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Abstract

In the present paper we consider Fitting classes of finite soluble groups which locally satisfy additional
conditions related to the behaviour of their injectors. More precisely, we study Fitting classes X, 5,
1 ¥= £ £ 5, such that an 3E-injector of G is, respectively, a normal, (sub)modular, normally embedded,
system permutable subgroup of G for all C g J .

Locally normal Fitting classes were studied before by various authors. Here we prove that some
important results—already known for normality—are valid for all of the above mentioned embedding
properties. For instance, all these embedding properties behave nicely with respect to the Lockett section.
Further, for all of these properties the class of all finite soluble groups G such that an X-injector of G has
the corresponding embedding property is not closed under forming normal products, and thus can fail to
be a Fitting class.

2000 Mathematics subject classification: primary 20D10, 20F17.

1. Introduction

In the investigation of Fitting classes of finite soluble groups it seems natural to restrict
oneself to Fitting classes satisfying additional conditions related to the behaviour of
their injectors. For instance, Blessenohl and Gaschiitz [1], Hauck and Kienzle [7],
Lockett [8] and Doerk and Porta [5] studied non-trivial Fitting classes whose injectors
are respectively normal, (sub)modular, normally embedded and system permutable
subgroups of G in each group G e @. These investigations can be generalized by
considering non-trivial Fitting classes X and # of finite soluble groups such that X is
contained in J and an X-injector of G satisfies a given embedding property e in G
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for every group G € 5 (thus by investigating these embedding properties "locally" in
5, the global case being 5 = (3). In this situation we call X an 3e-class, and we use
Ye(X) to denote the class of all groups G € & such that an 56-injector of G satisfies
a given embedding property e in G. Locally normal Fitting classes (£„-classes) were
studied before by various authors (see for instance Hauck [6], Reifferscheid [12]), and
so in the present paper we will concentrate on the—in part considerably weaker—
embedding properties (sub)modularity ((s)mod), normal embedding (ne) and system
permutability (p). Since one of the first results to emerge is that the class Ymod(3£)
is not closed under direct products, and consequently that the concepts of locally
modular and locally normal Fitting classes coincide, in the following we consider
local submodularity instead of local modularity. Studying the above relations we will
frequently concentrate on results valid for locally normal Fitting classes. For instance,
local normality is a property of the corresponding Lockett sections, that is, X is normal
in J precisely when X* is normal in 5"* (see [6, 4.8] or [4, X, 3.3]), and we will see
that this is also true for the other embedding properties.

Further, the class YB(X) of all groups G such that an ^-injector is normal in G
is not—-in general—closed under products of normal subgroups (see [6, 3.2]), and
thus can fail to be a Fitting class. Here, too, an analogous result is true for the
other embedding properties. Even more—and this is in contrast to normality—the
class Yp(3t) is closed under forming products of normal subgroups if and only if it
coincides with the class 6 of all (finite and soluble) groups.

As dual to the investigation of Ye(X), the question on the intersection of $e-
classes—and thus on the existence of a unique minimal fo-class—naturally arises.
While it is known at least for Fischer classes # that the (non-trivial) intersection of
#„-classes is again an Jn-class (see [6, 4.12]), this question is open in general for the
embedding properties submodularity and normal embedding even in the case that all
classes under consideration are Fischer classes or, stronger, subgroup-closed Fitting
classes. In the case of local permutability a negative answer is known for # = & ([4,
IX, 3.14]).

Since—as is well known—local normality between Lockett classes behaves nicely
with respect to the regular wreath product, for the important classes # = 91'+', i € N,
and 5 = &ni • • • &„,, 7Ti,..., nr sets of primes, the existence of a unique minimal
fo-class can be shown ([10, 2.3], [11, 3.1.18]). We will see that local submodularity
too behaves well with respect to regular wreath products, and consequently that an
analogous result is valid in this case. Furthermore, it turns out that for these classes
the smallest 3n-class and the smallest fomod-dass coincide. That the concept of local
submodularity is very close to the concept of local normality is also highlighted by
the fact that these concepts coincide for subgroup-closed Fitting classes, hence for
subgroup-closed Fitting classes X and £ it holds that X is an #„-class precisely when
X is an
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2. Notations and preliminaries

All groups considered in this paper are assumed to be finite and soluble.
Except for denoting the regular wreath product of G and H by G l H and its base

group by G*, we shall adhere to the notation used in [4]. This book is also the main
reference for all results concerning classes of groups.

