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POSITIVE HARMONIC FUNCTIONS 
AND COMPLETE METRICS 

BY 

DAVID A. HERRON* AND JOEL L. SCHIFF 

ABSTRACT. We introduce the class of Harnack domains in which a Har-
nack type inequality holds for positive harmonic functions with bounds 
given in terms of the distance to the domain's boundary. We give con
ditions connecting Harnack domains with several different complete met
rics. We characterize the simply connected plane domains which are Har
nack and discuss associated topics. We extend classical results to Harnack 
domains and give applications concerning the rate of growth of various 
functions defined in Harnack domains. We present a perhaps new charac
terization for quasidisks. 

1. Introduction. A classical result of Hardy and Littlewood relates the Holder 
continuity of a function analytic in the unit disk to the rate of growth of its derivative. 
In this note we begin a study of Harnack domains. These are the domains in which a 
Harnack type inequality describes the rate of growth of positive harmonic functions 
relative to the Euclidean distance to the boundary of the domain. 

In Section 2 we define Harnack domains. We give an alternative description for 
them in terms of the Harnack metric and use this to give a sufficient condition for 
a domain to be Harnack. In Section 3 we characterize the simply connected plane 
domains which are Harnack. We discuss Dini domains and show that each of these 
is Harnack. Then we point out an apparently new representation for the class of 
quasidisks. In Section 4 we extend some classical results for functions defined in 
the unit disk to functions defined in Harnack domains and we give various function 
theoretic applications of our ideas. 

Throughout this article d(-, •) denotes Euclidean distance, D denotes a proper sub-
domain of Euclidean «-dimensional space R" and ^H+(D) denotes the class of positive 
harmonic functions defined in D. Often n = 2 and we identify the point (x,y) in R2 

with the complex number z = x + iy in C. We use the symbols a, /?, a1 b, c to denote 
constants which may not be the same in different occurrences; we write c — c(a) or 
c = c(f) to explicitly indicate a constant which may depend on the number a or the 
function/. 
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2. Harnack domains. We call D c R " a /3-Harnack domain, (3 > 0, if there exists 
a fixed point xo G D, called the center, and a positive constant c such that 

(2.1) d(x, dDf/c ^ u(x)/u(x0) ^ c/d(x, dDf for all x G D 

for every function u G 9J+(D). 

REMARKS 2.2. (a) Note that (2.1) really is a condition which describes the boundary 
behaviour of positive harmonic functions in D. Indeed, if D is any domain and E is 
any compact connected subset of Z), then one can always find (cf. [HV, 2.6 and 3.2]) 
a constant b = /?(«, dia(£), d(E1 dD)) such that 

\/b û u(x)/u(xo) Û b for all X,XQ G E 

and then 
d(x, dD)/c ^ u(x)/u(xo) S c/d(x, dD) for all x,xo G E. 

(b) Whether or not a domain is Harnack does not depend on the center. More precisely, 
if D is /3-Harnack with center XQ and constant c$, then D is also /3-Harnack with center 
x\ and constant c\ = cl/d(x\,dD) for any x\ in D. (c) By considering constants we 
see that the function d(x, dD) must be bounded in a Harnack domain D. Thus Harnack 
domains are Bloch domains, i.e., they cannot contain arbitrarily large balls, (d) By 
considering the harmonic function u(x) = \/\x — yo\n~2, where _yo G dD is chosen 
so that d(xo,dD) — \xo — jo|, we see that for n ^ 3 there exist /3-Harnack domains 
D C Rn only when (5 ̂  n — 2. By the proof of Theorem 3.7 below, there exist /?-
Harnack simply connected proper subdomains D C C only when j3 ^ 1. (e) Consider 
the following variant of condition (2.1). For all u G ?{+(D) 

d({xux2},dD)a/b è u(xi)/u(x2) ^ bld{{xux2}1dD)a for all xux2 G D. 

