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The motion of a gaseous Taylor bubble in a capillary tube is typical of many biological and
engineering systems, such as small-scale reactors and microfluidic devices. Although the
dynamics of a bubble in a Newtonian liquid has been the subject of several studies since the
seminal works of Taylor (J. Fluid Mech., vol. 10, issue 2, 1961, pp. 161–165) and Bretherton
(J. Fluid Mech., vol. 10, issue 2, 1961, pp. 166–188), the case where the fluid exhibits a
shear-thinning behaviour is much less understood. To fill this gap, we study the dynamics
of a bubble that moves in a shear-thinning fluid whose viscosity is described by the Ellis
viscosity model. With this aim, we derive a lubrication model in the film region to identify
the scaling laws for the bubble speed, the film thickness and the pressure drop as a function
of the Ellis number and the degree of shear thinning. Our model generalizes Bretherton’s
results to shear-thinning fluids by identification of a universal scaling law for the effective
viscosity that accounts for the interplay of the zero-shear-rate and shear-thinning effects.
The film thickness follows a 2/3 scaling law with respect to the capillary number based
on the proposed effective viscosity. The ratio between the bubble speed and the average
velocity of the fluid ahead of the bubble is a function of the effective capillary number
only. We show that some portions of the bubble are dominated by the zero-shear-rate effect
discussing the extent to which the use of the power-law viscosity model can be legitimized.
Finally, we study the location of the recirculating vortices ahead of the bubble.

Key words: thin films, bubble dynamics

1. Introduction

The motion of an elongated bubble confined in a small geometry is typical of many
biological and engineering systems. Examples include small-scale reactors, oil recovery,
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Figure 1. Sketch of the confined bubble that moves at speed U through a shear-thinning fluid in a channel of
half-width R; U∞ is the average velocity far from the bubble. The shear-thinning fluid and the gaseous bubble
are depicted in dark blue and white, respectively. The system of coordinates is placed on the right of the figure
just for convenience: in the computation of the rear and front menisci the origin is somewhere in the region
CD; AB and EF are the spherical caps, BC and DE are the film regions, while CD is the uniform film thickness
region.

coating processes, microfluidic and biomedical devices (e.g. Ajaev & Homsy 2006;
Chhabra 2007; Zhang et al. 2014; Lynn 2016; Khodaparast et al. 2017). In the human body
it is important for understanding complex processes such as lung activity (e.g. Grotberg
1994), air embolism, (e.g. Eckmann & Lomivorotov 2003; Suzuki & Eckman 2003) and
targeted microbubbles for drug delivery (e.g. Bull 2005).

A typical set-up that is commonly used to study the dynamics of elongated bubbles is
a horizontal capillary tube of radius R, figure 1. In this setting, viscous forces and surface
tension dominate over buoyancy and inertia. When the bubble translates at a constant
speed, the gas takes a symmetrical bullet shape, commonly called a Taylor bubble, and a
thin film of liquid is maintained between the bubble and the tube wall. Knowledge about
the thickness of the film and its relationship with the bubble speed are crucial pieces of
information for determining the transport rates in practical problems.

So far, a wide range of investigations have focused primarily on understanding the
dynamics of a Taylor bubble in a Newtonian liquid. The first experiments of Fairbrother
& Stubbs (1935) and Taylor (1961) suggested that the thickness of the lubricating film, h,
scales with the square root of the capillary number, h/R = 0.5 Ca1/2 , where Ca = μU/σ

is the capillary number and U, μ, σ and R the bubble speed, the fluid viscosity, the
surface tension and the pipe radius respectively. The seminal work of Bretherton (1961)
demonstrated that h/R = 1.34 Ca2/3 in the limit of small Ca, as supported by several
measurements (Schwartz, Princen & Kiss 1986; Aussillous & Quéré 2000). Thereafter,
many researchers investigated the effect of finite capillary number and inertia (Cox 1962;
Reinelt & Saffman 1985; Aussillous & Quéré 2000; Heil 2001; de Ryck 2002; Khodaparast
et al. 2015; Magnini et al. 2017), surfactants and variable surface tension, (Ratulowski &
Chang 1990; Park 1992; Stebe & Barthés-Biesel 1995; Olgac & Muradoglu 2013; Yu,
Khodaparast & Stone 2017), unsteady flow, (Yu et al. 2018), buoyancy, (Leung et al. 2012;
Atasi et al. 2017; Lamstaes & Eggers 2017) and bubble viscosity, (Chen 1986; Hodges,
Jensen & Rallinson 2004; Balestra, Zhu & Gallaire 2018; Shukla et al. 2019).

In many practical applications the working fluids exhibit a non-Newtonian behaviour
(e.g. Savage et al. 2010; Huisman, Friedman & Taborek 2012). Polymers solutions,
suspensions, emulsions and biological fluids, just to mention a few, behave like
shear-thinning fluids and, therefore, their viscosity is a function of the imposed shear
rate. Specifically, at low shear rates, the shear stresses are proportional to the shear rate
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and the viscosity approaches a constant value, commonly known as the zero-shear-rate
viscosity. At higher shear rates, instead, the viscosity decreases with increasing the
shear rate, exhibiting a power-law behaviour. A decreasing viscosity can persist over
several decades until, at very high shear rates, the viscosity flattens again, approaching
the infinite-shear-rate viscosity. The latter limit is often not considered since fluid
degradation may invalidate the rheological measurement, Bird, Armstrong & Hassager
(1987). Although such features are embedded in several viscosity models, e.g. the
Carreau–Yasuda Carreau (1972) and the Ellis models (Reiner 1965), the models available
for describing the dynamics of a confined Taylor bubble in a shear-thinning fluid often
ignore those limiting behaviours.

Existing studies on the topic assume that the liquid viscosity can be described by
the power-law model (Kamişli & Ryan 1999, 2001; de Sousa et al. 2007; Thompson,
Soares & Bacchi 2010). The theory suggests that the lubricating film scales as h/R ∼
Ca2/(2n+1)

∗ , where n is the shear-thinning index and Ca∗ is a modified capillary number
for power-law fluids. Unfortunately, the power-law model has an empirical nature and
it does not accurately describe the viscosity at small shear rates, leading to large errors
when applied to the multiphase scenario (Picchi et al. 2017, 2018a; Picchi, Ullmann &
Brauner 2018b). Both the local velocity field and integral variables (e.g. pressure drop and
film thickness) are poorly predicted in free-surface flows due to the unrealistically and
unbounded growth of the viscosity at small shear rates. This is confirmed by the work of
Hewson, Kapur & Gaskell (2009) that studied the motion of a Taylor bubble through both
power-law and an Ellis fluids. The power-law model generates inconsistencies in resolving
the low-shear-rate regions of the velocity profile that can be overcome only accounting
for the zero-shear-rate effect, see Hewson et al. (2009). Moreira et al. (2020) carried
out numerical simulations of Taylor bubbles moving in a Carreau fluid at finite capillary
numbers while Kawahara et al. (2015) collected experimental data on a train of Taylor
bubbles in shear-thinning polymer solutions. Also, lubricating films of shear-thinning
liquids have been the subject of investigation in the context of the drag-out problem, i.e.
the Landau & Levich (1942) problem, (Gutfinger & Tallmadge 1965; Tallmadge 1966;
Spiers, Subbaraman & Wilkinson 1975; Afanasiev, Münch & Wagner 2007).