Recall that a class 5 of groups is called a Fitting class if it is closed under taking
subnormal subgroups (Sn5 = 5) and products of normal subgroups (N05 = $)• The
latter implies that in each group G there exists a unique normal subgroup being
maximal among all normal subgroups of G contained in $, the so-called ^-radical
G^ of G. By a well-known result of Fischer, Gaschiitz and Hartley (see [4, IX, 1.4]),
Fitting classes of finite soluble groups are exactly those classes 5 such that in every
(finite soluble) group G there exists a unique conjugacy class of so-called J-injectors
of G, subgroups U of G such that U n TV* is ^-maximal in N, that is, maximal among
all subgroups of TV contained in #, for all subnormal subgroups N of G. The set of
all ^-injectors of G is denoted by Injs(G).

Let X, 5 be Fitting classes. Recall that X is said to be normal in ^ (^-normal,
3n-class) if 1 ^ X c ^ and an 3£-injector of G is a normal subgroup of G for every
G e ?• Further, we use Yn(X) to denote the class of all groups G such that an
^-injector of G is a normal subgroup of G.

As usual we use 6 , 6^, 'Xl, Vln to denote respectively the class of all (finite soluble)
groups, the class of all (finite soluble) n -groups, the class of all (finite) nilpotent groups
and the class of all (finite) nilpotent 7r-groups, where n denotes a set of primes.

Recall further that the characteristic Char(S^ of a Fitting class 5 consists of all
primes p such that Zp e 5» that this set coincides with the set 7r(3) = Uceff n(G)>
where 7r(G) denotes the set of all prime divisors of \G\, and that Ot^y) C j c &„($)
holds true (see [4, IX, 1.7, 1.9]).

Further, we use for a Fitting class X

f min{r e N | X c W] if it exists,

I oo otherwise,

to denote the nilpotent length of X. (Note that the Fitting class product X%) of
Fitting classes X and 2) denotes the Fitting class consisting of all groups G such that
G/Gx € 2), and set X° = 1 the trivial class, and X' = XX''1 far i e N.)

Lockett ([8]) associated to each Fitting class $ the class $* which by definition
consists of all groups G such that (G x G)y is subdirect in G x G. We collect some
properties of this class in the following theorem (see [4, X, Section 1]):

THEOREM 2.1. Let $ be a Fitting class and G be a group.
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(a) 5* is a Fitting class.
(b) (G x C)s = (G, x G5)((g, g"1) | g 6 G,.)-
(c) G$'/ G$ is abelian.
(d) // V 6 Inj5.(G), r/ien V5 is an g-injector of G.
(e) Lef {&},-<=/ 6e a family of Fitting classes. Then (f l , e / 5.)* = fUz 37-

A Fitting class # is called a Lockett class if J = 5*- For each Fitting class #, we
define 5* = P P I Fitting class and X* = $*} and call (3£ | X* = $*} = {X | ff. c
3t c £*} the Lockett section of £.

By definition, each Q-closed Fitting class (see below) is a Lockett class. In partic-
ular, (3, &„, 91, 91* are Lockett classes.

Radicals and injectors of Lockett classes behave nicely with respect to direct
products (see [4, X, 1.9, 1.33]):

THEOREM 2.2. Let $ be a Lockett class and G, G\, G2 be groups.

(a) (G, x G2)s = (G,)j x (G2)y.
(b) Lef V be an ^-injector of G. Then V = (V <~\ Gi) x (V n G2), in particular
V = Vx x V2 w/iere K e Injy(G,)/or 1 = 1, 2, and every subgroup of this form is an
^-injector of G\ x G2.

If 5 is an No-closed class of groups such that H < G e $, G/CoreG(#) e 91
implies H e $, then # is called a Fischer class, and 3" is a subgroup-closed Fitting
class if it is closed under taking subgroups ( s j = 5).

Recall that by a deep result of Bryce and Cossey ([2, Theorem 1], [3, Theorem 1.1])
subgroup-closed Fitting classes of finite soluble groups are saturated formations.
Consequently, if 5 is a subgroup-closed Fitting class then

Q5 ;= (G I 3 / / e 5 and an epimorphism from H onto G) = $ —

:= (G I 3Nt < G, G/Ni e ff (1 = 1, . . . , r) with W, n • • • n Wr = 1).

