms (typable and untypable) of size n,

4. the numbers T∞,n of all typable terms of size n.

In particular, let us notice that S0,n and T0,n are the same up to n = 8, where

we meet the smallest untypable closed term namely λ1 1. Similarly, S∞,n and T∞,n

are the same up to n = 6, where we meet the smallest untypable term, namely 1 1.

Values T∞,43, T∞,44, T∞,45 and T∞,46 are not available since they require too many

computations, between 14 millions and 96 millions of λ-terms have to be checked

for typability in each case. Paul Tarau (2015) gives a Prolog implementation and

applies it to the generation of typed λ-terms.

Thanks to the unranking function, we can build a uniform generator of λ-terms

and, using this generator, we can build a uniform generator of simply typable λ-terms,

which sieves the uniformly generated terms through a program that checks their

typability (see for instance (Grygiel & Lescanne, 2013)). This way, it is possible to

generate typable closed terms uniformly up to size 4503.

9 Boltzmann samplers

In this section, we present the basic ideas related to Boltzmann models, which

combined with the theory of generating functions allow us to develop efficient

3 Tromp constructed a self-interpreter (which is not typable) for the λ-calculus of size 210.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

14 K. Grygiel and P. Lescanne

n S0,n

0 0
1 0
2 0
3 0
4 1
5 0
6 1
7 1
8 2
9 1
10 6
11 5
12 13
13 14
14 37
15 44
16 101
17 134
18 298
19 431
20 883
21 1361
22 2736
23 4405
24 8574
25 14334
26 27465
27 47146
28 89270
29 156360
30 293840
31 522913
32 978447
33 1761907
34 3288605
35 5977863
36 11148652
37 20414058
38 38071898
39 70125402
40 130880047
41 242222714
42 452574468
43 840914719
44 1573331752
45 2933097201
46 5495929096

n T0,n

0 0
1 0
2 0
3 0
4 1
5 0
6 1
7 1
8 1
9 1
10 5
11 4
12 9
13 13
14 23
15 29
16 67
17 94
18 179
19 285
20 503
21 795
22 1503
23 2469
24 4457
25 7624
26 13475
27 23027
28 41437
29 72165
30 128905
31 227510
32 405301
33 715078
34 1280127
35 2279393
36 4086591
37 7316698
38 13139958
39 23551957
40 42383667
41 76278547
42 137609116
43 248447221
44 449201368
45 812315229
46 1470997501

n S∞,n

0 0
1 0
2 1
3 1
4 2
5 2
6 4
7 5
8 10
9 14

10 27
11 41
12 78
13 126
14 237
15 399
16 745
17 1292
18 2404
19 4259
20 7915
21 14242
22 26477
23 48197
24 89721
25 164766
26 307294
27 568191
28 1061969
29 1974266
30 3698247
31 6905523
32 12964449
33 24295796
34 45711211
35 85926575
36 161996298
37 305314162
38 576707409
39 1089395667
40 2061428697
41 3901829718
42 7395529009
43 14023075765
44 26620080576
45 50556677634
46 96108150292

n T∞,n

0 0
1 0
2 1
3 1
4 2
5 2
6 3
7 5
8 8
9 13

10 22
11 36
12 58
13 103
14 177
15 307
16 535
17 949
18 1645
19 2936
20 5207
21 9330
22 16613
23 29921
24 53588
25 96808
26 174443
27 316267
28 572092
29 1040596
30 1888505
31 3441755
32 6268500
33 11449522
34 20902152
35 38256759
36 70004696
37 128336318
38 235302612
39 432050796
40 793513690
41 1459062947
42 2683714350
43 unknown
44 unknown
45 unknown
46 unknown

Fig. 5. Numbers of terms and numbers of typable terms.

algorithms for generating random λ-terms. A thorough and clear overview of

Boltzmann samplers, including many examples, can be found in Duchon et al.

(2004). For readers not acquainted with the theory, we provide necessary notions

and constructions.

