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A Pointwise Estimate for the Fourier
Transform and Maxima of a Function

Ryan Berndt

Abstract. We show a pointwise estimate for the Fourier transform on the line involving the number

of times the function changes monotonicity. The contrapositive of the theorem may be used to find

a lower bound to the number of local maxima of a function. We also show two applications of the

theorem. The first is the two weight problem for the Fourier transform, and the second is estimating

the number of roots of the derivative of a function.

It is a classical result of Dirichlet that if f is a function of bounded variation on

the circle, then the Fourier coefficients, f̂ (n), are O(1/n) [9, p. 128], [10, p. 57]. We

present here an inequality that implies a similar result for the Fourier transform on

the line. Each time a real function changes from increasing to decreasing, we say that

the function crests. We show an estimate for the Fourier transform of a function in

terms of the number of times the function crests.

This paper consists of two theorems and two applications. The first application

estimates the number of roots of the derivative of a function, and the second appli-

cation is a weighted Fourier norm inequality.

We first make a quick note on terminology and notation. We use the terms

increasing and decreasing in the wider sense; f (x) ≡ 1 is both increasing and

decreasing everywhere. We define the Fourier transform by the formula f̂ (z) =∫
f (x)e−ixz dx. Whenever we take the Fourier transform of a function, we assume

that f ∈ L1 so that f̂ (z) is defined for all z ∈ R. We use the letter C to denote a con-

stant whose value may change at each appearance. Finally, we say that two sets have

almost disjoint support if the intersection of their supports has Lebesgue measure

zero.

We provide a precise definition of crests below, but the reader may want to think

of them as local maxima for the time being.

Theorem 1 If f ∈ L1 is nonnegative and # crests( f ) = N, then

| f̂ (z)| ≤ 4N

∫ 1/z

0

f ∗(x) dx

for all z > 0.

Here f ∗ is the decreasing rearrangement of f . As usual, it is defined by f ∗(x) =

inf{α > 0 : |{t : | f (t)| > α}| ≤ x}, where | · | of a set represents the Lebesgue
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measure of that set. We note that if f is also bounded, then the theorem implies that

f̂ (z) is O(1/z), as in the case of Fourier series ([9, p. 128]).

In an example below we demonstrate that the appearance of the N in the the-

orem cannot be removed, and, in fact, appears as the correct order of magnitude.

Therefore, we are able to turn our viewpoint and use the contrapositive to predict

the number of times that the function will crest. Precisely, the contrapositive is the

following.

Theorem 2 If f ∈ L1 is nonnegative and

Q(z) =
| f̂ (z)|

4
∫ 1/z

0
f ∗(x) dx

> N

for some z > 0, then # crests( f ) > N.

We prove this theorem below. We note that the function Q is continuous since f̂

is continuous and the integral is absolutely continuous. So, if Q(z) > N for some z,

then it is greater than N in a neighborhood of z. Application 1 shows how we may

use Theorem 2 to estimate the number of roots of the derivative of a function f .

Definition 1 A nonnegative function f is said to crest once if there exists a point b

such that f (x) is increasing for x < b and decreasing for x > b. In this case we write

# crests( f ) = 1.

Definition 2 We say that a nonnegative function f crests N ≥ 1 times if it can be

written as the sum of no fewer than N nonnegative functions with almost disjoint

support, each of which crests once. That is,

# crests( f ) = min
{

N ∈ N : f =

N∑

i=1

fi , fi ≥ 0 al. disj. supp., # crests( fi) = 1
}
.

If the set above is empty, then we say that # crests( f ) = ∞.

The sum of two disjoint characteristic functions like f (x) = χ[0,1](x) + χ[2,3](x)

crests twice. If f is zero on the negative axis and decreasing as x grows, then f crests

once. For example,

f (x) =

{
0 for x ≤ 0,

1/x for x > 0,

has one crest. A constant function has one crest, and if f is a strictly increasing

function, # crests( f ) = ∞.

Sometimes the number of crests equals the number of local maxima of a func-

tion. Any condition on a function that forces it to be locally strictly increasing and

decreasing near a maximum will imply that the number of crests equals the number

of local maxima. For example, if f is a smooth function such that f ′(x) = 0 implies

f ′ ′(x) 6= 0, then # crests( f ) equals the number of local maxima of f .
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Proof of Theorem 2 This is really just the contrapositive of Theorem 1. Suppose

f ∈ L1 is nonnegative and Q(z) > N for some z > 0, then by Theorem 1,

# crests( f ) 6= N. Either # crests( f ) > N or # crests( f ) < N. If # crests( f ) < N,

then it must be possible to write f as the sum of fewer than N functions, each with

one crest, with almost disjoint supports. But, then, by the theorem, Q(z) < N for all

z > 0, a contradiction. Hence, # crests( f ) > N.