Moreover, J is a local formation (see [4, IV, 4.6]), and thus there exists a unique map
F from P to the union of all subgroup-closed Fitting classes (including the empty
class which by convention is closed under every closure operation) such that

F is integrated, that is, F(p) c £ for all p eP, and F is full, that is, F(p) = &p F(p)
for all p € P. F is called the canonical local definition of 5; further, if 5 is of nilpotent
length r < 00, then F(p) = <5p(F(p) n W"1) for all p e P holds true (see [4, IV,
Section 3, Section 4] for detailed information about local formations).
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3. Local (sub)modularity

We recall the definition of a modular subgroup and refer the reader to [13] for
further information about these subgroups.

DEFINITION 3.1. Let G be a group. A subgroup U of G is called modular in G (U
mod G) if the following conditions are satisfied:

(i) (W, U)DV= (W, UD V) for all W, V < G such that W < V.
(ii) (W,U)nV=(U,WD V) for all W, V < G such that U < V.

Evidently, each normal subgroup is a modular subgroup of G but, in general, the
converse does not hold true; for instance, a Sylow 2-subgroup of 53 is modular but not
normal in 53. However, the following characterization of maximal modular subgroups,
that is, subgroups of G being maximal among all modular subgroups of G, indicates
that these concepts are very close to each other.

LEMMA 3.2 ([13, 5.1.2]). A subgroup U of a group G is a maximal modular sub-
group of G if and only if U is a maximal normal subgroup of G or G/ CoreG( U) is a
non-abelian group of order pq (for suitable primes p and q).

It is also possible to characterize arbitrary modular subgroups of a group G by the
structure of the corresponding quotient group G/CoreG(U) (see [13, 5.1.14]). We
will only need a weak form of this statement.

THEOREM 3.3 ([13, 5.1.14]). Let G be a group, and let U be a modular subgroup
ofG. Then G/CoxtG(U) = 51/CoreG([/) x ••• x Sr/CoreG(LT) x T/CoxtG(U),
where r 6 N U {0}, and where for all i, j e [ 1 , . . . , r}:

(a) S,/CoreG((/) e <5Pi&q, is a group of order p"'qit and Z(5,/Corec({/)) = 1
(where qt, pt are (distinct) primes, n, 6 N).
(b) (|S,/Corec(£/)|, \Sj/CoreG(U)\) = 1 = (|S,/CoreG(£/)|, \T/CoxtC(U)\) for

(c) U/CoreG(U) = d / C o r e ^ f / ) x ••• x Qr/Corec(U) x (Tfl U)/CoreG(U),
where Qi/ CoreG( U) is a non-normal Sylow qt-subgroup of 5,-/ CoreG( U).
(d) UP\T is modular and subnormal in G.

DEFINITION 3.4. Let X and # be Fitting classes.

(a) X is said to be modular in $ (^-modular) if 1 ^ X c §" and an ̂ -injector of G
is a modular subgroup of G for all G e # •
(b) We set Ymod(X) = (G I if V elnjx(G), then V is modular in G).
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In [7, Theorem 1] it is proved that the concepts of ©-modularity and ©-normality
coincide. Using Theorem 3.3 we obtain that this is valid in general.

LEMMA 3.5. Let X be a non-trivial Fitting class and G e Ymod{X) \ Ya(X). Then
GxGi YmoA(X).

PROOF. Assume to the contrary that G x G e Ymod(3C), and let V elnjx(G x G).
Then V > F, x F2 > Gx x Gx for suitable Fu F2 e In j^G) . Using Theorem 3.3, we
obtain \G/GX\ = FU=i P"'aim a n d I^i/Gxl = .\Fi/Gx\ = qi • • • qr, where r e N,
Px, . . . , pr, q\,..., qr are pairwise distinct primes, n, > 1, (/>,, m) = 1 = (qit m) for
all i, and |Z(G/GX)I I m.

By [4, IX, 1.1] we obtain \{G xG)x/(GxxGx)\ \ \Z((GxG)/(GxxGx))\ \ m2;
hence, Theorem 3.3 yields qf | |(G x G)/(G x G)x\ for every / 6 { l , . . . , r } .
Consequently, qt \ \V/(G x G)x\. Since Ft x F2 < V, this implies Fx x F2 <
(G x G)x, a contradiction to (#,-, m) = 1. D

THEOREM 3.6. Let X and $ be non-trivial Fitting classes. Then X is modular in 5
if and only ifX is normal in $.