Other works focus on more complex non-Newtonian fluids. Mukundakrishnan,
Ayyaswamy & Eckmann (2008) studied numerically the motion of a gas bubble through
a blood vessel and the blood is described as a Casson fluid; Zamankhan et al. (2012)
and Laborie et al. (2017) investigated yield-stress fluids. The effect of viscoelasticity
was the subject of many theoretical and experimental works (Ho & Leal 1975; Ro &
Homsy 1995; Huzyak & Koelling 1997; Gauri & Koelling 1999; Quintella, Souza Mendes
& Carvalho 2007; Boehm, Sarker & Koelling 2011) including the studies on thin-film
flows of viscoelastic fluids (e.g. Middleman 1978; Campanella, Galazzo & Cerro 1986; de
Ryck & Quéré 1998; Lee, Shaqfeh & Khomami 2002; Pasquali & Scriven 2002; Romero,
Scriven & Carvalho 2006; Ashmore et al. 2008; Bajaj, Ravi Prakash & Pasquali 2008).

However, in all the aforementioned studies, a generalized understanding of the bubble
motion that embeds both the low- and high-shear-rate behaviours is still missing,
including a generalization of the scaling laws for the film thickness and the bubble
speed. To fill this gap, the goal of this paper is to study the dynamics of a confined
Taylor bubble that moves in a shear-thinning fluid and to clarify the competition of the
zero-shear-rate and the shear-thinning effects on bubble characteristics. We propose a
theoretical framework that provides the scaling laws for the film thickness and the bubble
speed and quantifies the interplay between low- and high-shear-rate behaviours. Our model
generalizes Bretherton’s results to shear-thinning fluids by identification of a universal
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scaling law for the effective viscosity and by proposing a generalization of capillary
number that applies to both Newtonian and shear-thinning fluids. We also summarize the
limitations of the power-law viscosity model discussing the extent to which its use can be
legitimized.

With this aim, we derive a lubrication model for a Taylor bubble that moves in a
shear-thinning fluid and whose viscosity is described by the Ellis viscosity model (§ 2).
The Ellis model suits our scope since it allows for the derivation of the analytical velocity
profile in the approximation of unidirectional free-surface flow. We show that the bubble
meniscus obeys a third-order ordinary differential equation for the film thickness (§ 2.3).
The model allows for the calculation of the front and rear menisci and the identification of
the scaling laws for the film thickness, pressure drop and the bubble speed, see § 3. In § 3.2
we show that, if properly re-scaled, the effective viscosity can be described by a universal
law that depends only on the two dimensionless numbers that describes the fluid rheology.
Our results converge to Bretherton’s theory in the Newtonian limit and we prove that
the power-law viscosity model is not an accurate approximation in describing the bubble
dynamics. The appearance of recirculating flow patterns ahead and behind the bubble is
discussed in § 3.5, while pressure drops across the front and the rear menisci and the
interfacial velocity in the film region are presented in Appendices B and C, respectively.
The results obtained shed light on the mechanisms that control the motion of a Taylor
bubble in a realistic shear-thinning fluid.

2. Theoretical derivation

2.1. Problem formulation
We consider a bubble confined in a horizontal planar channel that advances through a
shear-thinning fluid as sketched in figure 1. The bubble is assumed inviscid and translates
at a steady velocity U while, far from the bubble, the liquid moves with average velocity
U∞. We assume that the bubble is sufficiently long so that a region with uniform film
thickness h exists and that gravity forces can be neglected. In other words, we assume that
the macroscopic Bond number is sufficiently small, Bo = ΔρgR2/σ � 1 (Δρ and g are
the density difference and the gravitational acceleration, respectively). We start from the
continuity and Navier–Stokes equations in the shear-thinning fluid without resolving the
velocity field in the gas. We look at equations where inertial forces are unimportant in the
thin film and the problem is controlled by the competition between viscous and surface
tension forces only. The governing equations in the liquid are

∇ · u = 0, (2.1a)

ρ

[
∂u
∂t

+ (u · ∇) u
]

= −∇p + ∇ · τ , (2.1b)

where p and τ are the pressure and the shear stress tensor; u = (u, v) is the velocity vector
with u and v representing the velocity components in the x and y directions, respectively.
The boundary conditions are no slip and no penetration at the channel wall and a free
shear-stress condition at the bubble–fluid interface.

The shear-thinning fluid is assumed to be an incompressible generalized Newtonian fluid
of density ρ and effective viscosity μ, whose constitutive relation can be formulated as

τ = μγ̇ , (2.2)

where γ̇ = ∇u + (∇u)T is the rate-of-strain tensor. Since we are interested in
understanding the interplay between the shear-thinning and the zero-shear-rate effects on
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the bubble dynamics, we chose the Ellis viscosity model (Matsuhisa & Bird 1965; Reiner
1965; Bird et al. 1987). The constitutive law of an Ellis fluid is given by

μ = μ0

1 + (τ/τ1/2)α−1 , (2.3)

where τ = √
1/2(τ : τ ) is the effective shear stress (or the magnitude of the shear-stress

tensor). The model converges to Newtonian viscosity μ0, the zero-shear-rate viscosity,
at small shear rates. The index α represents the degree of shear thinning and it assumes
values α ∈ [1, ∞); the greater the value of α, the greater is the extent of shear thinning.
The constant τ1/2 controls the onset of the shear-thinning effect representing the effective
shear stress at which the viscosity is 50 % of the Newtonian limit. The greater the value of
τ1/2, the greater is the range of shear rates with the Newtonian viscosity. The Ellis model
describes well the viscosity of many aqueous solutions (e.g. carboxymethyl cellulose
and Carbopol solutions), where the typical values of the rheological constants are in the
range α ∈ (1, 3) and τ1/2 = O(10−3 ÷ 10), and the viscosity of many polymers, where
α ∈ (1, 4) and τ1/2 = O(1 ÷ 10), see Bird et al. (1987).

At high shear rates the shear-thinning effect dominates and (2.3) matches the power-law
model (de Waele 1923; Ostwald 1925)

μ = κγ̇ n−1, with κ = μn
0τ

1−n
1/2 , n = 1/α, (2.4)

where γ̇ = √
1/2(γ̇ : γ̇ ) is the magnitude of the shear-rate tensor.

In the next section, we derive a lubrication model for a Taylor bubble when it reaches a
steady state and moves along the tube with constant speed U. Specifically, once formed,
the uniform film thickness h is constant with time in a reference frame that moves at
the bubble speed (x − Ut). This assumption is supported by the numerical simulations
of Moreira et al. (2020) and the experiments of Kawahara et al. (2015). Alternatively, in
problems where the main interest is in characterizing the transient evolution of the bubble,
one should derive an evolution equation for the film thickness in time (see for example
Zhang & Lister 1999; Eggers & Fontelos 2015; Garg et al. 2017). In addition, we assume
that the film thickness remains high enough to justify neglecting the effect of long-range
intermolecular forces (e.g. van der Waals, disjoining pressure). Therefore, the possible
rupture of the film and dewetting of the channel wall due to those destabilizing effects (see
Zhang & Lister 1999; Diez & Kondic 2007; Garg et al. 2017) are out of the scope of this
work.