We prove Theorem 1 by first proving two lemmata. We start by considering the

case where f is a decreasing function and use this to bootstrap to the case of a fi-

nite number of crests. We note that by L1[0,∞) we mean the space of all integrable

functions that are zero on the negative axis.

Lemma 1 If f ∈ L1[0,∞) is nonnegative and decreasing, then

(1) | f̂ (z)| ≤ 2

∫ 1/z

0

f (x) dx

for all z > 0, and 2 is the best constant.

Proof Since f is decreasing, we may adjust it on a set of measure zero so that it is

left continuous. In fact, since f is a decreasing element of L1 we may assume without

loss of generality that f is left continuous. Hence, there exists a Borel measure µ such

that f (x) = µ([x,∞)). Fixing z > 0 we write

f̂ (z) =

∫ ∞

0

f (x)e−ixz dx =

∫ ∞

0

∫

[x,∞)

dµ(t)e−ixz dx

=

∫ ∞

0

∫ t

0

e−ixz dx dµ(t) =

∫ ∞

0

1 − e−tz

iz
dµ(t),

where the change of order in the integration is justified because f ∈ L1. Since
∣∣∣∣
1 − e−itz

iz

∣∣∣∣ =
2| sin(tz/2)|

z
≤ 2 min(t, 1/z),

we have

| f̂ (z)| ≤ 2

∫ ∞

0

min(t, 1/z) dµ(t).

Now, the integral on the right is the integral in (1), because

∫ 1/z

0

f (x) dx =

∫ 1/z

0

∫

[x,∞)

dµ(t) dx

=

∫ 1/z

0

∫ t

0

dx dµ(t) +

∫ ∞

1/z

∫ 1/z

0

dx dµ(t)

=

∫ ∞

0

min(t, 1/z) dµ(t).

The fact that 2 is the best constant follows from taking f = χ[0,π] and z = 1 so

that | f̂ (z)| = 2 = 2
∫ 1/z

0
f .
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Remark 1 Although the proof above provides the best constant, it might be hard to

intuit. We provide a sketch of another proof whose result, once known, provides mo-

tivation for the lemma and its proof above. This alternative proof does not provide

the best constant.

Let S f (z) =
∫∞

0
f (x) sin(xz) dx be the sine transform of f . We may write this as

an alternating series

S f (z) =
1

z

∞∑

k=0

(−1)k

∫ (k+1)π

kπ

f (x/z)| sin x| dx =
1

z

∞∑

k=0

(−1)kbk,

where bk =
∫ (k+1)π

kπ
f (x/z)| sin(x)| dx ≥ 0. Since f is decreasing, bk is a decreasing

sequence. Therefore, by a standard alternating series estimate,

0 ≤ b0 − b1 ≤ zS f (z) ≤ b0,

showing that 0 < S f (z) ≤
∫ π/2z

0
f (x) dx. This implies that |S f (z)| ≤ π

2

∫ 1/z

0
f (x) dx.

The same technique can be applied to the cosine transform, where the constant in the

analogous inequality is 3π/2. Since f is zero on the negative axis, | f̂ (z)| = |C f (z) −
iS f (z)| ≤ π

√
10/2

∫ 1/z

0
f (x) dx. Here π

√
10/2 ≈ 5, so this constant is not as good.

Lemma 2 If f ∈ L1[0,∞) is nonnegative and crests once at b > 0, then

(2) | f̂ (z)| ≤ 2

∫ b+1/z

b−1/z

f (x) dx

for all z > 0.

Proof We may write f = g1 + g2 where g1 is supported in (−∞, b] and increasing

over its support, and g2 is supported in [b,∞) and decreasing over its support. If we

let h(x) = g1(b − x), then h is decreasing, and we may apply (1) to h to get

|ĥ(z)| ≤ 2

∫ 1/z

0

h(x) dx = 2

∫ b

b−1/z

g1(x) dx.

Since ĥ(z) = e−ibz ĝ1(−z), we have |ĥ(z)| = |ĝ1(−z)| = |ĝ1(z)|. Hence,

|ĝ1(z)| ≤ 2

∫ b

b−1/z

g1(x) dx.