PROOF. Obviously, every ^-normal Fitting class is modular in J . Since by defini-
tion, a Fitting class is closed under products of normal subgroups, thus in particular
under the formation of direct products, Lemma 3.5 yields the assertion. •

In view of Theorem 3.6, we turn our attention to a weaker concept than modularity.

DEFINITION 3.7. Let G be a group. A subgroup U of G is called submodular in G
(U smod G) if there exists a series U = t/i < U2 < • • • < Un = G of subgroups Ui
of G such that Ut is modular in Ui+\ for i = 1 , . . . , n — 1.

Obviously, this series can be chosen in such a way that Ui is a maximal modular
subgroup of f/,+i for every i — I,... ,n — 1.

Let G be a group. Evidently, each modular subgroup of G is submodular in G. The
converse does not hold true in general, so for instance a Sylow 2-subgroup of 53 x 53
is submodular but not modular in S3 x S3.

Detailed analysis of submodular subgroups has been carried out by Zimmermann
(see [14]), and almost all results needed here are taken from this work. The concepts of
submodularity and (sub)normality, too, are very close to each other ([14, Lemma 4]):

LEMMA 3.8. Let U be a submodular subgroup of a group G. If K denotes the unique
minimal normal subgroup of U such that U/K is abelian of square-free exponent,
then K is subnormal in G.

In particular, if U € Injx(G) for a Fitting class X, then U/Gx is abelian of
square-free exponent.
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Groups in which all Sylow subgroups are submodular can be characterized (see
[14, Theorem 4]). We need only a weak form of this result:

LEMMA 3.9. Let p,q be primes, q \ p - 1 , andlet G € &p&qbe suchthat G/F(G)
is an elementary abelian group. Then all Sylow subgroups of G are submodular
subgroups of G.

DEFINITION 3.10. Let X and # be Fitting classes.

(a) X is said to be submodular in # (^-submodular, dsmod-class) if 1 / X c J and
an ^-injector of G is a submodular subgroup of G for all G e J .
(b) We set Yimod(X) = (G | if V 6 Injx(G), then V is submodular in G).

Obviously, the relation of local normality implies that of local submodularity. As
shown by Hauck and Kienzle (see [7, Theorem 2]) the converse also holds for £ = S .
But in general, local submodularity is a relation different from local normality. To
prove this, we use a Fitting class constructed by Menth in [9], which we denote by
9Jl(p, 3) (where p is a prime such that p s 1 mod 3) and which is contained in the
class il of all (finite) supersoluble groups. We will not present the (complex) definition
of this class, but only the following statements used here ([9,4.2, 4.3]):

THEOREM 3.11. Let 9Jl(p, 3) be as described in [9].

(a) VJl(p, 3) is a Fitting class such that 6P x 6 3 C Wl(p, 3) c 6 P 6 3 n i l
(b) IfGe DJl(p, 3), then G/F(G) is an elementary abelian 3-group.

PROPOSITION 3.12. Let V3l(p, 3) be as described in [9]. Then 9 t6 3 is submodular,
but not normal in 9t9Jt(/7, 3).

PROOF. (1): Let G be a group contained in *MK(p, 3). Then F(G)P3 is an 9163-
injector of G (where P3 e Syl3(G)). Let T be an ^-injector of G£,m, where £3(9T)
denotes the Fitting class of all groups H such that an 9t-injector of H contains a Sylow
3-subgroupof//(see[4,IX,Section 1]). According to [4, IX, 1.22], TP3 e Inj^e^G)
for a suitable Sylow 3-subgroup P3 of G. Set N = G&}(<jt)- By [4, IX, 4.12] T = f] Tq

where Tq e Sy\q(CN(Oq,(F(N)))). In particular, Tp is a normal subgroup of F(G)TP,
and consequently Tp = OP(G). Obviously, Oq(G) = Tq for q ^ p, 3. Hence we
obtain 7P3 = F(G)Pi, and the proof is complete.

(2): 9I63 is submodular in 9t9JT(p, 3): Let the notation be as in (1). It follows
from Theorem 3.11 and Lemma 3.9 that F(G)Pi/F(G) is a submodular subgroup
of G/F(G); thus (1) yields the assertion.

