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Abstract

Stable water isotope records of six firn cores retrieved from two adjacent plateaus on the northern
Antarctic Peninsula between 2014 and 2016 are presented and investigated for their connections
with firn-core glacio-chemical data, meteorological records and modelling results. Average
annual accumulation rates of 2500 kg m−2 a−1 largely reduce the modification of isotopic signals
in the snowpack by post-depositional processes, allowing excellent signal preservation in space
and time. Comparison of firn-core and ECHAM6-wiso modelled δ18O and d-excess records
reveals a large agreement on annual and sub-annual scales, suggesting firn-core stable water iso-
topes to be representative of specific synoptic situations. The six firn cores exhibit highly similar
isotopic patterns in the overlapping period (2013), which seem to be related to temporal changes
in moisture sources rather than local near-surface air temperatures. Backward trajectories calcu-
lated with the HYSPLIT model suggest that prominent δ18O minima in 2013 associated with ele-
vated sea salt concentrations are related to long-range moisture transport dominated by westerly
winds during positive SAM phases. In contrast, a broad δ18O maximum in the same year accom-
panied by increased concentrations of black carbon and mineral dust corresponds to the advec-
tion of more locally derived moisture with northerly flow components (South America) when the
SAM is negative.

1. Introduction

The northern Antarctic Peninsula (AP) is a highly promising, but challenging site for paleo-
climate studies. On the one hand, high accumulation rates (>2000 kg m−2 a−1) allow the pres-
ervation of usually rapidly dissipating chemical species in the snowpack (e.g. halogens,
hydrogen peroxide), with temporal and spatial variations in concentration serving as indica-
tors of climate and environmental changes (Fernandoy and others, 2012; Thomas and
Tetzner, 2019). On the other hand, the strongly maritime character of the northern AP climate
reduces or even blurs the seasonal cyclicity of stable water isotopes measured in firn and ice
cores (Hoffmann-Abdi and others, 2021a). Therefore, the well-established interpretation of
stable oxygen and hydrogen isotopes as proxies for the condensation temperature at the pre-
cipitation site (Dansgaard, 1964) has limited applicability to the northern AP. Instead, factors
such as sea-ice variability and the formation of inversion layers during periods of sea-ice
coverage need to be considered (Fernandoy and others, 2018).

The orographic characteristics of the AP create differences, e.g. in air temperature, precipi-
tation and accumulation rates on relatively small spatial scales. The up to 2000 m high
mountain chain that stretches along the AP acts as a barrier for precipitating air masses
generally reaching the AP from the west, dividing it into a warmer and moister western side
and a colder and drier eastern side (Vaughan and others, 2003; Carrasco and others, 2021).
While the western side receives small to moderate amounts of precipitation on a high percentage
of days per year, on the eastern side occasional extreme precipitation events due to incursions of
moist air from the north play an important role in the annual snow accumulation (Turner and
others, 2019). Accumulation rates show a strong west–east gradient across the AP, decreasing
from ∼3000 kgm−2 a−1 on the western side to ∼500 kgm−2 a−1 on the eastern side (Thomas
and Tetzner, 2019). Recent studies have highlighted the importance of atmospheric rivers for
the AP region which can induce extremely high temperatures and deliver large amounts of
precipitation (Maclennan and others, 2022), leading to intense surface melt events (Wille and
others, 2019) and the destabilization of ice shelves (Wille and others, 2022).

The temporal variability of the westerly circumpolar vortex extending from the surface to
the stratosphere dominates both, short- and long-term changes in atmospheric circulation of
the Southern Hemisphere mid-high latitudes (Thompson and Wallace, 2000; Thompson and
Solomon, 2002; Perren and others, 2020). The zonal strength and position of the belt of
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tropospheric westerlies is determined by the phase of the
Southern Annular Mode (SAM) which is the primary mode of
atmospheric circulation variability at high southern latitudes
(Limpasuvan and Hartmann, 2000; Thompson and Wallace,
2000; Marshall, 2003; Lee and others, 2019). When the SAM is
in its positive phase, the circumpolar westerlies are strengthened
and shifted poleward as the polar vortex contracts. Furthermore,
the flow is more zonal, reducing the meridional heat and moisture
exchange (Limpasuvan and Hartmann, 2000; Thompson and
Wallace, 2000; Thompson and Solomon, 2002). Concurrently,
the Amundsen Sea Low (ASL) deepens and is shifted to the
south as well as to the east (Bellingshausen Sea sector), resulting
in a stronger northwesterly flow across the AP (Fogt and others,
2012; Hosking and others, 2013; Raphael and others, 2016).
The ASL is a climatological low-pressure centre located in the
area of the Bellingshausen-Amundsen and Ross Seas between
60°–80°S and 170°E–62°W (Turner and others, 2013; Hosking
and others, 2016). Its strength and particularly its longitudinal
position influence the variability of the meridional wind field
over this sector (Hosking and others, 2013). The axis of the west-
erly wind belt is usually located south of the northernmost end of
the AP during positive SAM phases. Therefore, the AP experi-
ences less advection of cold and dry air masses from the south
in such periods (Thompson and Solomon, 2002).
Contemporaneously, the transport of warm and moist air masses
from more northerly latitudes of the Southern Ocean towards the
western coast of the AP is facilitated, leading to increased precipi-
tation and warmer than average conditions (Thompson and
Solomon, 2002; Orr and others, 2004; Marshall and Thompson,
2016; Marshall and others, 2017). However, the steep orography
of the AP forms a precipitation shadow on the eastern side, caus-
ing precipitation to decrease when the SAM is positive (Marshall
and others, 2017). During a negative SAM phase, opposite anom-
alies of the circumpolar westerlies and the ASL prevail.
Specifically for the AP, the then stronger meandering and thus
more meridional westerly flow can cause either warm-air advec-
tion from the north, e.g. from the South Pacific Ocean, or cold-air
advection from the south, i.e. from the Antarctic interior. The
concurrent weakening of the circumpolar westerlies also favours
the transport of more local moisture towards the northern AP
(Schmidt and others, 2007) as well as air-mass advection from
the Weddell Sea in the East.

Here we examine six firn cores drilled on the northern AP in
three consecutive years, from 2014 to 2016, for common signals in
their stable water isotope composition. We include firn cores from
Plateau Laclavere (LCL; 63°27′S, 57°45′W, ∼1100 m above sea
level [a.s.l.]) and Plateau Louis Phillipe (LP; 63°37′S, 58°27′W,
∼1400–1500 m a.s.l.). Both plateaus are located at the ice divide
of the northern AP that receives moisture primarily from the
Bellingshausen-Amundsen Sea, but also from the South Pacific
Ocean, the South American continent and occasionally the
Weddell Sea (Fernandoy and others, 2012, 2018). LCL has been
investigated by a Chilean-German research team since 2008
(Fernandoy and others, 2012, 2018; Hoffmann-Abdi and others,
2021a), while LP was explored for the first time in 2016. LCL is
a 3 km wide and 6 km long, flat ice cap with annual accumulation
rates of more than 2000 kg m−2 a−1 located ∼19 km south-east of
the Chilean station Bernardo O’Higgins (OH; 12 m a.s.l.; Fig. 1).
LP is located ∼40 km south of LCL (Fig. 1).

Previous studies have shown that stable water isotopes in snow
and firn from LCL are not related to local near-surface air tem-
peratures due to the strongly maritime climate of the northern
AP, local post-depositional processes and the influence of sea-ice
conditions (Fernandoy and others, 2012, 2018; Hoffmann-Abdi
and others, 2021a). A correlation between δ18O of precipitation
and near-surface air temperatures was only found for OH station

for the period 2008–2014. This correlation varies considerably
depending on the season (Fernandoy and others, 2018).

This paper aims to improve the interpretation of subannual
stable water isotope records obtained from snow and firn on the nor-
thern AP, and to define their relationship to meso- and large-scale
atmospheric circulation patterns. For this purpose, we (1) intercom-
pare the stable water isotope composition of different firn cores to
determine whether common patterns can be identified in the
records, (2) investigate the spatial and temporal variability in the iso-
topic records through model-data-intercomparisons, (3) assess sig-
nal preservation and post-depositional processes and (4) test how
the isotopic signals relate to intra-annual synoptic and atmospheric
circulation patterns using backward trajectory modelling.

2. Methodology

2.1 Field work

Five of the six firn cores (OH-7, OH-9, OH-10, OH-11 and
OH-12) were drilled on LCL between 2014 and 2016. One core
(LP-01) was retrieved from LP in 2016 (Fig. 1, Table 1). Cores
OH-7 and OH-9 were obtained using a mechanical 9 cm diameter
drilling device (Rufli auger; Fernandoy and others, 2012). All other
cores were drilled using a portable solar-powered and electrically
operated ice-core drill (Backpack Drill; icedrill.ch AG). The cores
OH-7, OH-9 and OH-10 were collected at almost the same loca-
tion, while OH-12 was recovered ∼500m further east and
OH-11 ∼1.5 km further southeast (Supplementary Fig. S1). The
drill site of LP-01 is located ∼250–300m higher compared to the
LCL cores. The cores were stored at the Chilean Antarctic Station
Professor Julio Escudero on King George Island, South Shetland
Islands, and then shipped for further processing to the Alfred
Wegener Institute, Helmholtz Centre for Polar and Marine
Research (AWI) in Bremerhaven, Germany, or the Universidad
Nacional Andrés Bello (UNAB) in Viña del Mar, Chile.