It is easy to see that this condition implies that the function d(x, dD) must be bounded 
and hence that (2.1) holds with (3 — a, c — d. On the other hand, since d\d2 ^ 
(min{di,d2})2> we see that (2.1) implies this condition with a — fi2,b = c2. 

There is an alternative definition for Harnack domains. In 1966 Kohn introduced 
the Harnack metric HD defined for x,y ED CR" by 

HD(x,y) = sup|logM(*)M)0|, 
u 

where the supremum is taken over all functions u G J{+(D); see [K6], [H\]. 

PROPOSITION 2.3. Fix (3 > 0. A domain D C Rn is /3-Harnack if and only if there 
exists a point xo G D and a constant a such that 

HD(x,x0) ^ 01og(a/d(x, dD)) for all x G D. 
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PROOF. It is not difficult to see that the inequality HD(x,y) ^ log M is equivalent 
to the Harnack type inequality 

\/M è u(x)/u(y) ^ M for all u G 9f+(D). D 

Another useful distance function in the quasihyperbolic metric ko, introduced in 
1976 by Gehring and Palka [GP], and defined for je, y G D C Rn by 

kD(x,y) = M [ \dz\/d(z,dD), 

where \dz\ is Euclidean arc-length and the infimum is taken over all locally rectifiable 
arcs 7 C D joining x and y. The next result follows quickly from Proposition 2.3 and 
gives a sufficient condition for a domain to be Harnack. 

THEOREM 2.4. Fix (3 > 0 and D c R " . Suppose there exists a point XQ G D and a 
constant c such that 

(2. 5) kD(x,x0) ^ p\og(c/d(x, 3D)) for all x G D. 

Then D is nf3-Harnack. 

PROOF. It is known [H\, Theorem 2] that Ho = nkp for domains D c R " . • 

Gehring and Martio have studied the class of domains which satisfy (2.5) in connec
tion with determining when quasiconformal mappings satisfy local Lipschitz condi
tions. This class properly contains bounded admissible domains and bounded uniform 
domains as well as John domains [GM, 3.11 and 3.15], [HV, 2.12]. In fact, this is 
precisely the class of domains which are bounded and </>-John where <f>(t) = c log(l+0 
[HV, 2.5(c)], [#2, 2.8]. In particular, all of the aforementioned classes of domains are 
Harnack domains; cf. [HV, 3.8]. We mention that there are Harnack domains which 
do not satisfy condition (2.5). In fact, there exist unbounded Harnack domains [H2, 
3.3], while every domain satisfying (2.5) is bounded [GM, 3.9]. 

We use Proposition 2.3 again to point out that bounded Harnack domains can be 
characterized using the relative Euclidean distance which is defined for x,y G Rn by 

jD(x,y) = log(l + \x-y\/mm{d(x,dD),d(y,dD)}). 

PROPOSITION 2.6. Fix (5 > 0. Let D C Rn be bounded with d = dia(D). (a) If 

HD(x,x0) ^ PJD(X,XO) far all x G £>, 

then D is /3-Harnack with center xo and constant c — d2/d(xo,dD). (b) If D is 
(3-Harnack with center XQ and constant c, then 

Hoix.xo) ^ q/D(i,x0) far all x G D7 
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where a = max{2/i,/3(l + log(2c/d(jt0,3Z)))/log(3/2))}. 

PROOF, (a) Since D is bounded, JD(X,XO) = \og(d2/(d(xo, dD)d(x, dD))) for all 
xeD. (b) Apply [Hi, Theorem 2], [HV, (2.2)] and [H2, 2.6(b)]. D 

EXAMPLE 2.7. (a) An «-ball D = {x € Rn : \x — xo\ < r} is an (« — 1)-Harnack 
domain with center *0 and constant c = 2rn~l. This follows most easily from the fact 
[Ko, p. 58] that 

HD(x,x0) = log(rn~2[r + \x -x0\]/[r - \x - x0\]
n-1). 