2.2. Lubrication model
We consider the portions BC and DE of the bubble in figure 1, where the curvature of the
meniscus is established and the interface slope is small, |dyi/dx| � 1, with yi denoting the
location of the interface. The idea is to simplify the governing equations by introducing
a small scaling parameter ε, defined as the ratio of the uniform film thickness h to the
unknown length of the film region along the flow direction, h/ε. This approach is typical
of thin-film lubrication models (Eggers & Fontelos 2015) and, in the limit of ε � 1, it
allows for the identification of the scaling laws in Landau–Levich–Derjaguin–Bretherton
problems (see de Gennes, Brochard-Wyart & Quéré 2003; Stone 2010).
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Assuming that the velocity in the axial direction scales with the bubble speed U, the
following dimensionless variables are introduced

x̃ = x
h/ε

, ỹ = y
h
, ũ = u

U
, ṽ = v

V
, t̃ = εt

h/U
, μ̃ = μ

μ0
, p̃ = p

σε2/h
, (2.5)

where V is the characteristic scale of velocity in the y direction. The continuity
equation (2.1a) suggests that V = εU, and we chose the zero-shear-rate viscosity μ0 as
representative scale for the effective viscosity. The pressure in the film region scales with
the normal pressure that can be estimated as p ≈ σ(d2yi/dx2) ∼ σε2/h. Normalizing the
momentum equations (2.1b) using (2.5) yields

εRe
[
∂ ũ
∂ t̃

+ ũ
∂ ũ
∂ x̃

+ ṽ
∂ ũ
∂ ỹ

]
= − ε3

Ca
∂ p̃
∂ x̃

+ 2ε2μ̃
∂ ũ
∂ x̃

+ ∂

∂ ỹ

[
μ̃

(
∂ ũ
∂ ỹ

+ ε2 ∂ṽ

∂ x̃

)]
, (2.6)

εRe
[
∂ṽ

∂ t̃
+ ũ

∂ṽ

∂ x̃
+ ṽ

∂ṽ

∂ ỹ

]
= − ε

Ca
∂ p̃
∂ ỹ

+ ∂

∂ x̃

[
μ̃

(
∂ ũ
∂ ỹ

+ ε2 ∂ṽ

∂ x̃

)]
+ 2μ̃

∂ṽ

∂ ỹ
, (2.7)

where

Re = ρUh
μ0

, Ca = μ0U
σ

, (2.8a,b)

are the Reynolds and the capillary numbers both based on the zero-shear-rate viscosity.
Assuming that the scaling parameter is small, ε � 1, and that inertial terms can be

neglected, εRe � 1, (2.6) simplifies to

0 = − ε3

Ca
∂ p̃
∂ x̃

+ ∂

∂ ỹ

(
μ̃

∂ ũ
∂ ỹ

)
. (2.9)

Equation (2.9) shows that the viscous stress balances the axial pressure gradient only if
ε3 ≈ Ca and, therefore, the x̃ variable can be expressed in terms of the capillary number
as x̃ = x/hCa−1/3. This allows simplification of (2.7) to ∂ p̃/∂ ỹ = 0, whereby the pressure
is a function of the axial variable only. Note that the model is not applicable near the cap
of the bubble where the curvature scales with the channel half-width R, and the slope of
the interface is not small enough to justify the lubrication approximation. The effective
shear stress reduces to

τ =
√[

μ̃

(
∂ ũ
∂ ỹ

+ ε2 ∂ṽ

∂ x̃

)]2

+ 2ε2
(

μ̃
∂ ũ
∂ x̃

)2

+ 2ε2
(

μ̃
∂ṽ

∂ ỹ

)2

≈
∣∣∣∣μ̃∂ ũ

∂ ỹ

∣∣∣∣ , (2.10)

which is equal to the dimensionless shear stress in the film, τ̃xy ≈ μ̃∂ ũ/∂ ỹ. The
corresponding effective viscosity can be written as

μ̃ = 1
1 + (|τ̃xy|/El)α−1 with El = τ1/2h

Uμ0
= τ1/2/μ0

U/h
, (2.11)

where El is the Ellis number. The Ellis number can be interpreted as the ratio between the
characteristics shear rate of the fluid, τ1/2/μ0, and the representative shear rate in the film,
U/h. When El → ∞ the onset of the shear-thinning effect is delayed to an infinite shear
rate and the model reduces to a Newtonian fluid of viscosity μ0 (and μ̃ = 1), figure 2(a).
We refer to this case as the Newtonian limit. Instead, when the shear rate is sufficiently
high, or El is small such that the Newtonian plateau shrinks to extremely low shear rates,
the shear-thinning effects dominates in (2.11) and the viscosity matches that of a power-law
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10–1

100

100 10210–210–410–6 100

μ̃

10–3
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10–1

100

α = 2

α = 3

α = 2

α = 1.5

α → 1
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El = 10–1

(b)(a)

dũ/dỹ dũ/dỹ
Figure 2. Dimensionless effective viscosity μ̃ = μ/μ0 as a function of the dimensionless shear rate, the Ellis
number, El and the degree of shear thinning, α: (a) α = 2; (b) El = 0.1. The power-law limit is also plotted
(red-dashed line).

fluid with a slope (1 − α)/α, figure 2. As α → 1 the fluid exhibits a power-law behaviour
almost in the entire range of shear rates, while for α = 1, μ̃ = 1/2.

At the interface we ensure the continuity of normal and tangential stresses and the
boundary conditions read

−p̃|η + 2Ca ε−1μ̃
∂ṽ

∂ ỹ

∣∣∣∣
η

=

∂2η

∂ x̃2

∣∣∣∣
η⎡

⎣1 + ε2

(
∂η

∂ x̃

∣∣∣∣
η

)2
⎤
⎦3/2 , with η = yi

h
, (2.12)

∂ ũ
∂ ỹ

∣∣∣∣
η

= 0. (2.13)

Since Ca ≈ ε3 and ε � 1, (2.12) further simplifies to

− p̃|η = ∂2η

∂ x̃2

∣∣∣∣
η

. (2.14)

The assumption that ε � 1 implies that the slope of the interface in the film region is
small, namely dη/dx̃ � Ca−1/3. A formulation of the boundary condition that relaxes
this constraint is discussed in Park & Homsy (1984) and Reinelt (1987).

2.3. Film equation
We integrate (2.9) subjected to (2.13) at ỹ = η and the no-slip condition at ỹ = 0 to obtain
the (instantaneous) velocity profile of shear-thinning fluid

ũ(ỹ) = 1
2

dp̃
dx̃

(ỹ2 − 2ηỹ) + 1
(α + 1)Elα−1

dp̃
dx̃

∣∣∣∣dp̃
dx̃

∣∣∣∣α−1

[(η − ỹ)α+1 − ηα+1], (2.15)
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where ỹ ∈ [0, η]. The velocity profile is composed by a Newtonian and a shear-thinning
parts, reflecting the structure of the Ellis rheological model that can be seen as the sum
of a Newtonian and a power-law viscosity model, see Gutfinger & Tallmadge (1965). The
details concerning the derivation of the velocity profile are listed in Appendix A. Then, we
compute the volume flux by integrating the velocity profile (2.15) over the film thickness

Q̃ =
∫ η

0
ũ(ỹ) dỹ = −1

3
dp̃
dx̃

η3 − 1
(α + 2)Elα−1

dp̃
dx̃

∣∣∣∣dp̃
dx̃

∣∣∣∣α−1

ηα+2, (2.16)

where Q̃ = Q/hU with Q the dimensional flux in the film.
Looking at the problem from a reference frame moving with the bubble at the speed U,

the mass balance between the region of uniform thickness CD and the film region CB (see
figure 1) yields

(0 − U)h = (Q/yi − U)yi. (2.17)
In the region CD the liquid is at rest since η = 1 and the pressure is constant from (2.14).
In terms of dimensionless coordinates, (2.17) becomes

Q̃ = η − 1. (2.18)

Combining (2.16) and (2.18) and using the boundary condition (2.14) to express the driving
force, dp̃/dx̃ = −d3η/dx̃3, we obtain

d3η

dx̃3 + 3
(α + 2)Elα−1

d3η

dx̃3

∣∣∣∣∣−d3η

dx̃3

∣∣∣∣∣
α−1

ηα−1 = 3
η − 1
η3 . (2.19)

Defining ξ = 31/3x̃ = x/[h(3Ca)−1/3] we finally get the following ordinary differential
equation for η

d3η

dξ3︸︷︷︸
I

+ 3α

(α + 2)Elα−1
d3η

dξ3

∣∣∣∣∣−d3η

dξ3

∣∣∣∣∣
α−1

ηα−1

︸ ︷︷ ︸
II

= η − 1
η3 , (2.20)

where the bubble profile η is a function of ξ , α and El only. Equation (2.20) describes
the meniscus between the uniform film and the caps at both the bubble ends in a moving
reference frame (x − Ut). The left-hand side of (2.20) is composed of a Newtonian and a
shear-thinning term, indicated as I and II, respectively.