2.2 Laboratory analyses

Firn cores OH-9, OH-10 and OH-12 were already analysed for
their density and stable water isotope composition by
Fernandoy and others (2018) and Hoffmann-Abdi and others
(2021a), respectively. In addition to the pre-existing data
(Fernandoy and others, 2017; Hoffmann-Abdi and others,
2021b), density profiles of cores OH-7 and LP-01 were obtained
at the AWI in Bremerhaven using X-ray microfocus computer
tomography with a measurement resolution of <1 mm (ICE-CT;
Freitag and others, 2013). Subsequently, the two cores were sub-
sampled at 0.05 m resolution and analysed for their stable water
isotope composition at the ISOLAB Stable Isotope Facility of the
AWI in Potsdam, Germany. The measurements were performed
with cavity ring-down spectrometers L2130-i and L2140-i
(Picarro Inc.) coupled to auto-samplers (L2130-i: PAL HTC-xt,
CTC Analytics AG; L2140-i: Picarro Autosampler, Picarro Inc.).
For each sample, six repeated injections were used, from which
the first three were discarded. Raw data correction for linear drift
and memory effects was carried out according to van Geldern
and Barth (2012). Subsequently, the data were calibrated by linear
regression using four different in-house standards that have been
calibrated to the international VSMOW2 (Vienna Standard Mean
Ocean Water)/SLAP2 (Standard Light Antarctic Precipitation)
scale (Gröning and others, 2007). Stable water isotope ratios are
reported in per mil (‰) vs VSMOW2. Precision of the measure-
ments is ±0.1‰ for δ18O and ±0.6‰ for δD.

Firn core OH-11 was processed at the UNAB. A density profile
was constructed by section-by-section determination of the core
volume and weight resulting in an average resolution of 0.31 m.
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The core was then subsampled at 0.05 m resolution for stable
water isotope analysis carried out at the UNAB Stable Isotope
Laboratory (LAI). Measurements were conducted with an off-axis
integrated cavity output spectrometer (TLWIA 45EP; Los Gatos
Research) using ten repeated injections for each sample, from
which the first four were discarded. Each sample was measured
twice on different days. Raw data were processed with the software
LIMS (Laboratory Information Management System; Coplen and
Wassenaar, 2015), which includes correction for linear drift and
memory effects and subsequent normalization to the
VSMOW2/SLAP2 scale (Gröning and others, 2007). Data nor-
malization was done using three calibrated in-house standards
and one international USGS standard (USGS49). Precision of
the measurements is ±0.1‰ for δ18O and ±0.8‰ for δD.

For all cores, the d-excess (d-excess = δD− 8⋅δ18O; Dansgaard,
1964) was calculated based on the calibrated δ18O and δD values.
The d-excess is considered an indicator of the conditions in the
moisture source region. Accordingly, the d-excess for water vapour
evaporating from the ocean decreases as relative humidity increases
and sea surface temperature decreases (Merlivat and Jouzel, 1979;
Uemura and others, 2008; Pfahl and Sodemann, 2014).

Firn core OH-9 was analysed for chemical impurities at the Ice
Chemistry Laboratory of the British Antarctic Survey (BAS) in
Cambridge, UK (Supplementary Table S2). Major ions (Cl−,
Br−, F−, NO3

−, SO4
2−, Na+, K+, Mg2+, Ca2+) and methane sulfonic

acid (MSA) were determined using a Dionex reagent-free ion
chromatography system (ICS-2000). Furthermore, hydrogen per-
oxide (H2O2) was measured on the BAS Continuous Flow

Analysis (CFA) system following the methods in Grieman and
others (2022).

Firn core OH-12 was additionally analysed in very high reso-
lution (better than 10 mm) on the CFA system of the Trace
Chemistry Laboratory of the Desert Research Institute (DRI) in
Reno, Nevada, USA, according to methods described by
Röthlisberger and others (2000) and McConnell and others
(2002, 2007). In total, more than 20 chemical elements were mea-
sured using two Thermo Finnigan Element2 High
Resolution-Inductively Coupled Plasma-Mass Spectrometry
(HR-ICP-MS) instruments (Supplementary Table S2). Here we
use previously published data on concentrations of black carbon
(BC; Hoffmann-Abdi and others, 2021c), an indicator of biomass
burning (Bond and others, 2007; McConnell and others, 2007),
and sea-salt sodium (ssNa+; Hoffmann-Abdi and others,
2021d), along with measurements of other sea salt tracers,
including Ca2+, Sr2+ and Cl−, and mineral dust tracers, i.e. rare
earth elements (REEs) such as Dy, Ce and La (Gabrielli and
others, 2010; Wegner and others, 2012).

2.3 Firn-core dating

For firn core OH-12, an age model was constructed by
Hoffmann-Abdi and others (2021a). Cores OH-9 and OH-10
have previously been dated by Fernandoy and others (2018)
based on similarities in the seasonal variability of measured firn-
core d-excess profiles and d-excess time series synthetically
derived from meteorological observations. However, since

Figure 1. (a) Overview of the study area and (b) location of the drill sites of all firn cores retrieved from Plateau Laclavere (LCL; OH-7 to OH-12) and from Plateau
Louis Phillipe (LP; LP-01) on the northern Antarctic Peninsula between 2014 and 2016. Green dots indicate the location of the Antarctic stations Bernardo O’Higgins
(OH), Bellingshausen (BH) and Esperanza (EP). Blue dots mark the location of the ERA5 and ECHAM6-wiso grid points closest to the OH-12 drill site on LCL.
Coordinates and altitudes of OH, BH and EP stations as well as of the ERA5 and ECHAM6-wiso grid points are given in Supplementary Table S1 (figure modified
from Hoffmann-Abdi and others, 2021a).

Table 1. Details on drill locations of the six firn cores retrieved from the northern Antarctic Peninsula in 2014, 2015 and 2016

Firn core OH-7 OH-9 OH-10 OH-11 OH-12 LP-01

Coordinates 63°27′13.2′′S
57°45′22.8′′W

63°27′09.9′′S
57°45′21.4′′W

63°27′09.7′′S
57°45′21.6′′W

63°27′22.2′′S
57°46′41.6′′W

63°27′25.0′′S
57°45′14.5′′W

63°37′26.0′′S
58°27′45.8′′W

Altitude (m a.s.l.) 1130 1130 1130 1130 1090 1388
Depth (m) 15.31 11.65 10.17 20.44 19.93 21.38
Drilling date 24/01/2014 28/01/2014 25/01/2015 28/01/2015 14/01/2016 14/01/2016
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Hoffmann-Abdi and others (2021a) suggested that the age mod-
els of these cores contain a dating error of +1 year, we did not
use them. Instead, we re-dated OH-9, for which high-resolution
glacio-chemical data are available, by applying annual layer
counting (ALC) to the H2O2 profile and confirming the results
with measurements of MSA (Fig. 2a). Details on the
ALC-procedure applied to OH-9 are provided in the
Supplementary Method S1. The ALC-based age model com-
prises two full years, 2012 and 2013, with an estimated dating
uncertainty ranging between ±1month in the upper part of the
core and ±5 months in the bottom section (Fig. 2a;
Supplementary Method S1). To further improve the
ALC-based age model of OH-9, we accounted for precipitation
intermittency at the study site following the method previously
employed for OH-12 (for details see Hoffmann-Abdi and
others, 2021a; Supplementary Fig. S2). The precipitation-
weighted age scales of OH-9 and OH-12 (Fig. 2b) are then
used for inter-comparison of isotopic and glacio-chemical
records and for statistical analysis. We use OH-12 as reference
core because it covers the longest period and its age model is

the most sophisticated. The other cores, including OH-10,
remain undated for this study.

2.4 Datasets and data analysis

Based on the density measurements of OH-9 and the derived age
model, annual snow accumulation rates were calculated and com-
pared to those obtained from OH-12 (Hoffmann-Abdi and
others, 2021a). Density profiles and calculated accumulation
rates along with meteorological data (local near-surface air tem-
perature, surface pressure) were then used to model depth-
dependent diffusion lengths for each of the six firn cores across
their entire length following the approach described by Münch
and Laepple (2018) and Laepple and others (2018), respectively.
For OH-10 and OH-11, high-resolution density profiles were cal-
culated using the Herron–Langway model (Herron and Langway,
1980). Mean annual snow accumulation for the undated cores
from LCL (OH-7, OH-10, OH-11) was assumed to equal the
mean value derived from OH-9 and OH-12. For LP-01, the
same accumulation rate as calculated for OH-12 was used due

Figure 2. (a) Age model construction of firn core OH-9 based on annual layer counting applied to the high-resolution H2O2 record (yellow) supported by the record
of MSA (blue). (b) Comparison of δ18O and d-excess records of firn cores OH-9 (green) and OH-12 (orange) based on their weighted age scales. The weighted age
scale of OH-12 was derived by Hoffmann-Abdi and others (2021a).
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to the strong similarities between the density profiles of the two
cores (see section 3.1). There are no long-term meteorological
measurements available for LCL and LP. Therefore, local surface
air pressure at the firn-core drill sites was calculated using the
barometric height formula. Local near-surface air temperatures
were estimated from near-surface air temperature and radiosonde
measurements carried out at Bellingshausen station (BH), King
George Island, between 1970 and 1998. The data were obtained
at monthly resolution from the Reference Antarctic Data for
Environmental Research (READER) database of the Scientific
Committee on Antarctic Research (SCAR). Monthly mean lapse
rates were calculated from the temperature and height difference
between BH station (16 m a.s.l.) and the 850 hPa surface, exclud-
ing years with data gaps. Monthly mean near-surface air tempera-
tures at the firn-core drill sites were then estimated from BH
monthly mean near-surface air temperatures using the altitude
of the respective site and the monthly mean lapse rates. To
account for the distance between BH station and LCL and LP,
respectively, BH temperatures were corrected by a value of −1.4
°C. This is the mean temperature offset between BH and OH sta-
tions, whose near-surface air temperature records are highly cor-
related (Fernandoy and others, 2012, 2018; Hoffmann-Abdi and
others, 2021a). Finally, annual mean near-surface air tempera-
tures were estimated for each firn-core drill site based on
the altitude- and distance-corrected monthly mean values.

Moreover, daily near-surface air temperature and precipitation
records from Esperanza (EP), BH and OH stations were used for
comparison with stable water isotope time series. The data are
available from the Global Surface Summary of the Day (GSOD)
of the National Centers for Environmental Information (NCEI).
Due to data gaps in the observations, we also used data from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 Reanalysis (1979 onwards, spatial resolution:
31 km, temporal resolution: 1 h; Hersbach and others, 2020).
ERA5 reanalysis data on daily near-surface and 850 hPa air tem-
peratures and precipitation were extracted through the KNMI
Climate Explorer. Near-surface air temperatures were corrected
for the difference in elevation between firn-core drill sites and
ERA5 grid points (Supplementary Table S1) on the basis of
daily lapse rates calculated from the ERA5 near-surface and 850
hPa air temperature records (cf. Hoffmann-Abdi and others,
2021a).