Let C be a combinatorial class, i.e., a set of combinatorial objects endowed with

a size function | · | : C → � such that there are finitely many elements of size n for

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 15

every n ∈ �. Let Cn denote the cardinality of the subset of C consisting of elements

of size n. Furthermore, let C(z) denote the generating functions associated with the

sequence (Cn)n∈�, which means that

C(z) =

∞∑
n=0

Cnz
n.

Notice that

C(z) =
∑
γ∈C

z|γ|.

Given a positive real x ∈ �+, we define a Boltzmann model for the class C as the

probability distribution that assigns to every element γ ∈ C a probability

�C ,x(γ) =
1

C(x)
· x|γ|.

This is a probability since∑
γ∈C

�C ,x(γ) =
∑
γ∈C

1

C(x)
· x|γ| = 1.

The role of x will become clear later on, but for now we may consider x as a

parameter used to “tune” the sampler, that is to center the mean value around a

chosen number. In other words, if we want to set an expected mean value, we have

to compute the proper value of x. In order the probability �C ,x(γ) to be well-defined,

we assume the values of x to be taken from the interval (0, ρC), where ρC denotes

the radius of convergence of C(z). Provided C(z) converges at ρC , we may also

consider the case x = ρC .

The size of an object in a Boltzmann model is a random variable N. The Boltzmann

sampler for a class C and a parameter x is a random object generator, which draws

from the class C an object of size n with probability

�x(N = n) =
Cnx

n

C(x)
.

This is indeed a well-defined probability since∑
n�0

�x(N = n) =
1

C(x)

∑
n�0

Cnx
n = 1.

When generating random objects, we require either the size to be a fixed value n

or, in order to increase the efficiency of the generation process, we admit some

flexibility on the size. In other words, we want the objects to be generated in some

cloud around a given size n so that the size N of the objects lies in some interval

(1 − ε)n � N � (1 + ε)n for some factor ε > 0 called a tolerance. Such a method

is called approximate-size uniform random generation. What we want to preserve is

the uniformity of the distribution among objects of the same size, i.e., we want all

objects of the same size to be drawn with the same probability.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

16 K. Grygiel and P. Lescanne

rand :: Gen Double

rand = do generator <- get

let (value, newGenerator) = randomR (0,1) generator

put newGenerator

return value

Fig. 6. The function rand.

The random variable N has a first moment and a second moment (Duchon et al.,

2004):

�x(N) = x
C ′(x)

C(x)
�x(N

2) =
x2C ′′(x) + xC ′(x)

C(x)
,

and a standard deviation:

σx(N) =
√

�x(N2) − �x(N)2

=

√
x2C ′′(x) + xC ′(x)

C(x)
− x2

C ′(x)2

C(x)2
.

In the case of approximate-size generation, in order to maximize chances of

drawing an object of a desired size, say n, we need to choose a proper value of the

parameter x. It turns out that the best value of x is such for which �x(N) = n (for

a detailed study see (Flajolet et al., 2007)). Given size n, we will denote by xn the

value of the parameter chosen in such a way. Moreover, if n tends to infinity, then

xn tends to ρC (see Appendix).

9.1 Design of Boltzmann generator

A Boltzmann generator for a class C is built according to a recursive specification

of the class C . Since we are interested in designing a Boltzmann sampler for

binary λ-terms, we present the way of defining samplers for classes which are

specified by means of the following recursive constructions: disjoint unions (data

type Either a b), products (data type Pair) and sequences (data type List). First

we assume a monad Gen defined from the monad State of the Haskell library by

type Gen = State StdGen

where StdGen is the type of standard random generators. For the following we

assume a function rand :: Gen Double that generates a random double precision

real in the interval (0, 1) together with an update of the random generator. In our

case it is defined in Figure 6.

9.2 Disjoint union

Let a and b be two types (corresponding to combinatorial classes A and B). A

generator genEither for the disjoint union takes a double precision number for

the Bernoulli choice and two objects of type Gen a and Gen b and returns an

object of type Gen (Either a b). If we define a new class as c = Either a b

corresponding to the class C with the size function inherited from classes A and

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 17

B, then Cn = An +Bn and C(z) = A(z) +B(z). The probability of drawing an object

γ ∈ C equals

�C ,x(γ ∈ A) =
A(x)

C(x)
, �C ,x(γ ∈ B) =

B(x)

C(x)
.