(b) No half-space is Harnack, nor is any non-Bloch domain, (c) The infinite slab 
D = {(x,y) E R " 1 x R : 0 < y < 7r/(n— l)1/2} is not Harnack as seen by considering 
the positive harmonic function u(x,y) = exp(xi + . . . + xn_i)sin((« — \)xl2y) where 
(x,y) = (xu...,xn-uy). (d) The cylinder D = {(x,y) e Rnl x R : |JC| < n/2} is 
not Harnack; consider u(x,y) — cos(^i)... cos(xw_i)exp((« — \)xl2y). (e) A punctured 
«-ball is (n — 1)-Harnack; use (a) and [H\, Theorem 3]. 

3. Plane domains. Harnack domains are those domains for which a Harnack type 
inequality describes the rate of growth of positive harmonic functions relative to the 
Euclidean distance to the boundary of the domain. A classical result of Hardy and 
Littlewood relates the Holder continuity of a function analytic in the unit disk to 
the rate of growth of its derivative, again relative to the Euclidean distance to the 
boundary of the disk. In this section we characterize the simply connected plane 
Harnack domains as precisely those domains which are the image of the unit disk 
under a Holder continuous conformai mapping. This description also involves the 
hyperbolic metric of the domain. Then we give a geometric condition which, when 
satisfied by a simply connected plane domain, guarantees that the domain is Harnack. 
Finally, we present an apparently new characterization for the class of quasidisks. 

A function/ : E C R" —» Rm belongs to the Lipschitz class Lipa(E) if 

\f(x)-f(y)\ ^c\x-y\a foralljc,j eE 

for some constant c, where 0 < a ^ 1. Gehring and Martio have shown that a K-
quasiconformal mapping / : Bn —• D of the unit ball Bn in Rn belongs to Lipa(B

n) 
for some 0 < a ^ Kxlx~n if and only if D satisfies condition (2.5) [GM, 3.24]. We 
are interested in the domains D — f(B) which are the image of the open unit disk 
B — {£ G C : |C| < 1} under a conformai mapping / in Lipa(B). 

The following result is used repeatedly. 

LEMMA 3.1. Fix 0 < a ^ 1. Let f : B —+ D be conformai. The following are 
equivalent. 

(3.2) | / ( 0 | ^ a{\ - W 1 forallÇEB, 

(3.3) | / ( 0 | ^ bd(f(Q,dD)l-{/a forallÇeB, 

(3.4) d(f(Q,dD)^c(l-\Ç\r forall'CeB. 
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Here the constants a,b,c depend only on each other and on a. 

PROOF. Koebe's one-quarter theorem [P, 1.4, p. 22] states that 

(3.5) d(/(Q, dD) Û 1/(01(1 -ICI2) ^ W ( 0 , 3 D ) for all CG£. 

We merely combine (3.5) with the elementary inequalities 

i - id ^ i - I C I 2 ^ 2 d - i c i ) , ceB. 

Fix C G B and let z —f(Q. From (3.5) we have 

2{\-\(:\)^d{z,dD)l\f\Q\1 

so (3.2) implies 

| / ' ( 0 l ^ 2 1 - a a d ( z , a / ) ) a - I | / ' ( 0 r " a 

which gives (3.3) with b = 2xla~xaxla. Using (3.5) again as above with (3.3) we 
obtain 

d(z,3D) ^ 2/7(1 - \C\)d(z,dD)l-l/a 

which gives (3.4) with c = 2aba. Finally, the second inequality in (3.5) with (3.4) 
yields 

1/(01 ^ 4d(z,3D)/(l - ICI) ^ 4c(l - ICI)"-1- • 

COROLLARY 3.6. A conformai mapping/ : B -^ D belongs to Lipa(B) if and only if 
one (and hence all) of the inequalities (3. 2), (3. 3), (3.4) holds. 