Monthly data on Antarctic sea ice extent (SIE) were obtained
from the National Snow and Ice Data Center (NSIDC). The
Marshall SAM Index (MSI) at monthly resolution (Marshall,
2003) was employed to assess a possible connection between
changes in the prevailing SAM phase and firn-core isotopic sig-
nals on a sub-annual scale. In addition, we used monthly time
series of the ASL latitudinal and longitudinal position and the
ASL Actual Central Pressure Index Version 3, which is defined
as the pressure at the ASL location (Hosking and others, 2016).
We further included seasonal time series of the latitude and
strength of the circumpolar belt of tropospheric westerly winds
over the Southern Ocean (Bracegirdle, 2018; Bracegirdle and
others, 2018).

Statistical analysis of the used datasets comprised the calcula-
tion of Pearson correlation coefficients (r) and p-values ( p) at the
95% confidence level (i.e. α = 0.05) and the estimation of
signal-to-noise ratios following the approach of Fisher and others
(1985).

2.5 ECHAM6-wiso and backward trajectory modelling

To validate the representativeness of firn-core isotopic signals
with respect to atmospheric circulation, we compared them
with simulations of the ECHAM6-wiso model nudged to ERA5

reanalyses. For this, data from grid points south of 40°S were
extracted (δ18O, δD, precipitation, 2 m-air temperature, surface
temperature). ECHAM6-wiso is an isotope-enhanced version of
the sixth generation of the atmospheric general circulation
model ECHAM, developed by the Max Planck Institute for
Meteorology in Hamburg, Germany (Stevens and others, 2013).
A detailed description of the implementation of stable water iso-
topes in the ECHAM6 model as well as of recent improvements to
the model can be found in Cauquoin and others (2019) and
Cauquoin and Werner (2021).

For the interpretation of firn-core isotopic signals, knowledge
on possible moisture source regions and transport pathways of
precipitating air masses reaching the study area is essential.
Therefore, we calculated 5 d backward trajectories using the
Hybrid Single Particle Lagrangian Integrated Trajectory
(HYSPLIT) model (Draxler and Hess, 1998; Stein and others,
2015; Rolph and others, 2017). The Global Data Assimilation
System (GDAS) archives from the National Oceanic and
Atmospheric Administration (NOAA)/National Centers for
Environmental Prediction (NCEP) with a 1° × 1° spatial and 1 h
temporal resolution were used as input data to the model. The
coordinates of the OH-12 drill site (Table 1) were taken as initial
point. This approach also applies to the LP-01 drill site, since the
resolution of the input data is too coarse to resolve local differ-
ences in meteorological conditions at this scale. The location of
the study area at the ice divide of the northern AP allows a
meteorological connection to both its western and eastern sides
(Hoffmann-Abdi and others, 2021a). Therefore, trajectories
were calculated for all days with precipitation registered at OH
or EP stations in 2013, the overlapping year of the six firn cores
(see section 3.4). A minimum threshold of 1 mm d−1 was used
to exclude any sea-spray-related precipitation events at these
coastal stations. The model was initiated at 15 UTC, i.e. at 12
noon local time, using a data-based vertical velocity field. For
comparability with previous studies on the northern AP
(Fernandoy and others, 2012, 2018), we chose a starting height
of 1500 m a.s.l. (∼850 hPa), which is higher than the sampling
sites and minimizes interferences from the underlying topography
(Sinclair and others, 2010). In total, 122 trajectories were calcu-
lated, clustered and visualized for selected time intervals.
Cluster analysis is based on the spatial variance of the trajectories,
i.e. trajectories with minimum differences are grouped together,
thus representing precipitation events with similar transport path-
ways. Details on the cluster analysis with HYSPLIT are provided
in Stein and others (2015).

3. Results

3.1 Firn-core density records

All firn cores exhibit a clear increase in density with depth, result-
ing from snow compaction and the metamorphosis of snow to
firn (Supplementary Figs S3 and S4). Measured density profiles
of OH-10 and OH-11 do not allow for more detailed analyses
due to their coarse resolution (Supplementary Fig. S4). Visual
comparison of the density-depth records of OH-7, OH-9,
OH-12 and LP-01 reveals strong similarities between cores that
were drilled in the same year, both in terms of absolute values
and variability. This is statistically confirmed by high correlation
coefficients with negligible p-values calculated for the full cores
based on 10 cm means (r = 0.65, p < 0.0001 for OH-7 and
OH-9; r = 0.84, p < 0.0001 for LP-01 and OH-12;
Supplementary Table S3). The similarities between the density-
depth records of OH-12 and LP-01 suggest similar snow accumu-
lation rates for LCL and LP. The average value of 2500 kg m−2 a−1

(2012–2015) as calculated from OH-12 (Hoffmann-Abdi and
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others, 2021a) is confirmed by OH-9, from which a mean snow
accumulation of 2460 kg m−2 a−1 is obtained (2012–2013;
Table 2). Independently derived accumulation rates for 2012
and 2013, the overlapping years of OH-9 and OH-12, differ by
only 6–8% (180–190 kg m−2 a−1; Table 2). For all cores, diffusion
lengths increase continuously with depth, reaching maximum
values of 0.05–0.07 m on LCL and 0.06 m on LP.

3.2 Inter-annual isotopic variability

Mean δ18O and δD values are similar for the five firn cores drilled
on LCL, ranging between −11.6‰ (OH-11) and −12.9‰
(OH-10) and between −88.8‰ (OH-11) and −98.8‰ (OH-10),
respectively (Table 3). The mean d-excess varies between 4.3‰
(OH-11) and 6.8‰ (OH-12). For core LP-01, mean δ18O and
δD values are up to 2.5‰ and 16.6‰ lower, respectively, but
the mean d-excess is highest (7.1‰). Surprisingly, LP-01 does
not show the absolute minimum δ-values despite higher
altitude, but OH-9. Since δ18O and δD values of all cores are
highly correlated (r > 0.99, p < 0.0001; Supplementary Fig. S5),
we restrict the following (statistical) analyses to δ18O and the
d-excess.

In general, δ18O and d-excess values show a strong variability
across the entire depth of each core, but no clear seasonal cyclicity
(Fig. 3a and Supplementary Fig. S6). Visual comparison of the
profiles reveals a similar variability for cores drilled in the same
year as well as for those drilled in different years. However, they
are not statistically correlated. Furthermore, the two dated cores
OH-9 and OH-12 show a similar δ18O sequence in June–

October 2013 with a maximum offset of about two weeks: two
prominent minimum peaks enclose a broad maximum peak
(Fig. 2b). This minimum–maximum–minimum (MMM-)pattern
is found in all six δ18O-depth records (Fig. 3a). In particular,
the δ18O maximum peak can be clearly identified in all cores
due to a distinct three-step staircase-like shape on its upward
side (from the bottom; Fig. 3a). In OH-7 and OH-9, the
MMM-pattern is located at ∼1–3.5 m depth, in OH-10 and
OH-11 at ∼5.4–7.3 m depth and in OH-12 and LP-01 at
∼10.2–12.7 m depth (Fig. 3a).

To investigate the isotopic signal preservation in the cores in
more detail, we placed their δ18O records on the same depth
scale using the section with the 2013 MMM-pattern as reference
point. Accordingly, we (1) aligned the δ18O-depth records of
OH-7, OH-9, OH-10, OH-11 and LP-01 to the δ18O profile of
OH-12, and (2) normalized the δ18O values. The second distinct
minimum of the MMM-pattern (from the bottom) was used as tie
point for the alignment, as it can be unambiguously identified in
all cores. The δ18O profiles of all cores have been shifted accord-
ing to their offset to the corresponding minimum in OH-12
(Table 4). LP-01 had to be shifted to the left (negative axis) to
align the minima, although it was drilled on the same day as
OH-12. Therefore, after the alignment the upper part of LP-01
was rescaled. In all aligned and normalized δ18O records, the
MMM-pattern is clearly visible (Fig. 3b). From bottom to top,
δ18O values on average increase by 9.6‰ from the first minimum
to the maximum peak and then decrease again by 12.4‰
(Table 4). OH-11 and LP-01, both drilled at different locations
than the other cores, show the lowest variability within the
MMM-pattern (Table 4).

Aligned and normalized d-excess records of the six cores
(Fig. 3c) do not show as clear similarities as the δ18O profiles.
However, OH-7, OH-9, OH-12 and LP-01 exhibit a distinct,
OH-10 and OH-11 a less pronounced minimum peak (on average
2.4‰; Table 4) at about the depth of the second δ18O minimum
of the MMM-pattern (10.6–10.8 m; Fig. 3c). In contrast, no such
coincidence with the d-excess is found for the first δ18O min-
imum in any of the cores. While the d-excess stays on a relatively
constant level in the section containing the δ18O maximum (∼11–
12 m; Fig. 3c), in total it decreases by on average 5.1‰ from the
first to the second δ18O minimum (Table 4).

Other similarities between the six cores within the overlapping
part (9.4–15.3 m depth in Fig. 3) are more difficult to identify.

Table 2. Annual accumulation rates calculated for the drill sites of firn cores
OH-9 and OH-12 on LCL for the period 2012–2013 and 2012–2015, respectively

Firn core OH-9 OH-12

Year Accumulation rate
(kg m−2 a−1)

Accumulation rate
(kg m−2 a−1)

2012 2210 2390
2013 2710 2890
2014 – 2470
2015 – 2260
Annual mean 2460 2500

The OH-12 accumulation rates are from Hoffmann-Abdi and others (2021a).