A generator for the disjoint union, i.e., a Bernoulli variable, may have the following

type:

genEither::Double -> (Gen a) -> (Gen b) -> (Either a b -> c) ->

Gen c

and then it is given by the Haskell function:

genEither p ga gb caORb = do

x <- rand

if x < p then do ga’ <- ga

return (caORb $ Left ga’)

else do gb’ <- gb

return (caORb $ Right gb’)

Notice the type of genEither which assumes that genEither takes a number, two

monad values Gen a and Gen b (which can be seen as pairs of a random generator

and a value of type a and b respectively), and a continuation c of type Either a b

and returns a value of the monad Gen c. Similar frames will appear in the programs

describing other generators.

9.3 Cartesian product

Given classes A and B, let C be the class defined as their Cartesian product,

i.e., C = A × B. Let a and b be Haskell types corresponding to classes A and B.

Then the type of the class C is (a, b). The size of an object γ = 〈α, β〉 ∈ C equals the

sum of sizes |α| + |β|. In more concrete terms, if an object is the pair of an object of

size p and an object of size q, then its size is p + q. Hence, the generating functions

satisfy the equation C(z) = A(z) · B(z), since

C(z) =
∑

〈α,β〉∈A ×B

z|α|+|β|.

The probability of drawing γ = 〈α, β〉 ∈ C is equal to

�C ,x(γ) =
x|γ|

C(x)
=

x|α+β|

A(x) · B(x)
=

x|α|

A(x)
· x|β|

B(x)
.

In this case the Boltzmann sampler is as follows:

genPair :: (Gen a) -> (Gen b) -> (a -> b -> c) -> (Gen c)

genPair ga gb caANDb = do

ga’ <- ga

gb’ <- gb

return (caANDb ga’ gb’)

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

18 K. Grygiel and P. Lescanne

10 Boltzmann samplers for λ-terms

Let us consider the equation involving the generating function for all λ-terms:

S∞(z) =
z2

1 − z
+ z2S∞(z) + z2S∞(z)2.

It is derived from the description of the set S∞ of λ-terms as:

S∞ = D + λS∞ + S∞ S∞.

That means that the set of λ-terms S∞ has three components: the first component

D corresponds to de Bruijn indices, the second component λS∞ corresponds to

abstractions, the third component S∞S∞ corresponds to applications. We build a

sampler of random terms based on this trichotomy. In Haskell this corresponds to

a data type Term defined in Figure 4. Since there are three components in the union,

the value p which we considered in genEither will be replaced by two values p1

and p2. First we describe in Haskell a function corresponding to S∞(z):

sInfinity z = num z / den z

where num z = z3 - z2 - z + 1 - sqrt(sq z)

den z = 2*z*z*(1 - z)

sq z = z6 + 2*(z5) - 5*(z4) + 4*(z3) - z2 - 2*z + 1

and two functions:

p1 x = x*x / (1-x) / sInfinity x

p2 x = p1 x + x2

Using Sage we computed the values:

x100 = 0.5092252666102192 x600 = 0.5093058457062517

x1000 = 0.5093073063214039

which correspond to the values of the parameter x appropriate for an expected

value �xi(N) equal to i = 100, i = 600, and i = 1000, respectively. In other words

if the values x100, x600 and x1000 are passed to the sampler, it will generate objects

with average size 100, 600, and 1, 000, respectively. They are obtained by solving in

x the equations

�x(N) = 100,

�x(N) = 600,

�x(N) = 1000,

in which C(x) is replaced by S∞(x).