(3): V\m(j>,3) g Yn(9t63): Suppose that VlMip, 3) c Yn(0t63). By Theo-
rem 3.11 there exists a group G 6 VR{p, 3) \ &p x 6 3 . Let g be a prime ^ p,3.
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Then (1) implies G = Zql G/F{Zq l G) e <53GP f~l 6 P 6 3 , a contradiction to the
choice of G. •

In the treatment of locally normal Fitting classes it is possible to confine oneself
to the case that both classes are Lockett classes, thus to classes which are easier to
handle than arbitrary Fitting classes (see [6,4.8] or [4, X, 3.3]). The next result shows
that this remains valid for locally submodular Fitting classes.

THEOREM 3.13. Let X and # be Fitting classes. Then the following statements are
equivalent:

(i) X is submodular in 3".
(ii) X is submodular in 3"*-

(iii) X* is submodular in $*.

PROOF, (i) => (iii): Let G 6 #*, V e lnjx.(G). According to Theorem 2.1 and
Theorem 2.2 the group (V x V)x is an X-injector of G x G and by assumption
we obtain that (V x V)x H (G x G) j is submodular in (G x G)y. Moreover,
submodularity is invariant under epimorphisms, hence Theorem 2.1 yields that V is a
submodular subgroup of G and the proof is complete, (iii) =» (ii): Since by definition
and Theorem 2.1 the class Ysmod(3£*) is contained in Ysmod(£), the assertion follows,
(ii) =>• (i): Obvious. D

Note that this proof can be easily transferred to every embedding property e of
injectors such that Ye(X) is closed under normal subgroups, e is invariant under
epimorphisms and such that the class Yt(X*) is contained in the class Ye(X).

Hauck has shown in [6, 3.2] that the class YB(X), which obviously is closed under
taking subnormal subgroups, in general fails to be closed under products of normal
subgroups. Consequently the question on the existence of a unique maximal Fitting
class contained in YB(X) is open in general.

Unfortunately, the same is valid for the class Ysm(Xi(3£):

PROPOSITION 3.14. Let X be a Fitting class. Then Ysmod(X) need not be closed
under forming normal products.

PROOF. Let p and q be prime numbers such that p \ q — 1. Set H = Zp i Zp =
/ / , / / 2 where H{ = Z* and H2 = Zp. Consider the group G = Zq x H. Then
G = (Z*HU Z*H2), and Z*H{ and Z*H2 are subnormal Ysrood(6p)-subgroups of G
according to Lemma 3.9. But evidently, OP(G) = 1 and an 6P-injector of G is a
non-abelian subgroup of G. By Lemma 3.8, this implies G £ Ys m o d(6p). •

PROPOSITION 3.15. Let X be a Lockett class. Then Ysmod (X) is closed under forming
direct products.
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PROOF. Evidently, it is sufficient to prove that Gx x G2 e Ysmod(X) provided that
G\, G2 € Ysmod(JE). Thus, let G\, G2 be groups belonging to YsnKXj(X) and set
G = Gi x G2. Theorem 2.2 states that Vx x V2 e lnjx(G) where V, 6 Injx(G,), and
that each X-injector of G is of this form (/ = 1, 2). V, smod G,, consequently there
exists a series V,\ = D'Q < D\ < • • • < D'n = G, such that Dj is a maximal modular
subgroup of Dj+l for all j = 1 n, — 1; i = 1, 2. We assume that nx < n2 and
consider the series VI x V2 = Dx

a x D2 < Dl
0 x D2 < D\ x D2 < • • • < Dl

nt x D2
ni <

Dl
ni x D2

]+l < Dl
ni x D2

ni+2 < • • • < D\t x D2
n2 = G, x G2. Now, repeated application

of Lemma 3.2 yields the assertion. •

Let J be a non-trivial Fitting class, and let JE,, i € / , denote ^-submodular Fitting
classes. Whether or not J is contained in Ysmod ( f]i€l Xj)—and thus in particular
whether or not there exists a unique minimal 3-submodular Fitting class—is an open
question. It is open even in the case when 5 is a Fischer class (or, stronger, when #
is an subgroup-closed Fitting class). Compared to local normality, in this situation
it seems to be harder to describe the structure of a minimal counterexample for two
reasons. On the one hand, submodular subgroups do not, in general, form a lattice.
On the other hand, there is nothing known, in general, about the relation between
X,-injectors and p) j e / Xrinjectors of a group G.

Nevertheless, in some important cases it is possible to obtain a positive answer to
the above mentioned question. This comes mainly from the validity of the following
lemma.

LEMMA 3.16. Let X and $ be Lockett classes such that X is submodular in $.
Further let G be a group contained in X and p,q (p ^ q) be primes such that
G l Zp e X and G i Zq i Zp e $. Then GiZqeX.