PROOF. Using Cauchy's integral formula one readily verifies that for any domain 
G c C 

|S(0) " 8(&)\ ^ c|Ci -Ci\a for all Ci,0 G G 

implies 
\g'(Q\ Û cd(C, dD)*-1 for all C G G 

whenever g is analytic in G. In particular, (3.2) holds as soon a s / is in Lipa(B). In 
1932 Hardy and Littlewood established the reverse implication assuming only that/ 
is analytic in B [HL, Theorems 40 and 41]. • 

One more important distance function is Poincare s hyperbolic metric ho defined 
for z,w eD C C by 

hD(z,w) = hB(p~l(z),p~l(w)\ 

where p : B —> D is any analytic covering projection and 

|i-C*?MC-*7l 
MC,rç) = iog-

i - C ^ | - | C - ^ | 

https://doi.org/10.4153/CMB-1989-042-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-042-5


1989] POSITIVE HARMONIC FUNCTIONS 291 

is the metric in the unit disk; if no covering exists, we set hD = 0. We now use the 
hyperbolic metric to present an elementary proof of the following result whose corol
lary provides the aforementioned characterization of simply connected plane Harnack 
domains. 

THEOREM 3.7. Fix (3 > 0 and let a — I/p. Let D be a simply connected proper 
subdomain of C Fix a point z$ G D. The following are equivalent. 

(3.8) d(z, dDf/a ^ u(z)/u(z0) ^ a/d(z, dDf for all z G D, u G M +(D); 

(3.9) hD(z, z0) S plog(b/d(z, dD)) for all z G Z); 

(3.10) Every conformai f : B —> D with f(0) = ZQ satisfies (3.4). 

Here the constants a, b, c depend only on each other and on p. 

PROOF. (3.8) => (3.9): Fix a point z G D. Let (j> be the conformai mapping of D 
onto the right half-plane with <f)(z0) = 1 and </>(z) = x > 1. Then u = Re(</>) G ^C+(D), 
so 

hD(z,z0) = logx = log(w(z)/w(z0)) ^ p\og(b/d(z,dD)) 

where b — aa. 
(3.9) => (3.10): Let / : £ ->D be conformai with z0 = /(0). Fix z = / ( $ . Then 

log((l + |C|)/(1 - |CD) = An(C,0) = AD(z,z0) S p\og(b/d(z,dD)), 

so (3.4) holds with c — b. 
(3.10) => (3.8): Fix u G # + ( D ) . Let / : B -> D be conformai with z0 = / (0) . Set 

v — uof. Then by Harnack's inequality 

2 - l + ici - v ( 0 ) - i - i c r i-ici t o r a l , ( > e *-
Letting z =f(Q we see that the above and (3.4) imply (3.8) with a = 2c^. • 

COROLLARY 3.11. F/x /? > 1. A simply connected proper subdomain of C is /?-
Harnack if and only if it is the image of the unit disk B under a conformai mapping 
in Lipi/p(B). 

REMARKS 3.12. (a) Kohn verified that the Poincaré and Harnack metrics are the 
same for simply connected hyperbolic Riemann surfaces [Ko, 4.2]. This fact and 
Proposition 2.3 imply the equivalence of (3.8) and (3.9). (b) It is known that for 
simply connected proper subdomains D C C 

(l/2)kD£HD=hD£2kD, 

while for general domains D C C 

HDèhD^ 2kD; 
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see, e.g., the references mentioned in [//i], [H2]. (c) Becker and Pommerenke demon
strated the equivalence of (3.9) and (3.10) [BP, Theorem 1]; note that their result 
includes a hypothesis that the domain be bounded, (d) From the proof of Theorem 3.7 
we infer that there are simply connected /3-Harnack plane domains only when (3 ^ 1. 

Our next two observations follow at once from the above remarks and Proposition 
2.3. The first result gives a sufficient condition for a plane domain to be Harnack and 
is analagous to Theorem 2.4, while the second result is a converse to Theorem 2.4; 
see also the corollary in [BP]. 