10.1 General samplers of λ-terms

The values of the probabilities for a given x are

• pv(x) = x2

(1−x)S∞(x)
for variables,

• pabs(x) = x2 for abstractions,

• papp(x) = x2S∞(x) for applications.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 19

We get the following Haskell function which selects among Index, Abs, and App

genTermGeneric :: Double -> Gen Int -> Gen Term

genTermGeneric x gi = do

p <- rand

if p < p1 x

then do i <- genIntGeneric x

return (Index i)

else if p < p2 x

then do t <- genTermGeneric x gi

return (Abs t)

else genPair (genTermGeneric x gi) (genTermGeneric x gi) App

Notice the call to the function

genIntGeneric :: Double -> Gen Int

genIntGeneric x = do

p <- rand

if p < x then do n <- genIntGeneric x

return (n+1)

else return 1

which is used to generate random de Bruijn indices.

10.2 Samplers for large λ-terms

As discussed in the previous section, in order to generate random large λ-terms, i.e.,

λ-terms with average size ∞, we set the value of x to ρ = 0.5093081270242373 . . .,

which we call rho in Haskell. Its square is ρ2 = 0.25939476825293667 Notice that

since ρ is a root of the polynomial below the square root, S∞(ρ) = 1−ρ2

2ρ2 . The values

of the probabilities for selecting among variables, abstractions and applications are:

• pv(ρ) = 2ρ4

(1−ρ)(1−ρ2)
for variables,

• pabs(ρ) = ρ2 for abstractions,

• papp(ρ) = 1−ρ2

2
for applications.

Let us simplify 2ρ4

(1−ρ)(1−ρ2)
into 1−ρ2

2
by computing the difference:

2ρ4

(1 − ρ)(1 − ρ2)
− 1 − ρ2

2
=

4ρ4 − (1 − ρ2)2(1 − ρ)

2(1 − ρ)(1 − ρ2)

=
ρ5 + 3ρ4 − 2ρ3 + 2ρ2 + ρ − 1

2(1 − ρ)(1 − ρ2)
= 0.

Therefore, to generate random terms of mean size going to infinity we get the results

• pv(ρ) = 1−ρ2

2
≈ 0.3703026 for variables,

• pabs(ρ) = ρ2 ≈ 0.25939476 for abstractions,

• papp(ρ) = 1−ρ2

2
≈ 0.3703026 for applications.

We build the function genTerm which generates random terms and the function

genInt which generates integers necessary for the de Bruijn indices (see Figure 7).

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

20 K. Grygiel and P. Lescanne

rho :: Double

rho = 0.509308127024237357194177485

rhosquare = rho * rho

p1rho = (1 - rhosquare) / 2

p2rho = p1rho + rhosquare

genTerm :: Gen Int -> Gen Term

genTerm gi = do

p <- rand

if p < p1rho then do i <- genInt

return (Index i)

else if p < p2rho

then do t <- genTerm gi

return (Abs t)

else genPair (genTerm gi) (genTerm gi) App

genInt :: Gen Int

genInt = do

p <- rand

if p < rho then do n <- genInt

return (n+1)

else return 1

Fig. 7. The function genTerm.

The list

60, 5, 3, 3, 6, 19, 8, 7, 728, 3753, 12, 15, 3733, 93, 4, 3, 4, 4, 13, 137, 6, 18, 372,

50, 25, 43140, 8, 5, 3, 6

is the list of term sizes generated by genTerm when the seeds of the random generator

are 0, 1, 2, . . . up to 30. In the same list of term sizes the 50th element is 127 358 and

the 51st element is 4 379 394, showing that generating a random term of size more

than four million is easy.

Assume now that we want to generate terms that are below a certain uplimit,

as required by practical applications. The function called ceiledGenTerm is almost

the same as genTerm, except that when the up limit is passed it returns Nothing.

Therefore, the type of ceiledGenTerm differs from genTerm type in the sense that

it takes a Gen (Maybe Term) (instead of a Gen Term) and returns a Gen (Maybe

Term) (instead of a Gen Term). A Boltzmann sampler ceiledGenTerm for large

λ-terms of size limited by uplimit is given in Figure 8.