Table 3. Basic statistics of the stable water isotope composition of the six firn cores of Table 1 with respect to the entire core depth (numbers without brackets) as
well as to the depth interval from 9.8 m to 14.6 m, corresponding to the year 2013 in OH-12 (numbers in brackets)

Firn core OH-7 OH-9 OH-10 OH-11 OH-12 LP-01

δ18O (‰)
Min −20.3 (−20.3) −23.3 (−23.3) −21.9 (−21.1) −19.7 (−18.7) −19.4 (−18.5) −19.7 (−19.7)
Mean −12.3 (−12.6) −12.8 (−13.0) −12.9 (−12.6) −11.6 (−11.5) −12.4 (−12.4) −14.1 (−14.2)
Max −7.2 (−7.9) −8.1 (−8.1) −7.2 (−7.3) −6.8 (−6.8) −7.0 (−7.2) −8.9 (−9.8)
Min–max 13.0 (12.4) 15.1 (15.1) 14.6 (13.9) 12.9 (11.9) 12.4 (11.3) 10.9 (9.9)
Sdev (σ) 2.2 (2.5) 2.5 (3.0) 2.6 (2.5) 2.2 (2.6) 2.4 (2.8) 2.1 (2.2)

δD (‰)
Min −160.1 (−160.1) −183.8 (−183.8) −166.8 (−166.6) −172.0 (−148.1) −148.0 (−145.5) −154.1 (−154.1)
Mean −92.5 (−93.6) −97.2 (−98.6) −98.8 (−96.1) −88.8 (−88.7) −92.0 (−92.6) −105.4 (−106.5)
Max −52.6 (−56.5) −59.6 (−59.6) −55.8 (−55.8) −49.8 (−52.3) −49.3 (−49.3) −63.7 (−69.7)
Min–max 107.5 (103.7) 124.2 (124.2) 111.0 (110.8) 122.3 (95.7) 98.7 (96.2) 90.4 (84.5)
Sdev (σ) 17.8 (20.4) 20.4 (24.0) 20.4 (20.6) 17.9 (21.0) 19.2 (22.4) 16.9 (18.2)

d-excess (‰)
Min 1.8 (1.8) 1.2 (1.3) −6.5 (−2.9) −6.6 (−1.6) 1.4 (2.7) 2.4 (3.6)
Mean 6.1 (6.8) 5.1 (5.4) 4.7 (4.5) 4.3 (3.3) 6.8 (6.9) 7.1 (7.4)
Max 12.5 (11.5) 11.0 (10.5) 11.3 (8.8) 16.2 (7.9) 15.2 (10.8) 11.6 (10.6)
Min–max 10.7 (9.7) 9.7 (9.2) 17.8 (11.7) 22.8 (9.5) 13.8 (8.0) 9.2 (6.9)
Sdev (σ) 1.9 (2.0) 1.9 (2.0) 2.7 (2.0) 3.2 (1.8) 2.1 (1.9) 1.8 (1.5)
n (samples) 313 (97) 232 (96) 190 (88) 408 (96) 414 (99) 425 (96)

Statistics for the 2013 depth interval were calculated based on depth-aligned records. Details on the depth alignment are given in the text.
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Figure 3. (a) δ18O profiles of the six firn cores of Table 1 with the year of drilling and the prominent minimum–maximum–minimum (MMM-)pattern indicated. The
staircase-like shape on the upward side (from the bottom) of the δ18O maximum is marked for LP-01 as an example. (b–c) Depth-aligned and normalized δ18O and
d-excess profiles of the six firn cores with OH-12 serving as the reference core. The δ18O minimum in OH-12 at 10.6 m depth, which was used as tie point for the
alignment, is marked (vertical dashed line). In (b), the MMM-pattern and the preceding sequence of three minima and maxima are indicated for OH-12 as an
example. In (c), the depth interval of the δ18O MMM-pattern (10.2–12.5 m) is highlighted.
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From bottom to top, there is a sequence of three smaller δ18O
minima and maxima preceding the MMM-pattern that can be
seen in all cores (Fig. 3b). The sequence is most clearly pro-
nounced in OH-10, OH-12 and LP-01 between 12 m and 13 m
depth, while it is shifted by ∼0.5 m in OH-7 and OH-9
(Fig. 3b). Similar to the MMM-pattern, the δ18O minima are asso-
ciated with d-excess minima in most cases.

In summary, the six firn cores reveal a similar MMM-pattern
in their δ18O records, dated to austral winter/spring 2013 by two
independent age models. This points towards (1) a prominent
regional synoptic pattern, (2) excellent signal preservation and
(3) reduced post-depositional processes. To investigate these
aspects further, we chose the year 2013 as determined in
OH-12, since the respective depth section (9.8–14.6 m) is fully
contained in all cores.

3.3 Isotopic variability in 2013 (depth interval 9.8–14.6 m) and
comparison with meteorological records

The basic statistics of the six firn cores for the depth interval 9.8–
14.6 m are similar to those found for the entire records (Table 3).
Std dev. for δ18O, δD and the d-excess are generally low and show
little variability among the cores (Table 3). LP-01 exhibits the low-
est variability for δ18O, δD and the d-excess in terms of the min-
imum–maximum range and std dev., whereas OH-9 varies the
most (except for d-excess).

Furthermore, cross-correlation analysis based on 10 cm means
reveals statistically significant positive values of about r = 0.4 to r
= 0.7 for δ18O and δD, respectively, and about r = 0.3 to r = 0.5 for
the d-excess ( p < 0.05 or lower; Supplementary Table S4).
Correlations are highest between OH-10 and OH-12. LP-01 cor-
relates well with all LCL cores for δ18O and δD, but for the
d-excess a statistically significant correlation only exists with
OH-9 and OH-12. In general, cores drilled in the same year are
strongly and statistically significantly correlated for δ18O, δD
and the d-excess (Supplementary Table S4). The mean cross-
correlation for all cores is ∼0.5 for both δ18O and δD, and 0.3

for the d-excess, resulting in signal-to-noise ratios of ∼1.1 for
δ18O and δD, and 0.4 for the d-excess, respectively
(Supplementary Table S5).

For comparison with meteorological records, we use firn core
OH-12. δ18O time series and especially the prominent
MMM-pattern have no equivalent in near-surface air temperature
records for 2013 (Figs 4a, b), resulting in no statistical relationship
(Supplementary Table S6). Instead, the broad δ18O maximum in
July–September 2013 is associated with generally rather low tem-
peratures at the site. Shifting the isotopic record relative to the
temperature time series by ±2 months, which corresponds to
the dating uncertainty of OH-12 in this part of the core
(Hoffmann-Abdi and others, 2021a), does not improve the correl-
ation. However, the d-excess shows a statistically significant nega-
tive correlation with all temperature records (r <−0.7, p < 0.01;
Supplementary Table S6).

Precipitation records from nearby stations (OH, BH, EP) and
ERA5 reanalysis data for 2013 show that precipitation events
occur throughout the year. This is typical for such a maritime
location (cf. Turner and others, 2019). The highest frequency
and amount of precipitation occurs during the transitional sea-
sons and towards winter (Figs 4c–f). Contemporaneously, the
d-excess record of OH-12 has its largest variability (March–
June) with values ranging from 3.3‰ to 10.8‰. Conversely, dur-
ing the winter and summer months, the d-excess stays on rela-
tively constant levels (January–February and December: 5.1 ±
0.7‰; July–September: 7.6 ± 1.1‰; Fig. 4a). With respect to the
MMM-pattern, the OH record shows extreme precipitation
events, i.e. daily precipitation was much larger than the 90th per-
centile of the whole precipitation time series (1985–2021; cf.
Turner and others, 2019), at around the time of the two δ18O
minima in June/July and mid-October 2013, respectively
(Fig. 4c). While the extreme precipitation event in July has no
counterpart in other regional precipitation records, the one in
October can also be identified in the BH and ERA5 precipitation
records (Figs 4d, f). The period with the broad δ18O maximum
and relatively constant d-excess values (mid-July–September) is

Table 4. Depth and stable water isotope values of the MMM-pattern for each of the six firn cores of Table 1

Firn core OH-7 OH-9 OH-10 OH-11 OH-12 LP-01 Mean

Minimum I (June/July 2013)
Depth (m) 2.95 3.30 6.88 7.10 12.00 12.50 –
δ18O (‰) −17.4 −19.0 −17.5 −14.5 −17.7 −18.8 −17.5
δD (‰) −131.4 −143.7 −134.0 −111.1 −132.6 −142.0 −132.5
d-excess (‰) 7.6 8.0 6.4 5.0 9.1 8.6 7.5

Maximum (August 2013)
Depth (m) 2.05 2.55 6.23 6.40 11.37 11.64 –
δ18O (‰) −7.9 −8.2 −7.2 −6.8 −7.2 −9.8 −7.9
δD (‰) −56.5 −59.6 −55.8 −52.3 −49.3 −69.7 −57.2
d-excess (‰) 6.4 5.9 2.2 2.0 8.6 8.8 5.7

Minimum II (October 2013)
Depth (m) 1.23 1.70 5.58 5.80 10.60 11.05 –
Offset to OH-12 (m) 9.37 8.90 5.02 4.80 0 −0.45 –
δ18O (‰) −20.3 −23.3 −21.1 −18.7 −18.5 −19.7 −20.3
δD (‰) −160.1 −183.8 −166.6 −148.1 −145.5 −154.1 −159.7
d-excess (‰) 1.9 2.3 2.1 1.8 2.7 3.6 2.4

Minimum I–Maximum
Distance (m) 0.90 0.75 0.65 0.70 0.63 0.86 0.75
δ18O (‰) 9.5 10.8 10.3 7.7 10.5 9.0 9.6
δD (‰) 75.0 84.1 78.2 58.8 83.3 72.4 75.3
d-excess (‰) 1.2 2.1 4.2 3.0 0.5 0.2 1.8

Minimum II–Maximum
Distance (m) 0.82 0.85 0.65 0.60 0.77 0.59 0.71
δ18O (‰) 12.4 15.1 13.8 11.9 11.3 9.9 12.4
δD (‰) 103.7 124.1 110.8 95.7 96.2 84.5 102.5
d-excess (‰) 4.5 3.7 0.04 0.2 5.9 5.1 3.2

For the second minimum (from the bottom; Minimum II), the offset relative to the depth of the minimum in OH-12 is reported for each core. The difference between the first and second
minimum (from the bottom; Minimum I and Minimum II), respectively, and the maximum peak is also given for each core.
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generally characterized by less frequent and small precipitation
events (<10 mm) in the OH and EP records, while BH and
ERA5 show precipitation events with up to 20 mm in mid and
late August, respectively (Figs 4c–f).