In particular, if<S is a Lockett class such that ®&p C X and <£>&p&q&p C J,
then<3&pSq c l

PROOF. Let P denote a non-abelian p -group. According to [4, X, 2.7], G\ZP € X
implies that G l P belongs to X. Assume that GlZq <£ X. Then [4, X, 2.1] yields
(GlZqi P)x = {G*)*. Thus by [4, IX, 1.6] we obtain (G*)*P e Injx(G l Zq i />), a
contradiction to Lemma 3.8. The final assertion follows from [4, X, 2.13] •

Using a corresponding lemma we have shown in [10, 1.3, 2.3, 2.7] that for the
important Fitting classes W + 1 , i € N, and <5Pl • • • &Pr, pt primes, and for Fitting
classes satisfying a certain extension property with respect to wreath products a unique
minimal ^-normal Fitting class exists and furthermore can be described explicitly.
Essentially analogously to [10, 2.7]—but with more technical effort—the existence
and an explicit description of a unique minimal ^-normal Fitting class can be shown
for Fitting classes J = 6 T l • • • <&nr, where nx,..., nr are arbitrary sets of primes ([11,
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3.1.18]). Since, as shown above, local submodularity too behaves nicely with respect
to regular wreath products, we obtain using essentially the same arguments as in case
of local normality:

THEOREM 3.17. (a) Let X be a non-trivial Fitting class, i e N. Then X is an
mi+1-submodular Fitting class if and only i/W c p c OT+1.
In particular, there exists a unique minimal 9tI+1-submodular Fitting class, namely
(W)..
(b) Let 8. be an sa-closed class of groups such that G I Zp e Rfor all G e & and

for all p e TT(8.). Set $ = Fit(£)*, the smallest Lockett class containing &. Then a
Fitting class X is submodular in 5 if and only ifX* = $.
In particular, there exists a unique minimal ̂ -submodular Fitting class, namely 3v
(c) Let ii\,..., nr be arbitrary sets of primes and set $ = 6*, • • • ©*,- Then there

exists a unique minimal ̂ -submodular Fitting class, which can be explicitly given as
described in [11, 3.1.18].
In particular, ifn\,...,nr are sets of primes such that it\ D • • • Dnr ^ 0, then 3* is
the unique minimal ̂ -submodular Fitting class.

In particular, for all classes 'S described above the unique minimal ^-submodular
Fitting class coincides with the unique minimal ^-normal Fitting class. Furthermore,
for classes 5 as described in (a) and (b) a Fitting class X is submodular in $ if and
only ifX is normal in £.

Closing this section we prove that the concepts of local submodularity and local
normality between Fitting classes coincide provided that both classes are subgroup-
closed Fitting classes. Whether or not it is sufficient for this fact to require the
subgroup closure of the larger class, remains an open question.

LEMMA 3.18. LetXbe a Fitting class and set n = n(X). If$ is a subgroup-closed
Fitting class contained in Ysmod(X), then $ != &„&„'.

PROOF. Assume not. Let G be a group of minimal order contained in 3" \ &„<&>„,.
Then G has a unique maximal normal subgroup N, and a unique minimal normal
subgroup M, and N and G/M belong to &„&„<• Moreover, On(G) = 1 and O"'(G) =
G. Consequently [4, XI, 2.4, 2.5] is appliable and we obtain 6 ,6 , , c j c Ysmod(£)
for primes q en' and p e n, a contradiction to Lemma 3.8. •

THEOREM 3.19. Let X, 5be subgroup-closed Fitting classes suchthat^c. Ysmod(3£).
Then 5" C YB(X).

In particular, X is submodular in 5 if and only ifX is ^-normal.
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PROOF. Since each G e $ is of finite nilpotent length, it is sufficient to prove the
assertion for a subgroup-closed Fitting class fi of bounded nilpotent length. This will
be done by induction on r := /(#). The cases r = 0, 1 are obvious.

r > 1: According to Lemma 3.18, we may assume that n(fi) c n(X). Let X and
F denote the" canonical local definitions belonging to X and $, respectively. Then
analogously to the proof of [12, 2.7], we obtain F(p) n^l1"1 c F(p) c Ysmod(X(p))
for every p e it. By the inductive hypothesis this implies F(p) n W~' c Yn(X (/?)),
and [12, 2.5] yields F(p) = &p(F(p) n Of"1) c Yn(X(p)). [12, 2.7] completes the
proof. •

4. Local normal embedding

We recall the definition of a normally embedded subgroup and refer the reader to
[4,1, Section 7] for further information about these subgroups.