Suppose now that we want to generate terms within a size interval, i.e., with an

up limit and a down limit. By definition, ceiledGenTerm generates terms within an

up limit. For terms within the down limit, terms generated by ceiledGenTerm are

filtered so that only terms large enough are kept. Recall that the method is linear in

time complexity. Thus the generation of a term of size 1, 00, 000 takes a few seconds,

the generation of a term of size one million takes three minutes and the generation

of a term of size five million takes five minutes.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 21

ceiledGenTerm :: Int -> Gen Int -> Gen (Maybe Term)
ceiledGenTerm uplimit gi = do

p <- rand
if p < p1rho
then do -- generate an index

i <- genInt
return $ if i < uplimit then Just (Index i) else Nothing

else if p < p2rho
then do -- generate an abstraction

mbt <- ceiledGenTerm uplimit gi
return $ case mbt of

Just t -> if 2 + size t <= uplimit
then Just (Abs t)
else Nothing

Nothing -> Nothing
else do -- generate an application

mbt1 <- ceiledGenTerm uplimit gi
mbt2 <- ceiledGenTerm uplimit gi
return $ case mbt1 of

Just t1 -> case mbt2 of
Just t2 -> if 2 + size t1 + size t2 <= uplimit

then Just (App t1 t2)
else Nothing

Nothing -> Nothing

Fig. 8. Boltzmann sampler for large λ-terms.

To generate large typable λ-terms we generate λ-terms and check their typability.

Currently we are able to generate random typable λ-terms of size 500. This

outperforms methods based on ranking and unranking like the method proposed

in (Grygiel & Lescanne, 2013). This is in particular due to the fact that such methods

need to handle numbers of arbitrary precision and their random generation, which it

not efficient. Indeed ranking or unranking requires handling integers with hundred

digits or more and performing computations on them for their random generations.

On the other hand, Boltzmann samplers ignore numbers, go directly toward the

terms to be generated and do that efficiently.

11 Related works

We look at related works from two perspectives: works on counting λ-terms and

works specifically related to Boltzmann samplers.

11.1 Works on counting λ-terms

Connected to this work, let us mention papers on counting λ-terms (Grygiel &

Lescanne, 2013; Lescanne, 2013) and on evaluating their combinatorial properties,

namely (Bodini et al., 2011; David et al., 2013; Bodini et al., 2013a; Bodini et al.,

2013b). A comparison of our results with those of Grygiel & Lescanne (2013) can

be made, since (Grygiel & Lescanne, 2013) gives a precise counting of λ-terms when

variables (de Bruijn indices) have size 0, yielding sequence A220894 in the On-line

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

22 K. Grygiel and P. Lescanne

Encyclopedia of Integer Sequences for the number of closed terms of size n. The first

fifteen terms are:

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411, 851368766,

12188927818, 186132043831, 3017325884473.

If one compares them with the first fifteen terms of S0,n:

0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 6, 5, 13, 14, 37,

one sees that S0,n grows much more slowly than A220894, which is not surprising

since S0,n grows exponentially, whereas A220894 grows super-exponentially (the

radius of convergence of its generating function is 0). This super-exponential growth

and the related 0 radius of convergence prevent from building a Boltzmann sampler.

Moreover, it does not make sense to count all (including open) terms of size n when

variables have size 0 for the reason that there are infinitely many such terms for

each n. Notice that taking the size of variables to be 1, like (Bodini et al., 2011;

Lescanne, 2013), does not make much difference for growth and generation.

11.2 Works related to Boltzmann samplers for terms

In the introduction we cited papers that are clearly connected to this work. In a

recent work, Bacher et al. (2014) propose an improved random generation of binary

trees and Motzkin trees, based on Rémy algorithm (Rémy, 1985) (or algorithm R

in Knuth (2006)). They propose like Rémy to grow the trees from inside by an

operation called grafting. It is not clear how this can be generalized to λ-terms

as one needs “to find a combinatorial interpretation for the holonomic equations

[which] is not [...] always possible, and even for simple combinatorial objects this is

not elementary” (Conclusion of Bacher et al. (2014) page 16).