When the II becomes negligible, (2.20) converges to the classical result obtained by
Bretherton (1961) for a Newtonian liquid,

d3η

dξ3 = η − 1
η3 . (2.21)

We recover the Newtonian liquid either for El → ∞, or for specific combinations of El and
α so that the shear-thinning effect vanishes, see figure 2. Also, when the third derivative
goes to zero, d3η/dξ3 → 0, (2.20) reduces to (2.21), as it will be discussed in detail in
§ 3.1. If we artificially remove the term I from (2.20), we recover the equation for a
power-law fluid

d3η

dξ3

∣∣∣∣∣−d3η

dξ3

∣∣∣∣∣
α−1

= (α + 2)1/αEl(α−1)/α

3
(η − 1)

η2+α
. (2.22)

Equation (2.22) holds only when the shear-thinning term dominates and, assuming that
d3η/dξ3 ≥ 0, i.e. considering the front of the bubble only, (2.22) is equivalent to the one
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derived by Kamişli & Ryan (1999, 2001) for power-law fluids. Although mathematically
correct, the model for power-law fluid leads to non-physical results when integrated
starting from the uniform thickness region and the extent to which its use could be
legitimized will be discussed in § 3.1.

The general solution of (2.20) can be found numerically starting from the region CD
and integrating in the directions of the front and rear menisci. To do that, it is convenient
to discuss few limiting cases where the solution can be obtained analytically (§ 2.4).

2.4. Scaling of the film equation
In regions near C and near D the film thickness approaches a uniform value (yi � h) and
we can write

η ≈ 1 + η1 + · · · with η1 � 1. (2.23)

Upon substituting (2.23) into (2.20) we obtain

d3η1

dξ3 + sign

(
d3η1

dξ3

)
3α

(α + 2)Elα−1 (1 + η1)
α−1

∣∣∣∣∣−d3η1

dξ3

∣∣∣∣∣
α

= η1

(1 + η1)3 . (2.24)

Expanding the two binomials in (2.24) into Taylor series, truncating after the second term
and recalling that η1 = η − 1, we obtain an approximation of the film equation near the
uniform film

d3η

dξ3 + sign

(
d3η1

dξ3

)
3α

(α + 2)Elα−1

∣∣∣∣∣−d3η

dξ3

∣∣∣∣∣
α

= η − 1 for η � 1. (2.25)

If O(3α|d3η/dξ3|α/(α + 2)Elα−1) � 1, (2.25) reduces to

d3η

dξ3 = η − 1 for η � 1, (2.26)

and it admits an analytical solution

η = 1 + aeξ + be−ξ/2 cos

(√
3

2
ξ

)
+ ce−ξ/2 sin

(√
3

2
ξ

)
, (2.27)

where a, b, c are constants. This is the same approximation valid for Newtonian fluids
and it holds also for an Ellis fluid since the third derivative in this region is small,
d3η/dξ3 � 1; this assumption will be justified a posteriori in § 3.1. In the following, we
refer to portions of the bubble where (2.27) applies as the exponential regions, see figure 3.

In regions where η � 1 and the slope of the interface is small enough, dyi/dx � 1 (or, in
terms of dimensionless variables dη/dξ � Ca−1/3), so that the lubrication approximation
holds, (2.20) reduces to

d3η

dξ3 ≈ 0 with η � 1. (2.28)

Integration yields a parabolic behaviour with respect to ξ

η = P
2

ξ2 + Wξ + Z, (2.29)

where P, W and Z are constants to be determined from the numerical solution of (2.20),
see § 2.5. Specifically, the coefficient P is the dimensionless curvature of the meniscus
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Figure 3. Numerical solution (red), the exponential initial condition (dashed black) and the parabolic region
for El = 1 and α = 2 for the (a) bubble front, (b) bubble rear. The solutions have been shifted along ξ to ensure
that the coefficient Q in (2.29) is Q = 0 .

when η � 1, i.e. the second derivative of η with respect to ξ , P = d2η/dξ2. Given El and
α, the value of P can be obtained from the numerical solution far from the uniform film
region for both the front and the rear menisci. The determination of the coefficients W
and Z requires numerical fitting: W is made zero by shifting the solution along ξ , while
Z is fitted from a window that gives, in the Newtonian limit, the same value obtained by
Bretherton (1961) (Z = 2.79 in the front and Z = −0.72 in the rear). The portions of the
bubble where (2.29) applies are referred as the parabolic regions, see figure 3.

2.5. Boundary conditions and numerical solution
The film shape between the uniform film and the caps at both ends is obtained by solving
(2.20) using the fully implicit solver ode15i of Matlab. The front and the rear menisci are
treated separately integrating (2.20) with a different set of boundary conditions.

The front meniscus is obtained by integrating (2.20) starting from somewhere near C
(figure 1) towards positive ξ . We chose to set the origin at ξ = 0, assuming that the uniform
film region extends to ξ → −∞, or, alternatively, that η(−∞) = 1. This means that, near
C, we can approximate the solution with the exponential approximation (2.27). In the front,
the cosine and sine terms in (2.27) are small due to the damping effect of the negative
exponentials, and (2.27) can be simplified as

η � 1 + aeξ . (2.30)

For specified values of El and α, the solution is unique. Starting the integration from ξ = 0
we set a = 10−5 and

η(0) = 1 + a,
dη

dξ

∣∣∣∣
0

= a,
d2η

dξ2

∣∣∣∣∣
0

= a,
d3η

dξ3

∣∣∣∣∣
0

= a. (2.31a–d)

Different values of a result only in a shift in the origin of ξ . The (translated) front profile is
shown in figure 3(a). The exponential solution is also plotted indicating that, as ξ increases,
the numerical solution diverges from (2.30).
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The profile in the rear meniscus is obtained by integrating (2.20) towards negative ξ

starting from the boundary condition η(∞) = 1. Near D, we can approximate the solution
with the exponential function (2.27) that, for negative ξ , can be simplified neglecting the
positive exponential as

η � 1 + be−ξ/2 cos

(√
3

2
ξ

)
+ ce−ξ/2 sin

(√
3

2
ξ

)
. (2.32)

Choosing ξ = 0 as the origin we get

η(0) = 1 + b,
dη

dξ

∣∣∣∣
0

= c

√
3

2
− b

2
,

d2η

dξ2

∣∣∣∣∣
0

= −b
2

− c

√
3

2
,

d3η

dξ3

∣∣∣∣∣
0

= b. (2.33a–d)

In (2.33a–d) there are two disposable constants: b has the effect of shifting the origin
of the bubble profile only and we arbitrarily set the value to b = 10−4. The other constant
determines the curvature of the menisci at η � 1, i.e. for ξ → −∞. It is a common choice
to assume that the curvature in the rear matches the one in the front, see Bretherton (1961),
imposing

d2ηrear

dξ2

∣∣∣∣∣
ξ→−∞

= d2ηfront

dξ2

∣∣∣∣∣
ξ→+∞

. (2.34)

The boundary condition is satisfied by an iterative loop on the constant c in (2.33a–d);
this loop imposes that the second derivative – the curvature – of η in the parabolic region
equals the one of the front meniscus calculated for given values of El and α. A plot of
the calculated rear meniscus is given in 3(b). Differently from the front meniscus that is
monotonic, the rear meniscus develops the typical oscillations. A discussion about the
relaxation of the boundary condition (2.34) is given in Appendix D.