Similarly, we let h(x) = g2(x + b). Then h is decreasing and we may apply (1) and

the fact that |ĥ(z)| = |ĝ2(z)| to get |ĝ2(z)| ≤ 2
∫ b+1/z

b
g2(x) dx. We apply the triangle

inequality to f̂ = ĝ1 + ĝ2 to finish the proof.
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Proof of Theorem 1 We define

f1(x) =

{
0, for x < 0;

f (x) for x ≥ 0;
f2(x) =

{
0, for x < 0;

f (−x) for x ≥ 0,

so that f (x) = f1(x) + f2(−x) and f1, f2 ∈ L1[0,∞). Let N j = # crests( f j). Since the

supports of f j overlap only at x = 0, N = N1 + N2. Also, there exist functions f j,i

such that 0 ≤ f j,i(x) ≤ f j(x) ≤ f (x), # crests( fi, j) = 1, and f j(x) =
∑N j

i=1 f j,i(x).
Applying the linearity of the Fourier transform and the fact that the modulus of the

Fourier transform of a real function is even, we have | f̂ (z)| = | f̂1(z) + f̂2(−z)| ≤
| f̂1(z)| + | f̂2(z)|. Supposing that the functions f1,i and f2,i have bi and ci , respectively,

as their cresting points, we have

| f̂ (z)| ≤ 2

(
N1∑

i=1

∫ bi +1/z

bi−1/z

f1,i(x) dx +

N2∑

i=1

∫ ci +1/z

ci−1/z

f2,i(x) dx

)

with the help of repeated applications of (2). For any Lebesgue measurable set E,∫
E

f ≤
∫ |E|

0
f ∗; see Bennett and Sharpley [2, p. 44]. Thus,

| f̂ (z)| ≤ 2

(
N1∑

i=1

∫ bi +1/z

bi−1/z

f (x) dx +

N2∑

i=1

∫ ci +1/z

ci−1/z

f (x) dx

)

≤ 2

(
N1∑

i=1

∫ 2/z

0

f ∗(x) dx +

N2∑

i=1

∫ 2/z

0

f ∗(x) dx

)

≤ 4N

∫ 1/z

0

f ∗(x) dx,

finishing the proof of the Theorem 1.

Example 1 In this example we show that the N in Theorem 1 cannot be removed

and appears as the correct order of magnitude. Precisely, we show that given N ≥ 1,

there exists a function f ∈ L1[0,∞) with 3N crests such that

Q(z) =
| f̂ (z)|

4
∫ 1/z

0
f ∗(x) dx

> N

for some z > 0. We take f to be of the form

f (x) =

∞∑

k=0

ckχ[k,k+1](x).

We let c0, c2, c4, . . . , c2(3N−1) be 1, and we let all other ck be zero. The Fourier trans-

form of our function is given by

f̂ (z) =
1

z

∞∑

k=0

ck

[
sin(kz + z) − sin(kz)

]
− ick

[
cos(kz) − cos(kz + z)

]
,
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and the decreasing rearrangement is given by

f ∗(x) =

{
1 for 0 ≤ x < 3N,

0 otherwise.

Now, f is a function with 3N crests, but if we take z = (2l + 1)π, l ∈ N, then

f̂ (z) =
−2i

z
(c0 + c2 + c4 + · · · ) =

−6Ni

z
,

and if z is also greater than 1/3N,
∫ 1/z

0
f ∗(x) dx = 1/z. Hence, for large enough

z = (2l + 1)π,

Q(z) =
6N/z

4/z
= 1.5N > N.

Application 1 In view of this example, we can use Theorem 2 to estimate the num-

ber of roots of the derivative of a function.

Suppose f is a smooth function, where f ′(x) = 0 implies f ′ ′(x) 6= 0, so that the

derivative crosses the x-axis at each of its roots. In this case, the number of crests is

equal to the number of local maxima of f . Now, if f is integrable and has N local

maxima, then f has at least 2N − 1 local extrema and f ′ has at least 2N − 1 roots.

Hence, we may formulate the following application of our theorem.

Corollary 1 Suppose f ∈ L1 is nonnegative, smooth, and f ′(x) = 0 implies

f ′ ′(x) 6= 0. If Q(z) > N for some z > 0, then f ′ has at least 2N − 1 real roots.