COROLLARY 3.13. Fix (3 > 0 and D C C. Suppose there exists a point zoGD and 
a constant b such that (3.9) holds. Then D is j3-Harnack. 

COROLLARY 3.14. Fix (3 > 0. Let D be a simply connected proper subdomain ofC. 
If D is ((3/2)-Harnack with center xç>, then (2.5) holds for some constant c. 

Now we give a geometric condition which can be used to show that a simply 
connected plane domain is Harnack. This condition is essentially one which must 
hold only at a single boundary point. It helps explain the significance of the constant 
/3 for /3-Harnack domains. 

Following Kuran and Schiff, we call D c C a n a-Dini domain, 0 < a ^ 2, if D is 
a Jordan domain with a Dini-smooth boundary of angle an at some fixed boundary 
point; see [KS, p. 196] and [P, p. 298]. This means that D is a bounded Jordan domain 
and there exists a fixed point WQ G dD such that dD has a Dini-smooth arc-length 
parametrization w = w(t), 0 ^ t ^ I with w(0) = WQ — w(l) and an is the angle 
between the two tangent vectors 

w (0) = hm lW(l)= hm 
0<r-^0 t />*- • / l — t 

THEOREM 3.15. Fix (3 = 1 and let a = 1/(3. Suppose that D C C is a-Dini. Then 
D is (3-Harnack. 

PROOF. Assume D has a Dini-smooth boundary of angle an at 0 G dD. Note that 
d(z, dD) ^ \z\ for all z G dD. Le t / : B —• D be conformai. Then by [KS, Lemma 1] 
there exists a constant b > 0 such that 

1 / (01^ b\f(Q\ l-t> for all (e B. 

Thus (3.3) holds. • 

A domain D C C is a K-quasidisk, K ^ 1, if D =f{B) is the image of the unit disk 
under a ^T-quasiconformal mapping/ : C —* C. We refer to Gehring's exposition [G] 
for properties of quasidisks. We present here what appears to be a new characterization 
for this important class of domains. 

THEOREM 3.16. Let D be a simply connected proper subdomain of C. Then D is a 
K-quasidisk if and only if there exists a constant (3 > 0 such that for all u G 9-(+(D) 
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and for all z\,z2 ED we have 

u(z2) ~ 

l\zX~Z2\ + 1 W k l - Z 2 l \ 
\d(zudD) J \d(z2,dD) J 

Here the constants K and f3 depend only on each other. 

PROOF. This theorem is an immediate consequence of the proof of Proposition 2.3 
and Remark 3.12(a) together with the characterization of quasidisks as being precisely 
those simply connected plane domains in which the metrics ho are jo are equivalent; 
see [G, p. 36] and [J, Theorems 1, 2 and p. 44]. • 

The following corollary shows that bounded quasidisks are Harnack domains. Of 
course this follows from Theorem 2.4 since quasidisks are uniform domains; see also 
[HV, 3.6 and 3.8]. 

COROLLARY 3.17. Let D C C be a bounded K-quasidisk. Then there exist constants 
f3 = p(K) > 0, c = c(K, dia(D)) > 0 such that 

u(zi)/u(z2) ^ [dia(D) 2 /^ i , dD)d(z2, dD)f for all zuz2ED 

and 

d({zuz2},dD)2P/c ^ u{zx)lu(z2) ^ c/d({zuz2},dD)2P for all zuz2 e D 

forallu<E!H+(D). 

PROOF. The observation \z\ — z2\ + d(zj,dD) ^ dia(Z)) implies the first set of in
equalities, while the second follow by taking c = dia(D)2^. • 

QUESTION 3.18. Matti Vourinen pointed out that it would be interesting to have 
information describing the connection between the constants K and (3 in Theorem 
3.16. 

4. Applications. In this section we extend some classical results for functions 
defined in the unit disk to functions defined in Harnack domains and we give other 
typical function theoretic applications. In particular we present results describing the 
rate of growth of various classes of functions defined in Harnack domains. Finally, 
we discuss a result related to the "order" of analytic functions and we consider the 
classes AL(D) and HP(D). 