3. Results and discussion

3.1. Characteristics of the front meniscus
We compute the front meniscus as described in § 2.5 aiming at exploring the effect of
the rheology of the shear-thinning liquid on bubble characteristics. Differently from the
Newtonian case, where the profile is uniquely determined by the dimensionless variables
η and ξ , here, the profile also depends on El and α.

The Ellis number controls the onset of the shear-thinning effect. When El → ∞, the
front meniscus converges to the Newtonian limit and the problem does not depend anymore
on α, figure 4(a). Instead, as El decreases, the Newtonian plateau in the viscosity curve
shrinks, see figure 2(a), and the dimensionless curvature of the meniscus d2η/dξ2 when
η � 1 decreases, see figure 4(b). The change in the meniscus shape is an effect of the local
variation in the effective viscosity of the liquid, as demonstrated in figure 5. The effective
viscosity μ̃|w is computed using (2.11) based on the shear rate at the channel wall (ỹ = 0)
defined as

dũ
dỹ

∣∣∣∣
w

= −dp̃
dx̃

η − El1−α dp̃
dx̃

∣∣∣∣dp̃
dx̃

∣∣∣∣α−1

ηα. (3.1)

In the vicinity of the uniform thickness region, the effective viscosity is μ̃|w = 1 since
the fluid is at rest. This means that we can always identify a region of the bubble where
the liquid exhibits a Newtonian behaviour. The existence of a high (Newtonian) viscosity
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Figure 4. Bubble meniscus at the front, (a) and dimensionless curvature, (b), as a function of the Ellis
number for a shear-thinning fluid with α = 2.

region within the uniform film thickness is indeed confirmed by the viscosity field obtained
from numerical simulations by Moreira et al. (2020). To quantify the shear-thinning effect,
the weights of the Newtonian and shear-thinning terms are plotted in figure 5 as

IN = I
I + II , IPL = II

I + II , (3.2a,b)

where I and II refers to (2.20). For El = 10 the shear-thinning term is negligible
over the entire meniscus and the profile is almost indistinguishable from a Newtonian
profile. Instead, for El = 1, 10−1, 10−5 we can identify a region of the bubble where the
shear-thinning term in (2.20) is comparable to the Newtonian one, figure 5(c), or entirely
dominates the solution, figure 5(d). We define the shear-thinning region (depicted in grey)
when IN ≤ 0.95.

The terms (3.2a,b) suggest that the shear-thinning effect is important only when the
film starts growing rapidly before entering the parabolic region. There, the shear rate has
a maximum that corresponds to a minimum in the effective viscosity. As expected, the
lower El is, the lower is the minimum of μ̃|w. Far from the uniform thickness region
where η is large, the third derivative d3η/dξ3 → 0 and, as a consequence, the effective
viscosity reduces rapidly, see (3.1). Although this would imply the tendency of reaching
the Newtonian limit again, we remind that the model is not applicable too far from the
region CD.

The fact that the shear-thinning effect arises only in a small portion of the bubble
indicates that the use of the power-law model for describing the meniscus is physically
incorrect. In particular, since in the vicinity of the uniform film region, the problem
is dominated by the Newtonian term (figure 5), the integration of (2.22) would lead to
non-physical results. The power-law effective viscosity would grow to the infinite near the
origin since dũ/dỹ ≈ 0. The choice made by Kamişli & Ryan (1999) of solving (2.22)
starting from a Newtonian initial condition, but not accounting for the Newtonian term,
does not seem a correct representation of the physics of the problem.
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Figure 5. Front meniscus and effective viscosity computed based on the shear rate at the wall for a
shear-thinning fluid with α = 2 and (a) El = 10; (b) El = 1; (c) El = 10−1; (d) El = 10−5. The Newtonian
region (white) and the shear-thinning region (grey) are highlighted. The insets show the weight of the
Newtonian, IN , and the shear-thinning, IPL, terms in (2.20).

The shear-thinning effect also delays the transition to the parabolic region that is
characterized by a constant dimensionless curvature and d3η/dξ3 ≈ 0, see § 2.4. As El
decreases, the starting point of the parabolic region shifts to higher ξ , as can be seen by
analysis of the rate at which the third derivative approaches a zero value. In the Newtonian
limit,

lim
η→∞

d3η

dξ3 = lim
η→∞

1
η2 → 0, (3.3)

the third derivative in (2.21) decays proportionally to 1/η2. In case the shear-thinning
effect dominates, such as for El = 10−5 in figure 5(d), the third derivative in (2.22) decays
proportionally to 1/η(1+α)/α ,

lim
η→∞

d3η

dξ3 = lim
η→∞

(α + 2)1/αEl(α−1)/α

3
1

η(1+α)/α
→ 0. (3.4)

Since α > 1, the onset of the parabolic region is delayed.
Changes in the degree of shear thinning α result in two different behaviours. When

the shear rate is smaller than 0.2 (the value at which μ̃ = 1/2), the system tends to the
Newtonian limit for α → ∞. Instead, when the shear rate is greater than 0.2, an increase
in α translates in a decrease of the effective viscosity, see figure 2(b). Accordingly, in
figure 6, the front meniscus approaches the Newtonian limit for El = 1 while it shows the
opposite behaviour for El = 10−2. Since the effective shear rate of the problem scales as
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Figure 6. Effect of the degree of shear thinning α on the shape of front meniscus for (a) El = 1 ; (b)
El = 10−2.

γ̇e ∼ 1/El, the two opposing behaviours depend on whether the Ellis number is greater or
smaller of a critical value. For α = 1 we recover a Newtonian fluid with μ̃ = 1/2 and the
meniscus is identical to the one obtained in the Newtonian limit with a change of variables
ξ∗ = ξ/

3√2.
The characteristics of the front meniscus can be summarized looking at the scaling

behaviour of the coefficients in the parabolic solution (2.29). Figure 7(a) shows P as a
function of El and α. When El → ∞ all the curves approach the Newtonian limit and
P = 0.643 as obtained by Bretherton (1961). The curvature of the Newtonian limit is
the maximal curvature that the meniscus can assume. As El → 0, instead, the curvature
decreases significantly and, when α → 1, the shear-thinning effect delays the transition to
the Newtonian limit to much higher El. Figure 7(b) shows the trends for the coefficient Z
in (2.29).

3.2. Scaling of the film thickness and generalization of the capillary number
The model for the film thickness is obtained by matching the curvature of the parabolic
region near B with the curvature of the spherical cap AB, see figure 1. Specifically, near B
the curvature is constant

d2yi

dx2 = P
h

(3 Ca)2/3, (3.5)

while in the spherical cap the curvature scales as d2yi/dx2 ∼ 1/R. By matching the two
curvatures we obtain

h
R

= P(3 Ca)2/3, (3.6)

where P(El, α) is a function of the Ellis number and α only. Differently from the
Newtonian case, the film thickness is determined by the interplay of three dimensionless
numbers, h(Ca, El, α), and it converges to the correlation proposed by Bretherton (1961) in
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Figure 7. Coefficients P and Z in (2.29) that characterize the front meniscus in the parabolic region as a
function of the Ellis number and the degree of shear thinning α. Note that the coefficient P is also the
dimensionless curvature of the meniscus for η � 1, P = d2η/dξ2.

the Newtonian limit. The scaling law for h/R is summarized in figure 8. The film thickness
decreases with decreasing of the Ellis number since the effective viscosity of the problem
diminishes, figure 8(a). Therefore, when the shear-thinning effect dominates (i.e. low El),
the bubble forms a thinner film compared with a Newtonian fluid with the same capillary
number. Variations in the degree of shear thinning α produce two opposite behaviours
depending on whether the effective shear rate (or 1/El) exceeds the critical value, see
8(b,c).