12 Conclusion

We have shown that if the size of a lambda term is yielded by its binary

representation (Tromp, 2006), we get an exponential growth of the sequence

enumerating λ-terms of a given size. This applies to closed λ-terms, to λ-terms

with a bounded number of free variables, and to all λ-terms of size n. Except for

the case of all λ-terms, the question of finding the non-exponential factor of the

asymptotic approximation of the numbers of those terms is still open. Moreover,

we have described unranking functions (recursive methods) for generating λ-terms,

which allow us to derive tools for their uniform generation and for enumeration of

typable λ-terms. The process of generating random (typable) terms is limited by the

performance of the generators based on the recursive methods aka unranking since

huge numbers are involved. It turns out that implementing Boltzmann samplers,

central tools for the uniform generation of random structures such as trees or λ-

terms, gives significantly better results. There are now two directions for further

development: the first one consists in integrating the programs proposed here in

actual testers and optimizers (Claessen & Hughes, 2000) and the second one in

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 23

extending Boltzmann samplers to other kinds of programs, for instance programs

with block structures. From the theoretical point of view, more should be known

about generating functions for closed λ-terms or λ-terms with fixed bounds on the

number of free variables. Boltzmann samplers should be designed for such terms,

which requires extending the theory. As concerns combinatorial properties of simply

typable λ-terms, many question are left open and seem to be hard. Besides, since

we are interested in generating typable terms, it is worth designing random uniform

samplers that deliver typable terms directly.

Acknowledgements

The authors are happy to acknowledge people who commented early versions of

this paper, and contributed to improve it, especially the editors and the referees of

the Journal of Functional Programming and of the 25th International Conference on

Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms.

The authors would like to give special mentions to Olivier Bodini, Bernhard

Gittenberger, Éric Fusy, Patrik Jansson, Marek Zaionc, and the participants of

the 8th Workshop on Computational Logic and Applications.

References

Bacher, A., Bodini, O. & Jacquot, A. (2014) Efficient random sampling of binary and unary-

binary trees via holonomic equations. Corr, abs/1401.1140.

Bodini, O., Gardy, D. & Gittenberger, B. (2011) Lambda-terms of bounded unary height. In

Proceedings of the 8th Workshop on Analytic Algorithmics and Combinatorics (ANALCO),

(SIAM), Holiday Inn San Fransisco Golden Gateway, San Fransisco, California, USA,

pp. 23–32.

Bodini, O., Gardy, D. & Jacquot, A. (2013a) Asymptotics and random sampling for BCI and

BCK lambda terms. Theor. Comput. Sci. 502, 227–238.

Bodini, O., Gardy, D., Gittenberger, B. & Jacquot, A. (2013b) Enumeration of generalized

BCI lambda-terms. Electr. J. Comb. 20(4), P30.

Claessen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of

Haskell programs. In ICFP, Odersky, M. & Wadler, P. (eds), ACM, pp. 268–279.

David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G. & Zaionc, M. (2013) Asymptotically

almost all λ-terms are strongly normalizing. Log. Methods Comput. Sci. 9(1:02), 1–30.

de Bruijn, N. G. (1972) Lambda calculus notation with nameless dummies, a tool for automatic

formula manipulation, with application to the Church-Rosser theorem. Indagationes Math.

34(5), 381–392.

Duchon, P., Flajolet, P., Louchard, G. & Schaeffer, G. (2004) Boltzmann samplers for the

random generation of combinatorial structures. Comb. Probab. Comput. 13(4-5), 577–625.

Flajolet, P., Fusy, É. & Pivoteau, C. (2007) Boltzmann sampling of unlabeled structures.

In Proceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics,

ANALCO, New Orleans, Louisiana, USA, January 06, 2007, pp. 201–211.

Flajolet, P. & Sedgewick, R. (2008) Analytic Combinatorics. Cambridge University Press.

Grygiel, K. & Lescanne, P. (2013) Counting and generating lambda terms. J. Funct. Program.

23(5), 594–628.

Grygiel, K. & Lescanne, P. (2014) Counting terms in the binary lambda calculus.