3.4 Isotopic and backward trajectory modelling

The comparison between the δ18O and d-excess records of firn core
OH-12 and the ECHAM6-wiso model reveals that modelled abso-
lute values are on average ∼1.9‰ (δ18O) and 3.0‰ (d-excess) lower
than measured absolute values. However, the temporal variability is
similar with an offset of about 1–2 months (Figs 5a, b). Especially,
the δ18O MMM-pattern in 2013 is well reproduced by the
ECHAM6-wiso model in terms of amplitude and timing (Fig.
5a). In 2012, the mismatch between measured and modelled
records is larger (Figs 5a, b) which might be due to the higher dat-
ing uncertainty of OH-12 in the bottom part of the core (cf.
Hoffmann-Abdi and others, 2021a). Therefore, the year 2012 was
excluded from spatial cross-correlation analysis between measured
and modelled isotopic data. For the period 2013–2015, correlations
are observed for both δ18O and the d-excess (Figs 6a, b). Correlation
coefficients generally increase from the eastern towards the western
side of the AP for the d-excess (up to r∼ 0.5, p < 0.05; Fig. 6b). For
δ18O, they also increase from east to west (up to r∼ 0.6, p < 0.05;
Fig. 6a), but then decrease again. Furthermore, statistically signifi-
cant positive correlations for δ18O are primarily confined to areas
further southwest of the study site (Fig. 6a). In contrast, for the
d-excess, they are observed in the Bellingshausen Sea, near and
on the South American continent (Tierra del Fuego) and to a lesser
extent in the Weddell Sea (Fig. 6b).

Similar observations are made when only the year 2013 is con-
sidered. Compared to the period 2013–2015, correlation coeffi-
cients for both δ18O and the d-excess are generally higher. This
is also due to the reduced number of data points in the time series.
Statistically significant ( p < 0.05) positive correlations for δ18O
and the d-excess reach values of up to r∼ 0.7 and r∼ 0.8, respect-
ively (Figs 6c, d). The high d-excess correlations on the western
side of the AP follow the westerly wind belt all the way from
the Ross Sea (not shown).

Frequency and cluster analysis of 5 day backward trajectories for
the overlapping year 2013 reveals a clear dominance of both short-
(47%) and long-range (45%) western and southwestern transport
pathways towards the northern AP (Figs 7a, c). Moisture advection
from more northerly directions (South America, South Pacific
Ocean) account for only 8% of all trajectories. With respect to
the period of the MMM-pattern (June–October 2013), transport
pathways of precipitating air masses additionally show a rather
local eastern component (7%; Figs 7b, d). Furthermore, the per-
centage of trajectories originating over the South Pacific Ocean
and passing by the South American continent is almost twice as
high as in the entire year 2013 (15% instead of 8%).

4. Discussion

4.1 Validity of the firn-core alignment

The alignment of the six firn cores assumes that the prominent
MMM-pattern identified in the δ18O profiles of all cores repre-
sents the same sequence of synoptic events and can therefore be
used as a tie point to bring all cores on the same depth scale.
Three aspects underpin this approach: First, the two independ-
ently derived age models of OH-9 and OH-12 both date the
MMM-pattern to the same period (June–October 2013), suggest-
ing a commonly preserved signal. Second, annual accumulation
rates derived for LCL from OH-12 (Table 2) are in line with

Figure 4. Time series of (a) δ18O (orange) and d-excess (light orange) of firn core
OH-12 compared to the records of (b) near-surface air temperature and (c–f ) daily
precipitation from Bernardo O’Higgins (OH, red), Bellingshausen (BH, green) and
Esperanza (EP, blue) stations as well as from the ERA5 gridpoint closest to the
OH-12 drill site (grey; Fig. 1b and Supplementary Table S1) for the year 2013. For
near-surface air temperatures, daily values (thin lines) as well as the 15-point-running
mean (bold lines) are shown.

Figure 5. Comparison of high-resolution (thin orange lines) and monthly (bold
orange lines) (a) δ18O and (b) d-excess records of firn core OH-12 with monthly
δ18O and d-excess records produced by the ECHAM6-wiso model (black lines) for
the gridpoint closest to the OH-12 drill site (Fig. 1b and Supplementary Table S1)
for the period 2012–2015. In (c), the 2 m-air temperature (yellow line) and precipita-
tion (blue bars) time series of the used ECHAM6-wiso gridpoint are shown. The period
of the δ18O MMM-pattern in 2013 (June–October) is highlighted.
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expected depths of the MMM-pattern in the other LCL cores
(Table 4) with different drilling dates. Firn cores drilled two
years before OH-12 (OH-7 and OH-9) were shifted by ∼4.9–
5.2 m w eq. and those drilled one year earlier (OH-10 and
OH-11) by ∼2.6–2.8 m w eq. Taking snow compaction into
account, this corresponds roughly to the mean annual snow accu-
mulation of 2500 kg m−2 a−1 (Table 2). The small negative
depth offset of the MMM-pattern in core LP-01 relative to
OH-12 points towards a slightly higher accumulation rate on
LP than on LCL. Third, aligning the cores to the tie point gener-
ally improves cross-correlations between cores. This is valid for
δ18O and δD (e.g. r increases up to >0.5, p < 0.0001;
Supplementary Table S7), but also for the d-excess (e.g. r
increases up to >0.4, p < 0.0001; Supplementary Table S7) and
density (e.g. r increases from 0.65 to 0.75 for OH-7 and OH-9,
p < 0.0001; Supplementary Table S3).

In summary, the alignment to the second dated
δ18O-minimum (October 2013) allows for synchronizing all six
firn cores for the year 2013.

4.2 Spatial and temporal preservation of isotopic signals

The strong visual similarities between aligned δ18O-depth records
of firn cores drilled at different locations (e.g. LP-01 and OH-12)

and in different years (e.g. OH-9 and OH-12) suggest an excellent
signal preservation at the regional scale and little alteration over
time by post-depositional processes. This is also valid for the
d-excess and is confirmed by the results of cross-correlation ana-
lysis (Supplementary Table S4).

High accumulation rates in the region facilitate the fast subsid-
ence of freshly fallen snow and, hence, suggest water vapour dif-
fusion to be reduced at the study site (Fernandoy and others,
2012, 2018; Hoffmann-Abdi and others, 2021a). In addition,
high-density ice layers present in all cores may act as diffusion
barriers (Fernandoy and others, 2018; Hoffmann-Abdi and
others, ). Maximum diffusion lengths are much lower than the
mean monthly layer thickness of the cores of ∼0.4 m, indicating
that diffusive processes are likely confined to the month of
snow deposition. Other near-surface post-depositional processes,
such as isotopic exchange between the snowpack and atmospheric
water vapour through condensation/sublimation (Ritter and
others, 2016; Casado and others, 2021; Wahl and others, 2022),
wind-forced firn ventilation (Neumann and Waddington, 2004;
Town and others, 2008) and deep-air convection (Severinghaus
and others, 2010) are also likely to be reduced or insignificant.

Surface melt can certainly affect the snowpack on LCL during
the summer months (cf. Wille and others, 2019; Hoffmann-Abdi
and others, 2021a). However, in the period of the MMM-pattern

Figure 6. Contour maps of cross-correlations (r) between isotopic records of firn core OH-12 and isotopic records produced by the ECHAM6-wiso model for grid
points covering the northern Antarctic Peninsula and surrounding regions in the Bellingshausen and Weddell Seas as well as near the South American continent. (a)
Cross-correlations for δ18O in the period 2013–2015; (b) cross-correlations for the d-excess in the period 2013–2015; (c) cross-correlations for δ18O in 2013; (d) cross-
correlations for the d-excess in 2013. For the period 2013–2015 (a and b), only contour lines with r⩾ +2 or r⩽−2 are shown. For the year 2013 (c and d) with
generally higher correlation coefficients, only contour lines with r⩾ +3 or r⩽−3 are displayed. Positive correlations are coloured from light to dark red with increas-
ing r, negative correlations are coloured accordingly from light to dark blue. Contours of statistically significant correlations ( p < 0.05) are displayed as solid lines,
contours of statistically non-significant correlations as dashed lines. In addition, statistically significant areas ( p < 0.05) are marked by grey shading. The orange and
magenta dots mark the drill sites on Plateau Laclavere (LCL) and Plateau Louis Phillipe (LP), respectively.
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(June–October 2013) and in the following summer (2014), there
are no melt layers present in the firn cores excluding isotopic
modifications due to the infiltration, percolation and refreezing
of surface meltwater (cf. Moran and others, 2011).

LCL and LP are both topographically flat plateaus that are
exposed to high wind speeds all year round (Hoffmann-Abdi
and others, 2021a). Therefore, wind drift is an important post-
depositional process at the study site. It may alter or blur iso-
topic signals in the snowpack by removal, relocation and, thus,
spatial admixing of isotopically different snow. This can lead
to non-climate related variability in isotopic and glacio-chemical
records of firn cores drilled at adjacent locations, so-called strati-
graphic noise (Fisher and others, 1985; Münch and others, 2016,
2017). However, in the focus year 2013, wind drift appears to
have had no recognizable influence on the isotopic composition
of the snowpack at the study site. The δ18O MMM-pattern is
clearly visible in all cores and has about the same amplitude.
Differences in the spacing between the two minima of the
MMM-pattern in the cores (Table 4) may be due to snow
compaction.