DEFINITION 4.1. Let G be a group and U be a subgroup of G.

(a) Let p be a prime. £/ is called p -normally embedded in G (U p -ne G) if a Sylow
/j-subgroup C/p of U is a Sylow p-subgroup of some normal subgroup of G, that is,
Up e Sylp((Up

G)).
(b) U is called normally embedded in G (t/ne G) if (/ is p-normally embedded in
G for all primes p.

Typical examples of normally embedded subgroups of a group G are the Hall
subgroups of a normal subgroup of G.

DEFINITION 4.2. Let X and # be Fitting classes.

(a) X is called normally embedded in 5 (^-normally embedded, fine-class), if 1 ^
X c §• and an ^-injector of G is normally embedded in G for all G e J .
(b) We set Yne(£) = (G | if V e Injx(G), then V ne G).

6-normally embedded Fitting classes have been studied in detail by Lockett [8] and
Doerk and Porta [5] (see [4, IX, Section 3]). By [4, IX, 3.4(a)], each Fischer c lass -
thus in particular each subgroup-closed Fitting class—is an ©-normally embedded
Fitting class, and according to [4, IX, 2.9, 3.7], the class 3 3 = (G | Soc3(G) < Z(G))
is a Lockett class which is not normally embedded in &.

Recall the following properties of normally embedded injectors (which are due to
Lockett, see [8, proof of 3.3.1, 3.3.6]).

LEMMA 4.3. Let X, 2) and 5" be Fitting classes, let G be a group and p a
prime.
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(a) IfN <GandVnN p-ne N, then VON p-ne G where V e Injx(G).
(b) / / V e InjjgCG) and W e Injx( V) such that V p-ne G and W p-ne V, then W

p-ne G.
In particular, YK(X*) C YK(X).

Since obviously Yne(3£) = sn Yne(3t) and normal embedding is a property invariant
under epimorphisms, we obtain that this relation too is a relation of the corresponding
Lockett sections.

REMARK 4.4. Let X and 5 be Fitting classes. Then the following statements are

equivalent:

(i) X is normally embedded in #•
(ii) X is normally embedded in 5*-

(iii) X* is normally embedded in $*.

Evidently, the class Yne(3£) is closed under forming direct products provided that
X = X*. But in general, Yne(3£) fails to be a Fitting class:

PROPOSITION 4.5. X = 3 3 = (G \ Soc3(G) < Z(G)) is a Fitting class such that

PROOF. Assume to the contrary that Yne(£) = No Y K (2) ; then Remark 4.4 yields
Yne(jC) = YneCE)*. We will prove that this implies G l Zp e Ym(X) for every
G € Yne(£) and every prime p . Then [4, X, 3.7] yields Yne(3f) = 6 , a contradiction.

By a result proved independently by Lockett and Frantz (see [4, IX, 4.19]),
the radicals and injectors of X are known: Gx — CG(SOC 3 (G)) and Injx(G) =
{CG(CSoC3(C:E)(G3)) I G3 e Syl3(G)} for every group G.

Let G be a group contained in Yne(3E), and let p be a prime; then G l Zp e Yn(X):
p = 3: Let V be an 3£-injector of G l Zp. If V < G*, there is nothing to prove.

Thus we may assume that V ^ G*. Then V = F*ZP for a suitable F e Injx(G).
If q ^ p, then evidently V q-ne G\Zp. Since according to the above mentioned
description of V, a Sylow 3-subgroup of V is a Sylow 3-subgroup of GI Zp as well,
we obtain that V 3-ne GlZp.

p £ 3: Put H := G i Zp and assume that H $ YX(X). Let V € lnjx(H). Since
p £ 3, G; = //3 € Syl3(//) (where G3 € Syl3(G)). Since G £ £ , it follows from [4,
X, 2.1] that HX = G*X< G*, and consequently that G* > Soc3(f/X) > (Soc3(Ga:))*.
If V = C//(CSoc3(//I)(G3)) ^ G*, then there exists an element

(xu ... ,xp;z) €
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such that z ^ 1. By construction of the regular wreath product this implies
CsocjfdjC^) = 1, a contradiction.