The next result is known for disks [KS, Theorem 2 and p. 201, (7)]; for related 
results see also [K], [S] and [HV]. 

THEOREM 4.1. Fix (5 > 0. Let D C C be a simply connected (3-Harnack domain. 
Suppose that v is positive and superharmonic in D. Then there exists a constant 
a = a(/3, v) > 0 such that 

v(z) ^ ad(z7 dDf for all z ED. 
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PROOF. L e t / : B —» D be conformai. Set w = v of. Then w is positive and 
superharmonic in B, so by [KS, Proposition 1] there exists a constant b = b(v) > 0 
such that 

w(0 ^ 6(1 - ICI) for all C G B. 

Letting z =f(Q we have by (3.10) that 

d(z ,3D)^c( l - |C | ) 1 / / 3 , 
whence 

v(z) - w(0 ^ 6c_/^(z, 3D)^. D 

COROLLARY 4.2. F/JC /3 > 0. L r̂ D C C be a simply connected (3-Harnack domain. 
Suppose that v is non-negative and superharmonic in D. If there exists a point £ G 3D 

1 1 1 1 1 1 1 1 1 M^Z- ) I I * V̂ Z, . KJMS 

then u = 0. 

liminfw(z)Mz,3D)/3 = 0, 

Now we extend a well-known distortion theorem for the class of normalized func
tions analytic in B with positive real part; see [P, p.40, (11)] and also [HV, 4.1]. 

THEOREM 4.3. Fix (3 > 0. Let D C C be a simply connected (3-Harnack domain 
with center ZQ and constant c. Suppose that <j> is analytic in D with Re((/>) > 0 and 
</>(z0) = 1. Then for all z G D 

d(z,dDf/2c ^ \<j>(z)\ ^ 2c/d(z,dDf 

and 
\<f>\z)\ ^4c/d(z,dD)l+P. 

PROOF. Let / : B —» D be conformai with/(0) = z0. Then F = cf) of is analytic in 
B with Re(F) > 0 and F(0) = 1. Thus by [P, p. 40, (11)] 

2 - l + ici ~! W|- i - i c r i-ici 
and 

|F'(0| £ 2/(1 - Kl)2 

for all £ G 5 . Letting z = f(Q, so </>(z) = F(Q, and combining (3.4) with the above 
we obtain the desired bounds on |</>(z)|. Next, by (3.5) 

^ ( z 7 3D)^2 | / , ( 0 | ( l - |C | ) , 

and thus using (3.4) again we get 

\4>'{z)\ = |F ' (0 | / | / ' (0l ^ 2/[(l - |C|)V(0|] ^ 4c/d(z,dD)^. 
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Our next result generalizes (3.3). D 

THEOREM 4.4. Fix (3 > 0. Let D C C be a simply connected (3-Harnack domain 
with center ZQ and constant c. Suppose that </> : D' —+ D is conformai. Then 

|</>V)| ^ 4a/(<£(w), dD)l~P/d(w, 3D') for all w G £>'. 

PROOF. Le t / : B •—> D' be conformai with (j)(f(0)) = z0. Since D is Harnack and 
F = 0 o / : B —» D is conformai, (3.3) yields 

l</>V)| 1/(01 = 1 (̂01 ^ 4cJ(F(0,3D)1-/? = Acd{<j>{w\dD)1^ 

for all w = / ( 0 £ £*'• The result now follows from (3.5). • 

The following result is of interest since it shows that for an analytic function / 
defined in a Harnack domain D, knowledge of a positive lower bound for | / | actually 
gives an upper bound for |/(z)| in terms of <i(z,3D); a similar result holds when a 
finite upper bound for | / | is known and/ is nonvanishing. In particular, we see that 
analytic functions of "infinite order" defined in Harnack domains must necessarily 
take on values arbitrarily close to zero. 