The very good signal preservation is also reflected in the rela-
tively high signal-to-noise ratios of δ18O, δD and the d-excess for
the 2013 depth interval (see section 3.3 and Supplementary
Table S5). The calculated signal-to-noise ratios are in line with
findings of Münch and Laepple (2018) for the West Antarctic
Ice Sheet (WAIS), which is influenced by marine climate condi-
tions likewise the AP but exhibits lower accumulation rates
(<500 kg m−2 a−1; Kaspari and others, 2004; Steig and others,
2005). The generally observed increase of signal-to-noise ratios
with accumulation rates (Fisher and others, 1985; Steen-Larsen
and others, 2011; Münch and others, 2016) additionally supports
an excellent signal preservation at our study site. Münch and
Laepple (2018) further point out that signal-to-noise ratios for
the WAIS are inversely related to the timescale, i.e. they continu-
ously decrease from values >1 at sub-annual timescales to∼ 0.5–
0.7 at interannual and∼ 0.1 at centennial timescales.
Signal-to-noise ratios calculated for sub-annual to multiannual
timescales at our study site (Supplementary Table S5) indicate
the same dependence. However, a final conclusion cannot yet
be drawn, as the common depth interval between at least two

Figure 7. Results of cluster analysis of 5 d backward trajectories calculated for days with precipitation (⩾1 mm) registered at Bernardo O’Higgins and Esperanza
stations in (a) 2013 and (b) during the period of the δ18O MMM-pattern (June–October 2013). The numbers are the percentage of the total number of trajectories
calculated for 2013 (n = 122) and June–October 2013 (n = 55), respectively, for each cluster. In (c) and (d) the spatial frequency distribution of the trajectories group-
ing into each cluster, represented by the red trajectory, is shown for the two periods. The black dot in (a)–(d) indicates the location of the drill site of firn core
OH-12, which was used as initial point for the backward trajectory modelling. The black cross in (c) and (d) marks the South Pole.
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cores only covers a maximum period of 3–4 years (e.g. OH-12
and LP-1).

4.3 Representativeness of preserved isotopic signals

Münch and others (2016) proposed sampling strategies to reduce
stratigraphic noise, i.e. they recommend the excavation of at least
five cores at a spacing of ⩾10 m to obtain representative isotopic
signals on the seasonal scale. These sampling strategies are fully
met in this study. Moreover, their recommendations refer to low-
accumulation areas (<100 kg m−2 a−1; Münch and others, 2016).
Hence, the high accumulation rates on the northern AP may fur-
ther enhance the representativeness of the isotopic signals in the
LCL and LP cores for local atmospheric conditions and specific
synoptic situations occurring in the region (cf. Münch and others,
2016). This is supported by the highly similar temporal variability
between firn-core and ECHAM6-wiso isotopic records (Fig. 5; see
section 3.4). The slight temporal offset between measured and
modelled data could result, on the one hand, from the dating
uncertainty of OH-12 and, on the other hand, from the calcula-
tion of monthly mean values. The location of the OH-12 drill
site (Table 1) at ∼960 m higher altitude compared to the nearest
ECHAM6-wiso gridpoint (Supplementary Table S1) would imply
lower δ-values in the firn core than in the model. Hence, the
observed opposite offset in absolute values is likely related to
other factors than the elevation difference. A possible explanation
might be inversion layers developing in the lower troposphere (up
to 350–400 m a.s.l.) on the western side of the AP during months
with sea-ice coverage (Fernandoy and others, 2018), inverting the
vertical temperature-gradient. Furthermore, isotopic exchange
between the snowpack and atmospheric water vapour allowing
for secondary fractionation can lead to increased δ-values in the
snowpack (Casado and others, 2021; Hughes and others, 2021;
Wahl and others, 2022). This process is not implemented in the
ECHAM6-wiso model. In addition, incorrect moisture sources
and transport pathways due to a mismatch between wind direc-
tions and strengths at the observation site and those used in the
model (ERA5 wind fields) might account for the offset in absolute
values (Bagheri Dastgerdi and others, 2021).

In the following, we investigate the relationship between firn-
core isotopic signals, meteorological parameters and atmospheric
circulation patterns.

4.4. Relation between firn-core isotopic signals and the
regional meteorology on a sub-annual scale

4.4.1 Relation to near-surface air temperatures and precipitation
Hoffmann-Abdi and others (2021a) discuss in detail the relation-
ship between firn core stable water isotopes from LCL (using
OH-12) and near-surface air temperatures from both nearby sta-
tions and ERA5 reanalysis data for the period 2012–2015. The
d-excess was negatively related to ERA5 near-surface air tempera-
tures, but no statistically significant correlation was found for
δ18O. The same applies to the sub-annual scale as shown in this
study (Supplementary Table S6). Similar observations were also
made at other Antarctic coastal locations on inter-annual time-
scales (e.g. Masson-Delmotte and others, 2003; Vaughan and
others, 2003; Goursaud and others, 2017, 2019). Previous studies
in the region suggested several reasons for the de-coupling
between condensation and near-surface air temperatures on
LCL (Fernandoy and others, 2018; Hoffmann-Abdi and others,
2021a): (1) post-depositional processes such as wind drift, (2)
the strongly maritime climate with reduced annual temperature
amplitude and (3) the formation of inversion layers over
sea-ice-covered areas on the western side of the AP in winter.

Precipitation records from nearby stations (OH, BH, EP) and
ERA5 reanalysis data largely underestimate the precipitation
amount on LCL due to the differences in altitude
(Supplementary Table S1). Nevertheless, these datasets can pro-
vide some indication on the frequency, annual distribution and
magnitude of precipitation events on LCL. The period of the
MMM-pattern is characterized by an inverse relationship between
stable water isotopes and precipitation. The two δ18O (and
d-excess) minima of the MMM-pattern coincide with single
extreme precipitation events while the maximum is associated
with small to moderate, but more frequent precipitation events
(Fig. 4). The same can be observed in most other months of
2013. These coincidences could be caused randomly by the dating
uncertainty of OH-12. However, the δ18O record of
ECHAM6-wiso for the OH-12 drill site shows the same behaviour
in some parts, i.e. a coincidence of δ18O minima with precipita-
tion maxima and vice versa (Fig. 5), pointing to the same inverse
relationship.

From the above findings, we conclude that the isotopic com-
position of snow and firn on LCL and LP and its temporal vari-
ability may be determined by temporal changes in precipitation
rather than air temperature. These in turn are likely to be linked
to temporal changes in moisture sources and moisture transport
pathways associated with specific synoptic situations. This is con-
sistent with the results of Bagheri Dastgerdi and others (2021),
who observed δ18O variations at Neumayer station (East
Antarctica) related to changes in wind direction that occurred
without contemporaneous changes in temperature.

4.4.2 Moisture source variability
Tracing moisture sources by backward trajectory modelling:
Backward trajectory modelling results for 2013 (Figs 7a, c) con-
firm findings of previous studies on moisture transport patterns
for the northern AP region on interannual timescales, suggesting
the circumpolar westerlies as their main agent (Fernandoy and
others, 2012, 2018; Hoffmann-Abdi and others, 2021a). This is
supported by the clear east–west-gradient of d-excess correlations
between firn core OH-12 and the ECHAM6-wiso model on the
(inter-)annual timescale (Figs 6b, d). On the sub-annual scale,
moisture advection from directions other than the west can also
be observed (Figs 7b, d), most likely due to changes in the
strength, position and zonality of the circumpolar westerlies
(see section Transferability of identified isotopic and glacio-chem-
ical fingerprints to other periods). Statistically significant positive
correlations between the OH-12 and ECHAM6-wiso d-excess
records in the Weddell Sea and near the South American contin-
ent indicate that these regions may act as additional moisture
sources for the study area (Fig. 6d).

At the time of the two δ18O minima of the MMM-pattern
(June/July and mid-October 2013), a (north-)westerly flow pat-
tern was dominant (Figs 8a, c), likely delivering high amounts
of precipitation to the western side of the AP, as suggested by
the OH precipitation record (Fig. 4b; section 4.4.1). During the
period of the June/July minimum, precipitating air masses were
transported over long distances across mainly ice-free areas of
the Southern Ocean (Bellingshausen-Amundsen Sea, to a lesser
extent Ross Sea) before reaching the study area (Fig. 8a). Hence,
the gradual removal of heavy isotopes through condensation
and precipitation along the transport pathway (Rayleigh
distillation; Dansgaard, 1964; Rozanski and others, 1993),
together with the orographic uplift at the mountain chain of the
AP, could explain the low δ18O values. The same applies to the
October minimum, however, precipitation events during that per-
iod occurred more frequently and the corresponding trajectories
show a larger spatial spread (Fig. 8c). In addition to the western
component, trajectories either crossed the South Pacific
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Ocean and passed the western coast of South America or they ran
close to the Antarctic continent crossing ice-covered areas in the
Ross Sea. The differences in the flow pattern between the two
δ18O minima might be related to the seasonality of the polar vor-
tex, which builds up in fall and breaks down in spring
(Limpasuvan and Hartmann, 2000; Thompson and Solomon,
2002), allowing for stronger (weaker) westerly flow during the
June/July (October) minimum (cf. Thompson and others, 2005;
Black and McDaniel, 2007; Sheshadri and others, 2014). From
backward trajectory modelling and regional precipitation records,
we conclude that the δ18O minima are most likely related to the
advection of maritime air masses towards the northern AP. Low
d-excess values coinciding with the δ18O minima also indicate
moisture origin from more southern oceanic regions (Stenni
and others, 2010; Fernandoy and others, 2012).