Hence we obtain V < G*, and Lemma 4.3 yields V ne H, a final contradiction. •

It is an open question, whether or not Y^iX) = NoYne(3t) implies that X is
normally embedded in & in the case that X is an arbitrary Lockett class. It is open as
well whether the intersection of J^-classes is again an #„,-class (provided that it is
non-trivial). This question is open even in the case that J = 6 .

5. Local permutability

Recall that a Hall system of a group G is a set E of Hall subgroups of G such
that for each set of primes n c n(G), E contains exactly one Hall n-subgroup of G,
and that H, K e E implies HK = KH (that is, H and K permute). Recall further
that to each Hall system E there exists a unique corresponding Sylow basis—a set
B-z of pairwise permutable Sylow p-subgroups of G, exactly one for each p e n(G),
together with the identity group (see [4,1, 4.8]).

We recall the definition of a system permutable subgroup and refer the reader to [4,
I, Section 4] for further information about these subgroups.

DEFINITION 5.1. Let G be a group and U a subgroup of G and let E denote a Hall
system of G. Then U is called Tu-permutable if UH - HU for all H e E.

We say that U is system permutable in G (U sp G) if there exists a Hall system E
of G such that U is E-permutable.

To obtain E-permutability of a subgroup U of G, it is sufficient to require that U
permutes with the corresponding Sylow basis, that is, U is E-permutable if and only
HUH = HU for every H e flE ([4,1, 4.26]).

Obviously, each normal subgroup of a group G is system permutable in G and ac-
cording to [4,1,7.10], each normally embedded subgroup, too, is a system permutable
subgroup of G.

DEFINITION 5.2. Let X and 5 be Fitting classes.

(a) X is called permutable in # {^-permutable, $p-class), if 1 ^ X c $ and an
X-injector of G is system permutable in G for all G € #•
(b) We set Yp(£) = (G | if V e Injx(G), then V sp G).

Since a normally embedded subgroup of a group G is system permutable in G,
every ^-normally embedded Fitting class is permutable in #. (The converse does not
hold in general, as shown in [4, DC, 3.15].) In particular, every Fischer class—and
consequently every subgroup-closed Fitting class—is an (3-permutable Fitting class.
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In 1972, Dark published an example of a Fitting class which is not permutable in 6
(see [4, IX, 5.19]).

In 1980, Doerk and Porta proved that a Fitting class 5 is permutable in & precisely
when J* is (5-permutable (see [4, X, 1.39]), and using essentially the same arguments
we obtain that YP(3E*) c YP(X) for an arbitrary Fitting class X. Since further YP(X) =
sn YP(X) and system permutability is a property invariant under epimorphisms, we
conclude:

REMARK 5.3. Let X and # be Fitting classes. Then the following statements are
equivalent:

(i) X is permutable in #•
(ii) X is permutable in $*.

(iii) X* is permutable in #*.

Evidently, the class YP(X) is closed under under forming direct products provided
that X = X*. But, in general, YP(X) fails to be a Fitting class:

PROPOSITION 5.4. Let X be a Lockett class, let G e YP(X) and let p be a prime.
ThenGlZp e YP(X).

In particular, Yp(X) = No Yp(X)for an arbitrary Fitting class X if and only ifX is
permutable in &.

PROOF. Suppose that the first assertion holds. Then, by Remark 5.3, YP(X) =
Yp(Xy = YP(X*). Hence we may assume that X = X*. [4, X, 3.7] implies that
YP(X) = 6 , and the additional remark is valid as well.

To prove the first assertion we put H = G l Zp. Let F be an 3E-injector of H. If
F < G*, then it follows by the choice of G and by the construction of the regular
wreath product that F is system permutable in H, and we are finished. Thus we may
assume that F £ G* and consequently that F = V*ZP for some V e Injx(G). By
assumption, V* is a system permutable subgroup of G*. Let E = {G* | it c TT(G)}

denote a corresponding Hall system of G*. Then by construction of the regular wreath
product, Zp < NH(U*) for every subgroup U of G. Consequently, F permutes with
G*nZp e Hall^(//) where it is a set of primes containing p. If JT C P\{p], then
G*n e Hall^(//), and F permutes with G*. Observe further that Eo := {G*ZP | n c
P, p e it] U {G* | n c P, p g n] forms a Hall system of H; hence the proof is
complete. D

Thus also the question on a unique maximal Fitting class contained in YP(X) is
open in general. The (non-trivial) intersection of ^-permutable Fitting classes is not,
in general, ^-permutable, not even in the case that 5 = 6 (see [4, IX, 3.14]).
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