Corr, abs/1401.0379. Published in the Proceedings of 25th International Conference on

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

24 K. Grygiel and P. Lescanne

Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms,

Available at: https://hal.inria.fr/hal-01077251.

Hindley, J. R. (1997) Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer

Science, no. 42, Cambridge University Press.

Karttunen, A. (2015) Ranking and Unranking Functions. OEIS Wiki. Available at:

http://oeis.org/wiki/Ranking and unranking functions.

Knuth, D. E. (2006) The Art of Computer Programming, Volume 4, Fascicle 4: Generating

All Trees, History of Combinatorial Generation (Art of Computer Programming). Addison-

Wesley.

Lescanne, P. (1994) From λσ to λυ, a journey through calculi of explicit substitutions.

In Boehm, H. (ed), Proceedings of the 21st Annual ACM Symposium on Principles of

Programming Languages, Portland (Or., USA), ACM, pp. 60–69.

Lescanne, P. (2013) On counting untyped lambda terms. Theor.Comput. Sci., 474, 80–97.

Li, M. & Vitányi, P. (2008) An Introduction to Kolmogorov Complexity and its Applications,

3rd ed., New York, Inc: Springer-Verlag.

Nijenhuis, A. & Wilf, H. S. (1978) Combinatorial Algorithms, 2nd ed., Computer Science and

Applied Mathematics, New York: Academic Press.

Peyton Jones, S. (ed) (2003) Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press.

Rémy, J.-L. (1985) Un procédé itératif de dénombrement d’arbres binaires et son application

à leur génération aléatoire. ITA 19(2), 179–195.

Tarau, P. (2015) On type-directed generation of lambda terms. In Proceedings of the

31st International Conference on Logic Programming (ICLP 2015), Available at:

http://dblp.uni-trier.de/rec/bibtex/conf/iclp/Tarau15.

Tromp, J. (2006) Binary lambda calculus and combinatory logic. In Kolmogorov Complexity

and Applications, Hutter, M., Merkle, W. & Vitányi, P. M. B. (eds), Dagstuhl Seminar

Proceedings, vol. 06051, Internationales Begegnungs- und Forschungszentrum fuer

Informatik (IBFI), Schloss Dagstuhl, Germany.

Wang, J. 2004 (May). The Efficient Generation of Random Programs and their Applications.

Honors Thesis, Wellesley College, Wellesley, MA.

Appendix A. The case x = ρC : generating objects with mean size ∞

In this section, we show that choosing a value x = ρC for the parameter of a sampler

yields mean size ∞ of the generated objects.

Assume that a generating function we consider is of the form:

C(x) =
PC(x) −

√
QC(x)

RC(x)
,

where PC (x), QC(x) and RC (x) are three polynomials and where ρC is such that

QC (ρC) = 0 and where QC(x) > 0 and RC (x) �= 0 for 0 < x < ρC . Those properties

are fulfilled by the generating function S∞(x). Indeed,

PS∞(z) = (1 − z)(1 − z2),

QS∞(z) = (1 − z)(1 − z − 2 z2 + 2 z3 − 3 z4 − z5),

RS∞ = 2z2(1 − z).

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

Binary lambda terms 25

Notice that Q′
C(ρC) < 0 in the vicinity of ρC , i.e., in an interval (ρC − ε, ρC) (because

QC(ρC) = 0 and QC(x) > 0 for x ∈ (0, ρC]) and

C(ρC) =
PC(ρC)

RC(ρC)

is finite. On the other hand,

C ′(x) =
P ′
C (x)

RC (x)
− Q′

C(x)

2
√
QC(x)RC (x)

− (PC (x) −
√
QC(x))R′

C(x)

RC(x)2

shows that

lim
x→ρC

C ′(x) = ∞.

Hence

lim
x→ρC

�x(N) = lim
x→ρC

xC ′(x)

C(x)
= ∞.

Therefore, if we choose x to be ρC , the size of the generated structures will be

distributed all over the natural numbers, with an infinite average size.

https://doi.org/10.1017/S0956796815000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000271