Backward trajectory modelling results for the period of the
δ18O maximum indicate that highest precipitation amounts
were associated with trajectories originating either in the
Bellingshausen-Amundsen Sea, similar to the δ18O minima, or
in the vicinity of the northern AP (Fig. 8b). Goursaud and others
(2019) suggest that moisture generated near the sea-ice margin
may be associated with relatively high δ18O and d-excess values
due to the short transport distance (limited Rayleigh distillation)
and evaporation at low humidity levels (high kinetic fraction-
ation). This is in line with our observations and supports the
hypothesis of a larger contribution of locally derived moisture
at the time of the δ18O maximum. High positive and statistically
significant correlations between OH-12 and ECHAM6-wiso
d-excess records found in the direct vicinity of the northern AP
confirm the importance of proximal moisture for the study area
(Fig. 6d). Furthermore, trajectories with a northern, i.e. South
American component delivered considerable precipitation
amounts, while trajectories from the Antarctic interior and the
Weddell Sea yielded the least (Fig. 8b). In general, air masses
transported from the Antarctic interior towards the AP (e.g. by
katabatic winds) are cold and dry and would be associated with
much lower δ18O and higher d-excess values (Masson-Delmotte
and others, 2008; Goursaud and others, 2019) than observed in
OH-12 (Table 3). Hence, the contribution of continental
Antarctic moisture to the δ18O maximum was probably small.
Trajectories from the Weddell Sea mostly crossed sea-ice-covered
areas (Fig. 8b) with no evidence for the presence of open water
(polynyas), which would have allowed for enhanced
ocean-atmosphere heat and moisture transfer during that period
(Haid and Timmermann, 2013; Mchedlishvili and others, 2022).
Bonne and others (2019) demonstrated that snow accumulated
on sea ice may act as an important moisture source in
sea-ice-covered areas through sublimation, substantially influen-
cing the isotopic composition of water vapour in the atmospheric
boundary layer. Accordingly, with increasing sea-ice-coverage,
d-excess values of water vapour and subsequent precipitation
increase, while δ18O values decrease. However, in 2013, firn-core
δ18O values clearly increased during the period of sea-ice cover-
age, which argues against snow on sea ice being a considerable
moisture source at that time. In addition, stable water isotopes
of snow samples collected on first- and second-year sea ice in
the northwestern Weddell Sea exhibit mean values of −15.5‰
for δ18O, −122.2‰ for δD and 2‰ for the d-excess (Arndt and
others, 2021), which is much lower than those observed during
the prominent δ18O maximum (Table 4). Hence, a connection
of the δ18O maximum with air masses originating over South
America or the South Pacific Ocean, in addition to locally derived
moisture, is most likely. Previous studies on the northern AP

Figure 8. Five-day backward trajectories calculated for days with precipitation (⩾1
mm) registered at Bernardo O’Higgins (OH) and Esperanza (EP) stations at around
the time of the three extrema of the δ18O MMM-pattern: (a) minimum in June/July
2013; (b) maximum in August 2013; (c) minimum in October 2013. Trajectories
were ranked according to the amount of precipitation delivered (Supplementary
Fig. S11) and then colour-coded from yellow (lowest rank) to red (highest rank).
For days on which precipitation was recorded at both OH and EP stations, the higher
precipitation amount was used for the ranking. The thickness of the trajectories
increases as the amount of precipitation increases. The mean monthly sea ice extent
for (a) July, (b) August and (c) October 2013 is shown in blue shading. The black dot
in (a)–(c) indicates the location of the drill site of firn core OH-12, which was used as
initial point for the backward trajectory modelling.
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region (Fernandoy and others, 2012, 2018; Hoffmann-Abdi and
others, 2021a) showed a clear link to the South American contin-
ent, especially in winter. Fernandoy and others (2012) combined
backward trajectory modelling results with stable water isotope
data of precipitation samples collected at OH station to investigate
the relationship between the isotopic composition of precipitation
events and the location of the moisture source. They showed that
trajectories originating from or crossing the South American con-
tinent or the South Pacific Ocean are related to precipitation
events with higher δ18O and lower d-excess values. The opposite
is true for trajectories that pass over the Bellingshausen-
Amundsen Sea. This confirms our findings for both the δ18O
maximum and the two δ18O minima, although for the latter we
observe low values also for the d-excess.

Identifying moisture sources from glacio-chemical records: Sea
salt tracers in firn core OH-12, such as ssNa+, Cl−, Ca2+ and
Sr2+, exhibit local maxima (>1σ) coinciding with both
δ18O minima (Fig. 9b). This may point to moisture formed over
sea-ice-free areas (cf. Goursaud and others, 2019), which is sup-
ported by the fact that mean monthly sea salt concentrations
and Antarctic SIE show no statistically significant correlation on
either annual (2013) or multiannual timescales (2012–2015; cf.
Kreutz and others, 2000). In contrast, sea salt concentrations are
low at the time of the δ18O maximum, suggesting moisture derived
from near the sea-ice margin (cf. Goursaud and others, 2019).

The inverse relationship between δ18O and sea salt indicators
is statistically corroborated by correlation coefficients of up to r

=−0.42 ( p < 0.05), as calculated for the section of the
MMM-pattern based on 10 cm means (Supplementary
Table S8). Firn core OH-9 only shows a local maximum (>1σ)
in sea salt tracers during the October minimum (Supplementary
Fig. S7), while no clear anti-correlation with δ18O exists
(Supplementary Table S8). Instead, there is a statistically signifi-
cant negative correlation between MSA and δ18O (r =−0.47, p
< 0.05). The same relationship also holds for the d-excess (r =
−0.51, p < 0.05; Supplementary Table S8). Accordingly, MSA
values are low during the δ18O maximum and show a local max-
imum (>1σ) during the October minimum, which is present in
the d-excess as well (see section 3.2; Supplementary Fig. S7).
Hence, we conclude that the δ18O (and d-excess) minima are
likely associated with air masses originating from open ocean
regions, while the δ18O maximum is partially related to locally
generated moisture.

Moreover, the OH-12 high-resolution record of BC shows a local
maximum (>2σ) at the time of the δ18O maximum (Fig. 9c). In gen-
eral, variations in BC concentrations primarily reflect changes in
atmospheric transport patterns and source strength (Wolff and
Cachier, 1998). Several studies have provided evidence for the trans-
port of emissions from biomass burning in (tropical) South
America, including forest fires, the burning of fossil fuels and bio-
fuels, towards higher latitudes reaching as far as to the northern
AP and Dronning Maud Land (e.g. Pereira and others, 2006;
Fiebig and others, 2009; Jumelet and others, 2020; Liu and others;
Hoffmann-Abdi and others, 2021a). In contrast, Cordero and others
(2022) recently showed that local human activities, mainly research
activities and tourism, can cause BC concentrations in Antarctic
snow that are well above background levels (>1 ng g−1). However,
since the BC maximum in OH-12 occurs in winter, we consider
such local sources to be unlikely.

Simultaneously to the BC maximum, elevated values (>1σ) are
also observed for REEs (Dy, La, Ce), which, however, are not the
highest in the entire record (Supplementary Fig. S8). Provenance
studies on REEs in ice cores have identified Patagonia as a major
source of dust for Antarctica (Gaiero and others, 2004; Gabrielli
and others, 2010; Wegner and others, 2012). There are no consid-
erable local dust sources for the study site in winter, as almost all
surrounding areas are snow-covered. Together with the generally
low sea salt concentrations found in OH-12 concurrent with the
δ18O maximum (Fig. 9b), this supports the hypothesis that the
study area was also influenced by the advection of air masses
from more northerly directions at that time in addition to locally
derived moisture.

Relation to large-scale atmospheric circulation: As outlined
above, the temporal variability of isotopic records seems to pri-
marily reflect shifts in moisture sources and transport pathways
of precipitating air masses. These in turn are related to temporal
changes in the strength of the westerly flow prevailing in the
region with a possible connection to the temporal variability of
the SAM (Limpasuvan and Hartmann, 2000; Thompson and
Wallace, 2000; Schmidt and others, 2007; Stenni and others,
2010). During the period of the MMM-pattern, δ18O values are
inversely related to the MSI (Figs 9a, d), however, the correlation
is not statistically significant (r =−0.7, p = 0.2). At the time of the
two δ18O minima, the SAM entered a positive phase (MSI > 1;
Marshall and others, 2017) associated with a strengthening and
southward shift of the circumpolar westerlies and a deeper and
more easterly located ASL (Figs 9d, e). This likely favoured north-
westerly flow across the AP region (cf. Hosking and others, 2013;
Raphael and others, 2016), delivering high precipitation amounts
and more sea salt aerosols (cf. Kreutz and others, 2000; Kaspari
and others, 2005; Raphael and others, 2016) towards the study
area, as confirmed by the results of backward trajectory modelling
(Figs 8a, c) and the analysis of glacio-chemical records (see

Figure 9. Time series of (a) δ18O (orange) and d-excess (light orange) of firn core
OH-12 compared to OH-12 records of (b) sea-salt sodium (ssNa+, dark yellow) and
chlorine (Cl−, green), (c) black carbon (BC, dark grey) and (d) the Marshall SAM
Index (MSI, black), strength (red) and latitude position (dashed red) of the belt of
tropospheric westerly winds over the Southern Ocean as well as (e) the Amundsen
Sea Low (ASL) Actual Central Pressure Index Version 3 (blue), ASL longitude (grey)
and latitude (dashed grey) position for the year 2013. Note that for the strength
and latitude position of the westerly jet only seasonal means are available.
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section Identifying moisture sources from glacio-chemical records).
This is also consistent with the findings of Lubin and others
(2008), who showed that a positive SAM in winter and spring
increases the cyclonic activity in the Bellingshausen-Amundsen
Sea and favours eastward trajectories. Consequently, extreme pre-
cipitation events are likely to occur more frequently on the west-
ern side of the AP (cf. Turner and others, 2019).

Conversely, during the period of the δ18O maximum, the SAM
shifted into a strongly negative phase (MSI < −2; Marshall and
others, 2006). This was associated with a weakening and north-
ward shift of the circumpolar westerlies and a weaker and more
westerly located ASL (Figs 9d, e). On the AP, this generally
leads to less extreme but more frequent smaller to moderate pre-
cipitation events (Turner and others, 2019), as observed in the
regional precipitation records (Fig. 4). Furthermore, with a nega-
tive SAM in winter, the cyclonic activity in the
Bellingshausen-Amundsen Sea decreases (Lubin and others,
2008), which could have favoured the transport of local moisture
generated near the sea-ice margin towards the northern AP (cf.
Goursaud and others, 2019). In addition, the stronger meandering
of the circumpolar westerlies during negative SAM phases allows
for air mass advection by meridional flow components either
from the north (higher δ18O) or from the south (lower δ18O),
as also indicated by the results of backward trajectory modelling
(Fig. 8b).