The model for the film thickness (3.6) is still based on the definition of the capillary
number defined with the zero-shear-rate viscosity, see (2.8a,b). It would be desirable to
obtain a formulation of the capillary number that embeds both the zero-shear-rate and the
shear-thinning effects. With this aim, we can recast (3.6) in the following form introducing
the effective capillary number Cae

h
R

= 0.643(3 Cae)
2/3 with Cae = μeU

σ
, (3.7)

where μe is the effective viscosity defined as

μe = μ0

(
P

0.643

)3/2

. (3.8)

A plot of the effective viscosity as a function of the effective shear rate 1/El is provided in
figure 9(a). Since the determination of P requires the numerical solution of (2.20), we use
the numerical results to get a fitting curve for the effective viscosity. The data of figure 9(a)
collapse over the same master curve, figure 9(b), if we define

μe

μ0
=
{

1, if El → ∞,

0.725
17α − 12

5α
El(α−1)/α, if El → 0.

(3.9)
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Figure 8. (a–c) Dimensionless film thickness, h/R, as a function of the capillary number, Ca, the Ellis
number, El, and the degree of shear thinning, α.

The scaling law for El → 0 has been inspired by the definition of the effective viscosity
for a power-law fluid

μ̃ = κ̃(γ̇e)
(1−α)/α with γ̇e ∼ 1

El
, (3.10)

where κ̃ = 0.725(17α − 12)/5α and n = 1/α. Equation (3.9) is the universal scaling for
the effective viscosity for a confined Taylor bubble that moves in a shear-thinning liquid
and it allows for the definition of a generalized capillary number for the problem.

The trends of figure 8 are in a qualitative agreement with the simulations of Moreira
et al. (2020). In particular, the film thickness decreases with increasing of the degree
of shear thinning at a fixed capillary number. Unfortunately, their data cannot be used
to validate our model since the flow rates necessary to define the capillary number are
not reported in the manuscript. Also, the data collected by Kamişli & Ryan (1999) and
by Kawahara et al. (2015) cannot be considered to validate the scaling law for the film
thickness because the rheological data do not include the low-shear-rate behaviour and
only the power-law behaviour has been provided. For a complete validation of our model,
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Figure 9. (a) Effective viscosity as a function of the effective shear rate, 1/El, and the degree of shear
thinning α. (b) Collapsing of all the viscosity curves around the master curve (3.9).

more experiments or simulations performed with realistic shear-thinning fluids would be
valuable and are encouraged.

3.3. Bubble speed
A measure of the ratio between the bubble speed U and the average velocity of the fluid
ahead of the bubble U∞ is a critical parameter in the design of many applications that
involve bubbles and trains of bubbles. We can derive the scaling law for U/U∞ applying
the mass balance to the problem. Specifically, if we write the balance between the open
tube and the uniform film region in a reference frame that moves with the bubble speed U

(0 − U)h = (U∞ − U)R, (3.11)

we obtain
U∞
U

= 1 − h
R

. (3.12)

Combining (3.12) with (3.6) or (3.7) we obtain the scaling law valid for the two-plate
geometry

U
U∞

= 1
1 − P(3 Ca)2/3 = 1

1 − (3Cae)2/3 . (3.13)

The bubble always flows faster compared with the fluid ahead from the bubble, U/U∞ >

1, and, only in the limit of Ca → 0, the speed of the bubble is almost indistinguishable
from U∞, see figure 10. In general, when the shear-thinning effect plays a role (i.e. low
El), the bubble flows slowly compared with a Newtonian bubble with the same capillary
number Ca. The lower the effective viscosity is, the slower is the bubble compared with
U∞. The effect of α is summarized in figure 10(b,c), where we see that increasing the
degree of shear thinning can increase the bubble velocity at El = 1. As expected the
scaling law for U/U∞ converges to the one obtained by Bretherton (1961) for El → ∞.
The trends of figure 10 are in a qualitative agreement with the simulations of Moreira et al.
(2020) where the bubble speed decreases with increasing of the degree of shear thinning
at a fixed capillary number.
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Figure 10. (a–c) Ratio of the bubble speed to the average velocity of the fluid ahead of the bubble, U/U∞,
as a function of the capillary number, Ca, the Ellis number, El, and the degree of shear thinning, α. (d) Value
of U/U∞ as a function of the generalized capillary number, Cae, for the planar two-plate geometry (the case
solved in this work) and its extension to the pipe geometry.

Using the definition of the generalized capillary number Cae defined in § 3.2, the ratio
U/U∞ is monotonic with Cae and all the curves collapse on the same one depicted in
10(d). This analysis can be generalized to the case of a pipe geometry by referring to the
film holdup instead of the film thickness in (3.11). In the case of circular geometry, the
film holdup scales with ∼ [1 − (1 − h/R)2] yielding

U
U∞

= 1
[1 − P(3 Ca)2/3]2 = 1

[1 − (3Cae)2/3]2 . (3.14)

In figure 10(d) we can see that the speed ratio U/U∞ attains a higher value in a pipe
compared with the two-plate geometry.

3.4. Characteristics of rear meniscus and limitations of the lubrication approximation
We compute the profile of the rear meniscus as described in § 2.5. In terms of the curvature
far from the uniform film region, the rear meniscus resembles the same trends of the
bubble front, see figure 11. The main difference is the presence of oscillations in the bubble
profile that stretches along ξ as the shear-thinning effect becomes more important. As the
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Figure 11. (a) Rear meniscus as a function of the Ellis number for a shear-thinning fluid with α = 2. (b) Rear
meniscus as a function of the degree of shear thinning, α, for El = 10−2.

curvature P decreases, the minimum of the profile shifts closer to the channel wall. IN
and IPL show that, similarly to the front, the region in the vicinity of the uniform film
thickness is dominated by the Newtonian term. Instead, there is a competition between the
two near the minimum of the profile, while at ξ → −∞, the shear-thinning term decays
and the problem converges again to the Newtonian one.

Interestingly, the effective viscosity in the rear is not a monotonic function of ξ . Due
to oscillations in the profile, the pressure gradient (dp̃/dx̃ = −d3η/dξ3) changes sign
and thereby inverting locally the direction of the flux. The effective viscosity reflects
this behaviour showing a certain number of spikes in correspondence of such changes
of sign. This is an apparent inconsistency of the model that can be attributed to the
lubrication approximation. In fact, variations in the ξ direction are accounted only as a
first-order approximation in the scale parameter ε, but, in the vicinity of the oscillations,
the assumption that ε � 1 should be relaxed. The effective viscosity μ̃w presented in
figure 12 is the effective viscosity calculated based on the shear rate at the wall neglecting
the effect in the ξ -direction

γ̇ w =
√(

∂ ũ
∂ ỹ

)2

+ 2
(

ε
3√3

∂ ũ
∂ξ

)2

. (3.15)

Equation (3.15) converges to (3.1) when ε � 1. However, in the vicinity of the oscillations
the term ∂ ũ/∂ξ is not of the order one and the effective shear rate needs to be corrected.
A way for estimating the velocity gradient in the axial direction could be to consider the
gradient of the average velocity in the film ∂ ũ/∂ξ ≈ ∂Ũav/∂ξ yielding