Application 2 In this application we show how we can apply the heart of Theo-

rem 1, appearing in inequality (1), to a norm estimate for the Fourier transform. The

norm estimate we have in mind is the “two weight problem for the Fourier trans-

form”. Part of this problem is finding functions u and v and a constant C such that

(3)

(∫
| f̂ (z)|qu(z) dz

)1/q

≤ C

(∫
| f (x)|pv(x) dx

)1/p

for all f , where the right-hand side is finite and the Fourier transform is suitably de-

fined. Several authors, including Benedetto and Heinig [1], Heinig and Sinnamon[3],

and Jurkat and Sampson [5] have made sizable inroads, but no general conditions on

u and v, both necessary and sufficient, are known.

However, if in (3), we replace the weighted Lp spaces with weighted Lorentz spaces,

quite complete results exist, thanks largely to the works of Sinnamon [8] and Be-

nedetto and Heinig [1, p. 18]. The weighted Lorentz spaces Λp(w) and Γp(w) are

respectively defined to be the set of all nonnegative, measurable functions defined on

[0,∞) such that ‖ f ‖p
Λp(w) :=

∫∞

0
f ∗pw < ∞ and ‖ f ‖p

Γp(w) :=
∫∞

0
f ∗∗pw < ∞,

where f ∗∗(x) =
1
x

∫ x

0
f ∗. Taking f ∈ L1 ∩ L2 with p, q ∈ (0,∞), Sinnamon [8]

found necessary conditions and sufficient conditions on nonnegative u(t) and v(t)

such that

(4) ‖ f̂ ‖Λq(u) ≤ C‖ f ‖Γp(t p−2v(1/t))
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by exploiting the unweighted version of this inequality due to Jodeit and Torchinsky

[4, Theorem 4.6]. When q = 2 and 0 < p ≤ 2 the conditions that Sinnamon

gives are both necessary and sufficient [8, §5]. Benedetto and Heinig [1, p. 18] found

necessary and sufficient conditions on u and v such that

(5) ‖ f̂ ‖Λq(u) ≤ C‖ f ‖Λp(v).

Our corollary below shows that for decreasing functions, the boundedness of a

Hardy-type operator implies the two weight Lebesgue inequality (3).

Corollary 2 Let p, q ∈ (0,∞). Let f ∈ Lp(v) and suppose f ∈ L1[0,∞) is nonneg-

ative and decreasing. If there exists a constant C such that the weighted inequality for

the Hardy operator

(6)

(∫ ∞

0

(∫ z

0

f (x) dx

)q
u(1/z)

z2
dz)

)1/q

≤ C

(∫ ∞

0

f (x)pv(x) dx

)1/p

holds, then

(∫ ∞

0

| f̂ (z)|qu(z) dz

)1/q

≤ C

(∫ ∞

0

f (x)pv(x) dx.

)1/p

.

That is, there exists a constant C such ‖ f̂ ‖Lq(u) ≤ C‖ f ‖Λp(v) for f decreasing.

Necessary and sufficient conditions on u and v such that (6) holds are well known,

both in the case of general functions f as well as for decreasing functions f . The case

of general functions is due to the work of many authors; one can consult Maz’ja [6]

or Benedetto and Heinig [1, p. 6] as references. Sawyer discovered necessary and

sufficient conditions such that (6) holds for decreasing functions [7, Theorem 2].

Although the corollary only applies to decreasing functions f , it has the advantage

of estimating the Lq(u) norm of the Fourier transform as opposed to the norm of the

decreasing rearrangement of the Fourier transform as in (4) and (5). These are, in

general, not comparable. This is simply because the decreasing rearrangement de-

fined with respect to Lebesgue measure and the weight function u are incompatible.

For example, if we take the function u(x) = χ(1,∞)(x) and

g(x) =





x, for x ∈ [0, 1];

2 − x, for x ∈ (1, 2];

0, otherwise,

so that g∗(x) = −.5x + 1, then ‖g‖Λp(u) = ‖g∗‖Lp(u) < ‖g‖Lp(u). The corollary

provides us with an estimate for ‖ f̂ ‖Lq(u) which may in fact be larger than ‖ f̂ ‖Λp(u).

Proof of Corollary 2 By (1) and the fact that f is decreasing, we have for z > 0

| f̂ (z)| ≤ C

∫ 1/z

0

f (x) dx.
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Hence, by changing variables and applying the assumption we have

(∫ ∞

0

| f̂ (z)|qu(z) dz

)1/q

≤ C

(∫ ∞

0

(∫ 1/z

0

f (x) dx

)q

u(z) dz

)1/q

= C

(∫ ∞

0

(∫ z

0

f (x) dx

)q
u(1/z)

z2
dz

)1/q

.

≤ C

(∫ ∞

0

f (x)pv(x) dx

)1/p

.
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