Transferability of identified isotopic and glacio-chemical finger-
prints to other periods: Relations between isotopic signals, glacio-
chemistry and atmospheric circulation as observed for the
MMM-pattern cannot be directly applied to other sections of
the 2013 isotopic record. This is because the temporal variability
of isotopic signals at the study site is not directly temperature-
driven, but the result of a complex interplay between the prevail-
ing synoptic situation, the location of moisture sources, air mass
transport pathways and sea-ice conditions.

Nevertheless, for the sequence of three smaller δ18O (and
d-excess) minima and maxima preceding the MMM-pattern
(May–June 2013) and detectable in all six firn cores, we found
the same connection between δ18O values and moisture transport
pathways as discussed above (Supplementary Fig. S9).
Accordingly, the δ18O minima are rather related to westerly wind-
dominated transport pathways with the Bellingshausen-Amundsen
Sea as primary moisture source. In contrast, the δ18O maxima
show a clear link to the South American continent and to some
extent to the Weddell Sea (Supplementary Fig. S9b). The sequence
falls in a season with generally increased precipitation frequency
(Fig. 4). Unlike the MMM-pattern, a clear assignment of single pre-
cipitation events to the δ18O minima and maxima is difficult due to
the shortness of the period and the dating uncertainty of OH-12 (±2
months; Hoffmann-Abdi and others, 2021a). There are also no dis-
tinct correspondences between high/low δ18O values and chemical
impurities.

It is challenging to identify further δ18O maximum and min-
imum peaks common to all six firn cores. In January and
February 2013, OH-12 shows a distinct δ18O maximum (Fig. 9a),
which is otherwise only clearly visible in LP-01 at a depth of 14–
15m (Fig. 3a). It is accompanied by relatively low d-excess values
(Fig. 9a). Different from the MMM-pattern, the high δ18O values
coincide with a remarkable maximum in the sea salt indicators
(>2σ; Fig. 9b), suggesting moisture transport across open ocean
areas (cf. Goursaud and others, 2019). This is supported by back-
ward trajectories which have a clear west–east component crossing
sea-ice-free areas in the Bellingshausen-Amundsen Sea
(Supplementary Fig. S10). However, they also comprise easterly
(Weddell Sea) and northerly directions (South America), since
there is less cyclonic activity around Antarctica in summer (Lubin
and others, 2008; Turner and others, 2019). The easterly component

is evidenced by the regional precipitation records, where EP station
shows several maxima in February 2013 (Fig. 4e).

The distinct inverse relationship between δ18O and the SAM,
as observed for the MMM-pattern, does not hold for the entire
year 2013. The high δ18O values in January and February, for
example, coincide with a strongly positive SAM (MSI > 2;
Marshall and others, 2006; Figs 9a, d). Instead, the d-excess
behaves inversely to the SAM in this period. Overall, for both
δ18O and the d-excess, the correlation with the SAM is negative
but not statistically significant in 2013 (r =−0.3, p = 0.4 for
δ18O; r =−0.5, p = 0.1 for d-excess). To assess whether stable
water isotopes in snow and firn from the northern AP can capture
the subannual variability of the SAM, a longer core from the study
area would be required.

We conclude that isotopic signals in firn cores from LCL and
LP can be linked to specific synoptic situations occurring in the
northern AP region with the MMM-pattern in winter 2013 as
the most prominent example. This complements results of
Hoffmann-Abdi and others (2021a), who showed that stable
water isotopes in the snowpack on LCL recorded an atmospheric
river-induced warm-air event prevailing in the northern AP
region in March 2015. Due to the shortness of the dataset and
the complexity of isotopic signal formation in snow and firn at
the study site, it is difficult to conclude the transferability of iden-
tified relations with atmospheric circulation patterns to longer
timescales.

5. Conclusions

High-accumulation areas such as the northern AP are challenging
sites with respect to the interpretation of stable water isotope
records from firn and ice cores. Here, we investigated possible
connections between atmospheric conditions and the stable
water isotope signals in six firn cores retrieved from two adjacent
plateaus (LCL and LP) at the northernmost end of the AP
between 2014 and 2016.

Firn-core δ18O-depth records show no clear seasonal cyclicity.
Therefore, construction of reliable age models relies on the avail-
ability of glacio-chemical records with H2O2 being the most suit-
able parameter for ALC. This method was used to derive an age
model for core OH-9, independently of the already existing age
scale for core OH-12 (Hoffmann-Abdi and others, 2021a). The
two age models agree very well (offset: ∼2 weeks). Together, the
cores cover the years 2012–2015, but we focused here on 2013,
which is the overlapping period of all six firn cores.

Due to the very high snow accumulation (on average 2500 kg
m−2 a−1) on LCL and LP, the influence of post-depositional pro-
cesses (e.g. diffusion) on the isotopic composition of snow and
firn is reduced, leading to excellent signal preservation. Also,
wind drift does not seem to have a notable impact on the stable
water isotope composition of the snowpack, since isotopic signals
are not only preserved within a single core, but also on a regional
scale. The δ18O records of OH-9 and OH-12 show common pat-
terns in the overlapping period, with a sequence of two remark-
able minima enclosing a broad maximum (MMM-pattern)
being the most striking one. The MMM-pattern spans the months
of June through October 2013 and is found in all six firn cores.
Therefore, it was used to place the cores on the same depth-age
scale. Alignment of the cores remarkably improves cross-
correlations not only between their stable water isotope records,
but also their d-excess and density records. Signal-to-noise ratios
are ∼1.1 for δ18O and δD and ∼0.4 for the d-excess with respect
to the entire year 2013, and increase to about double when refer-
ring to the sub-annual scale.

Model-data intercomparison provides further evidence for the
validity of constructed age models and hence the
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representativeness of firn-core isotopic signals for specific synop-
tic situations in the region. The records of δ18O and d-excess of
firn core OH-12 and those of the ECHAM6-wiso model show
the same variability on annual and sub-annual scales (offset: ∼1
month), including the MMM-pattern. Statistically significant
positive correlations between OH-12 and ECHAM6-wiso δ18O
records for 2013 are limited to small areas on the western side
of the AP and further south with values up to r∼ 0.7 ( p <
0.05). For the d-excess, highest statistically significant positive
correlations (r∼ 0.8, p < 0.05) are found in the
Bellingshausen-Amundsen Sea, indicating predominantly west-
erly moisture transport pathways towards the study area.
However, similar high correlations in the Weddell Sea and near
the South American continent suggest that these regions are add-
itional moisture sources for the northern AP.

For the investigated year 2013, the sub-annual variability of
firn-core isotopic records has no equivalent in time series of near-
surface air temperature either from reanalysis (ERA5) or from
observations at the nearby OH, BH and EP stations.
Instead, isotopic variability seems to be related to the variability
of precipitation and moisture sources, for which temporal changes
in the strength, position and zonality of the circumpolar westerlies
are likely the main driver. The temporal variability of the westerly
flow is in turn also reflected in temporal changes of the SAM.
Results of backward trajectory modelling for the year 2013 reveal
that δ18O minima are associated with long-range transport of
maritime moisture towards the study area by predominantly
(north-)westerly winds during positive SAM phases. In contrast,
δ18O maxima are related to shorter moisture transport pathways
with northerly (South America), southerly (Antarctic interior)
or easterly (Weddell Sea) flow components during negative
SAM phases. Especially, for the MMM-pattern in austral win-
ter/spring 2013, the two δ18O minima are additionally associated
with increased sea salt concentrations, indicating moisture origin
and transport over open ocean areas. In contrast, the δ18O max-
imum corresponds to elevated values of black carbon and mineral
dust, suggesting moisture advection from South America towards
the study area.

Thus, we demonstrated that isotopic signals in firn cores from
high-accumulation sites on the northern AP are representative of
specific synoptic events in the region. The occurrence of such
events is suggested to be related to atmospheric circulation
changes and potentially linked to the (subannual) variability of
the SAM. To assess the validity of this connection in detail, a
longer isotope-geochemical record from the study area would be
essential. The challenges associated with interpreting isotope-
geochemical data from high-accumulation sites can be overcome
by combining them with glacio-chemical data and atmospheric
and isotopic modelling.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.79

Data availability. The stable water isotope data of the six firn cores are avail-
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others, 2017), https://doi.org/10.1594/PANGAEA.939718 (Hoffmann-Abdi
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(Hoffmann-Abdi and others, 2023a). The glacio-chemical data of firn cores
OH-9 and OH-12 are available at https://doi.org/10.1594/PANGAEA.939719
(Hoffmann-Abdi and others, 2021e) and https://doi.pangaea.de/10.1594/
PANGAEA.961101 (Hoffmann-Abdi and others, 2023b). Near-surface air
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(last access: 04.03.2022). Near-surface air temperature and precipitation
records from Bernardo O’Higgins, Bellingshausen and Esperanza stations are
available at https://www.ncei.noaa.gov (last access: 04.03.2022). ERA5 reanaly-
sis data are available at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-
reanalysis-v5 (last access: 09.02.2022). The KNMI Climate Explorer can be

accessed via https://climexp.knmi.nl/ (last access: 20.02.2023). Monthly data
on Antarctic sea ice extent are available at https://nsidc.org/data/G02135/
versions/3 (last access: 18.05.2022). Time series of the Marshall SAM Index
are available at https://climatedataguide.ucar.edu/climate-data/marshall-
southern-annular-mode-sam-index-station-based (last access: 26.05.2022).
Time series of the ASL Actual Central Pressure Index Version 3, ASL longitu-
dinal and latitudinal position are available at https://climatedataguide.ucar.edu/
climate-data/amundsen-sea-low-indices (last access: 22.02.2023). Time series
of latitude and strength of the Southern Hemisphere circumpolar westerly
winds are available at https://climatedataguide.ucar.edu/climate-data/
southern-hemisphere-westerly-jet-strength-and-position (last access:
29.09.2022). The HYSPLIT model can be accessed via https://ready.arl.noaa.
gov/HYSPLIT.php (last access: 23.04.2022). The Global Data Assimilation
System (GDAS) archives are available at https://www.ready.noaa.gov/
archives.php (last access: 24.04.2022).
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