O
(

ε
∂ ũ
∂ξ

)
= O

(
ε1−β ∂Ũav

∂ξ

)
, (3.16)

where β is a parameter that gives the order of magnitude of the axial derivative term. In
our analysis, we do not have a way for estimating precisely the magnitude of the axial
derivative, but in figure 13 we show the viscosity profile regularized for different values
of β. Even a small β is sufficient to smooth the viscosity profile. To conclude, differently

918 A7-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.321


D. Picchi, A. Ullmann, N. Brauner and P. Poesio

20

18

16

14

12

10

8

6

4

2

0

100

μ̃|w

μ̃|w

10–1

20

18

16

14

12

10

8

6

4

2

0

100

10–1

20

18

16

14

12

10

8

6

4

2

0

100

10–1

10–2

10–3

20

18

16

14

12

10

8

6

4

2

0

100

10–1

Meniscus

Effective viscosity
Newtonian

Shear-thinning region

1.0

0.5

0
–102

–30 –25 –20 –15 –10 –5 0 –30 –25 –20 –15 –10 –5 0

–30 –25 –20 –15 –10 –5 0 –30 –25 –20 –15 –10 –5 0

–100 –10–2

1.0

0.5

0
–102 –100 –10–2

1.0

0.5

0
–102 –100 –10–2

1.0

0.5

0
–102 –100 –10–2

INIPL

INIPL

IN

IPL
IN

IPL

η

η

ξ ξ

(a) (b)

(c) (d)

Figure 12. Rear meniscus and effective viscosity computed based on the shear rate at the wall for a
shear-thinning fluid with α = 2 and (a) El = 10; (b) El = 1; (c) El = 10−1; (d) El = 10−2. The Newtonian
region (white) and the shear-thinning region (grey) are highlighted. The insets show the weight of the
Newtonian, IN , and the shear-thinning, IPL, terms in (2.20).

from the front meniscus where the viscosity profile is regular, a correction that accounts
for the axial derivative of the velocity in the computation of the effective shear rate is
necessary for a correct interpretation of the rear viscosity field.

3.5. Recirculating flow patterns
In Taylor bubble flow, recirculating flow regions can form ahead of and behind the bubble.
In the low capillary number limit, in fact, the bubble is surrounded by a thin film and
a qualitative sketch of the streamlines in a reference frame attached to the bubble is
provided in figure 14. As long as the film thickness is small, h/R � 1, and the bubble
flows slower compared with the maximum liquid velocity ahead, an external re-circulation
flow pattern (centred at the location y0) is present. However, when the film thickness is
greater than a critical value, the bubble can flow faster than maximum liquid velocity ahead
and, therefore, the external re-circulation regions are not present, as discussed by Taylor
(1961), Giavedoni & Saita (1997), Thulasidas, Abraham & Cerro (1997), Rocha, Miranda
& Campos (2017) and Balestra et al. (2018) for Newtonian fluids. Since a fundamental
understanding of the location of the vortices is a crucial piece of information when trains
of Taylor bubbles in capillaries are used to enhance heat and mass transfer, we compute
the critical film thickness for the appearance of flow re-circulation and the location of the
vortices for the case of shear-thinning fluids.

In a coordinate system attached to the bubble, a recirculating pattern is expected
when the maximal velocity ahead umax∞ exceeds the bubble velocity U, i.e. umax∞ /U > 1
in figure 1. Assuming a fully developed flow ahead of the bubble with average
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Figure 13. Profile of the effective viscosity at the channel wall, μ̃|w, predicted by the lubrication model
(red) and its corrections (dotted and dashed lines), which account for the axial derivative of the velocity for
computing the effective shear rate.
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Figure 14. Qualitative representation of the streamlines ahead of the Taylor bubble in a reference frame
attached to the bubble. The streamlines depicted in red denote the recirculating zone, y0 is the location of
the vortex centre and yd is the dividing streamline.

velocity U∞, the velocity profile reads

ũ∞(Y) = 1
2

dp̃∞
dX

(Y2 − 2Y) + 1

(α + 1)Elα−1∞

dp̃∞
dX

∣∣∣∣dp̃∞
dX

∣∣∣∣α−1

[(1 − Y)α+1 − 1], (3.17)

where

ũ∞(Y) = u∞( y)
U∞

, Y = y
R

, X = x
R

, p̃∞ = p
μ0U/R

, El∞ = τ1/2R
U∞μ0

, (3.18a–e)

are dimensionless variables based on the channel half-width R and U∞. The pressure
gradient in (3.17) is determined numerically satisfying the flow rate constraint∫ 1

0
ũ∞(Y) dY = 1. (3.19)

The maximum of the liquid velocity is at the channel centre (i.e. Y = 1)

ũmax
∞ = −1

2
dp∞
dX

− 1

(α + 1)Elα−1∞

dp∞
dX

∣∣∣∣dp∞
dX

∣∣∣∣α−1

. (3.20)

Differently from the case of Newtonian fluids, where the ratio between the maximal and
the average velocity is 3/2, the shear-thinning effect reduces the ratio umax∞ /U∞ due to the
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Figure 15. (a) Velocity profile ahead of the bubble as a function of the Ellis number for a shear-thinning fluid
with α = 3. (b) Critical film thickness for the appearance of the flow recirculation ahead of the bubble as a
function of El∞ and α.

flattening of the velocity profile in the vicinity of the channel axis, see figure 15(a). The
condition for the appearance of recirculating patterns is

umax∞
U

= ũmax
U∞
U

> 1, (3.21)

and, using (3.12) in (3.21), we can identify the critical film thickness as
h∗

R
<

ũmax − 1
ũmax

. (3.22)

The critical thickness for the appearance of the recirculating patterns depends on El∞
and α as shown in figure 15(b). In the Newtonian limit (for El∞ → ∞), h∗/R = 1/3 in
agreement with Balestra et al. (2018). The shear-thinning effect reduces the critical film
thickness at small El∞, in particular when α is large. The centre of the recirculation zone
y0 can be estimated by looking for the point where the velocity equals the bubble velocity.
In terms of dimensionless coordinates, Y0 = y0/R is found by satisfying ũ∞(Y0) = U/U∞
combined with (3.12). Figure 16(a) shows that, as the shear-thinning effect becomes
important, Y0 shifts closer to the channel wall (for h/R � 1). We can also estimate the
location of the dividing streamline separating the circulating vortex and the liquid flowing
towards the film. The location of the dividing streamline, yd in figure 14, is computed
knowing that the liquid flow rate from y = 0 to y = yd equals the flow rate in the uniform
film region, see Thulasidas et al. (1997) and Picchi et al. (2018b). In fact, the net flow
rate calculated over the vortex region (depicted in red in figure 14) is zero in the moving
reference frame. The mass balance between the uniform film and the portion of the fluid
with non-zero flow rate yields

(0 − U)h =
∫ yd

0
(u∞( y) − U)dy. (3.23)

Casting (3.23) in terms of dimensionless variables and using (3.12) we obtain an equation
for Yd = yd/R

Yd − h/R
1 − h/R

−
∫ Yd

0
ũ∞(Y) dY = 0. (3.24)
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Figure 16. (a) Location of the centre of the recirculating vortices, Y0 = y0/R, ahead of the bubble as a function
of El∞ for a shear-thinning fluid with α = 3. (b) Location of the dividing streamline, Yd = yd/R, as a function
of El∞ for a shear-thinning fluid with α = 3.

Solving (3.24), we obtain that the location of the dividing streamlines scales with
the dimensionless film thickness, Yd ∼ h/R, and it is practically independent on the
shear-thinning effect as long as h/R � 1, figure 16(b). The fact that the recirculating
vortices extend close to the channel wall in the simulations of both Newtonian and
shear-thinning fluids (Balestra et al. 2018; Moreira et al. 2020) suggests that such scaling
could be an universal behaviour. The same arguments proposed in this section also apply
to the region far behind the bubble.

4. Conclusions

In this paper, we study the motion of a confined Taylor bubble in a shear-thinning fluid.
We derive an equation that describes the meniscus profile for an Ellis fluid accounting for
both zero-shear-rate and shear-thinning effects. Our analysis identifies a universal scaling
law for the generalized effective viscosity of the problem that applies to both Newtonian
and shear-thinning fluids, and allows identifying the scaling laws for the bubble velocity,
the film thickness and the pressure drop. In particular, the two-third scaling law for the
film thickness holds only if the capillary number is formulated based on the generalized
effective viscosity, h/R ∼ Ca2

e/3.
We show that some portions of the bubble are dominated by zero-shear-rate effects

(e.g. the vicinity of the uniform film thickness), while near the nose of the bubble, it is
difficult to discern between the two effects. To overcome such difficulties, we quantify
clearly the relative importance of the shear-thinning effect (and the consequent reduction
in the effective viscosity) over the meniscus. Our study also clarifies the limitations of
the power-law viscosity model showing that its use in the Taylor bubble problem leads
to non-physical results. A full rheological characterization, including the low-shear-rate
behaviour of the working fluids, is encouraged in future experiments so that new data can
be used for future validation and extension of the model.

Despite the fact that the motivation of our work is oriented to microfluidic applications,
the scaling relations obtained for the film thickness may serve as a generalization of
the well-known Landau–Levich–Derjaguin–Bretherton problem to the case of inelastic
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shear-thinning fluids. As shown by Stone (2010), there are several practical problems that
involve thin films with a lot of similarities from a fluid mechanics perspectives, such as
many classes of coating problems (e.g. coating a plate by vertical withdrawal from a bath
of liquid or roll coating of a horizontal rotating cylinder partially immersed in a bath
of liquid). Since in all these applications the film thickness is not known a priori, the
identification of such scaling relations is of great importance. Furthermore, the study of the
speed of an isolated Taylor bubble through a shear-thinning fluid can be used to construct
more sophisticated models for trains of bubbles (e.g. slug flows).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
D. Picchi https://orcid.org/0000-0002-2619-104X.

Appendix A. Velocity profile in the film region

Here, we report the derivation of the analytical velocity profile of the shear-thinning
fluid in the film region. Since, in the lubrication approximation, the velocity has only
the component in the y-direction and the pressure depends only on x, ũ = (ũ(ỹ), 0), we
can convert the partial derivative ∂/∂ ỹ in (2.9) to d/dỹ and the pressure gradient to dp̃/dx̃.
We integrate (2.9) subjected to the zero tangential shear at the interface (2.13) obtaining

τ̃xy = dp̃
dx̃

(ỹ − η). (A1)

We multiply (2.11) by the shear rate dũ/dỹ

μ̃
dũ
dỹ

= dũ
dỹ

1
1 + (|τ̃xy|/El)α−1 , (A2)

and then we combine (A1) and (A2) to get

dũ
dỹ

= dp
dx

(ỹ − η) + El1−α dp̃
dx̃

(ỹ − η)

∣∣∣∣dp̃
dx̃

(ỹ − η)

∣∣∣∣α−1

. (A3)

Since (ỹ − η) ≤ 0, we can replace the absolute value with |ỹ − η| = −(ỹ − η) and further
simplify (A3)

dũ
dỹ

= dp̃
dx̃

(ỹ − η) − El1−α dp̃
dx̃

∣∣∣∣dp̃
dx̃

∣∣∣∣α−1

(η − ỹ)α. (A4)

Integrating (A4) subjected to the no-slip condition at y = 0, we obtain the velocity profile
(2.15).

Appendix B. Interfacial velocity

The velocity at the bubble–fluid interface, ui = ũ(η), is given by

ũi = −1
2

dp̃
dx̃

η2 − 1
(α + 1)Elα−1

dp̃
dx̃

∣∣∣∣dp̃
dx̃

∣∣∣∣α−1

ηα+1, (B1)

where dp̃/dx̃ = −d3η/dξ3. The shear-thinning effect reduces the interfacial velocity due
to a decrease in the effective viscosity, figure 17. The interfacial velocity grows in the film
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Figure 17. (a) Interfacial velocity along the bubble profile as a function of the meniscus thickness, η, and the
Ellis number for a shear-thinning fluid with α = 2. (b) Interfacial velocity along the bubble profile as a function
of η and the degree of shear thinning, α, for a shear-thinning fluid with El = 10−2.

region and stabilizes at η � 1, figure 17(a). The limiting value is

lim
η→∞ ũi = 1

2
with ũi = 1

2
η − 1

η
. (B2)

For a correct interpretation of figure 17, recall that the theoretical limit of 1/2 has a
physical meaning only if the film thickness is small compared with the pipe radius,
ηh/R � 1.

Appendix C. Pressure drop

The pressure drop across the bubble can be estimated following the same approach by
Bretherton (1961). The idea is to approximate the bubble profile in the film region with an
effective profile that has constant curvature, so that the Young–Laplace law can be used.

In the front, upon substituting (3.6) into (2.29) we obtain a continuation of the spherical
region through the region BC, figure 1,

ya
i = 1

2
x2

R
+ ZP(3Ca)2/3R. (C1)

Equation (C1) has a tangent parallel to the wall at x = 0. We use the distance to the wall
at x = 0 to compute the approximated curvature

κ = 1
R[1 − ZP(3Ca)2/3]

≈ 1
R

[1 + ZP(3Ca)2/3] (C2)

with Ca � 1 (a Taylor expansion is used to simplify the formula of the curvature). Using
the Young–Laplace law, the dimensionless pressure drop in the front meniscus yields

Δpf

σ/R
=

Δps
f

σ/R
+

Δpd
f

σ/R
= 1︸︷︷︸

static

+ Z0.643(3Cae)
2/3︸ ︷︷ ︸

dynamic

, (C3)

where Δp originates both from the surface tension stresses across the interface (static
pressure drop) and viscous stresses due to the flow in the film region (dynamic
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Figure 18. Dimensionless pressure drop in the front as a function of the generalized capillary number, Cae,
the Ellis number, El, and α.
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Figure 19. Dimensionless pressure drop in the rear as a function of the generalized capillary number, Cae,
the Ellis number, El, and α.

pressure drop). The plot of the dynamic pressure drop is shown in figure 18. The pressure
drop increases with the generalized capillary number Cae, and the effect of El and α

reflects the trends of the dimensionless curvature of the parabolic region.
Similarly, the pressure drop in the rear yields

Δpr

σ/R
= Δps

r

σ/R
+ Δpd

r

σ/R
= 1 + Zr0.643(3Cae)

2/3, (C4)

where Zr is the fitting parameter obtained by shifting the solution in order to get W = 0
in (2.29) and Zr = −0.72 in the Newtonian limit (the same as in Bretherton 1961). The
pressure drop in the rear has an opposite sign with respect to the one at the front, see
figure 19(a) for the case with α = 2 and figure 19(b) for the case with El = 10−1.
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Figure 20. (a) Profile of the bubble at the rear and (b) dimensionless curvature as a function of the constant c
for a shear-thinning fluid with α = 2 and El = 10−1.

Appendix D. Curvature in the rear meniscus

The numerical solution of (2.20) can also be found relaxing the boundary condition (2.34).
Specifically, any value of the constant c in (2.32) corresponds to a solution with a different
dimensionless curvature, P, in the parabolic region, figure 20(a). There are solutions where
the curvature in the rear can be much higher or lower than 1/R. Increasing in P results in
a decrease of the location of the minimum of the bubble wake.
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