PROPOSITION 4.5. Fix (3 > 0. Let D C C be a fi-Harnack domain with center ZQ and 
constant c. Set s = sup{d(z, dDf.z G D}. Let f be analytic in D. 

(a) Suppose that \f\ ^ a > 0. Then for all z GD 

a(|/(zo)|/a)^ to>"/c ^ |/(z)| Û a(\f(z,)\lar'd^D)\ 

In particular, 
| /(z)| Û exp(b/d(z, dDf) for all z<ED, 

where b — c log(|/(z0)|/tf) + s \og+(a). 
(b) Suppose 0 < l/l ^ a < +oo. Then for all z G D 

a(\f(z0)\/af^^ ^ |/(z)| ^ a ( | / ( z 0 ) | / « )* ' t o ) ^ . 

In particular, 
|/(z)| ^ exp(-b/d(z, dDf) for all z G D, 

w/zere fr = clog(tf/|/(zo)|) + slog+(l/a). 

PROOF, (a) We assume that u(z) — log(|/(z)|/a) is positive. Then (2.1) yields 

u(z0)d(z, dDf/c ^ u(z) ^ cu(z0)/d(z, dDf for all z G D 

from which the first conclusion follows. The second is an immediate consequence of 
the inequalities 

log |/(z)| ^ log(fl) + cu(zo)/d(z, dDf ^ [s l o g » + cu(z0)]/d(z, dDf. 
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(b) This follows by considering \/f. • 

We now obtain a result similar to the above for the class AL(D) of analytic Lin-
delôfian functions. We have / G AL(D) i f / is analytic in D and if log+ | / | has 
a harmonic majorant in D, i.e., if there exists a function u harmonic in D with 
log+ | /(z)| ^ w(z) for all z £ D. We note that the Hardy class HP(D) is a subclass 
of AL(D) for 0 < p < +00, and AL(B) — N is Nevanlinna's class of functions of 
bounded characteristic. 

PROPOSITION 4.6. For /3 > 0. Let D C C be a (3-Harnack domain with center zo and 
constant c. For each f G AL(D) there exists a constant b — b(c,f) ^ 0 such that 

| /(z)| ^ exp(b/d(z, dDf) for all z eD. 

PROOF. Choose u harmonic in D with log+ | / | Û u. If u = 0, set b = 0. Otherwise, 
ueOf +(D) and thus for all z G D 

log \f(z)\ è log+ | /(z)| ^ M(z) ^ cu(z0)/d(z1dDf 

which gives the conclusion with & = CU(ZQ). D 

Finally, we give a result describing the possible rate of growth of Hp functions 
defined in simply connected plane Harnack domains. 

PROPOSITION 4.7. Fix (3 > 0. Let D C C be a simply connected (3-Harnack domain. 
For each f G HP(D) there exist constants a ^ 0, b ^ 0 such that 

\f(z)\p ^ a/d(z, dDf - bd(z, dDf for all z eD. 

PROOF. Let w = \f\p. Then w is non-negative and subharmonic in D, so w has a 
least harmonic majorant u. Since either u = 0 or u G ^ + ( D ) , there exists a constant 
a ^ 0 such that 

uiz) è a/d(z, ddf for all z G £>. D 

Then v = u — w is non-negative and superharmonic in D, so by Theorem 4.1 there 
exists a constant b è 0 such that 

v(z) ^ M(z, 3£>y* for all z G £>. 

Thus 

|/(z)|p = w(z) = w(z) - v(z) ^ tf/d(z, 3D)^ - fo/(z, 3D^ for all z G D. D 

ADDED. We thank the referee for numerous helpful suggestions and for sending 
us the preprint of Anderson and Hinkkanen. We point out that [AH, Theorem 1] 
generalizes the implication (3.10) => (3.8) of Theorem 3.7 combined with Theorem 
4.1 and [AH, Theorem 3] is essentially the implication (3.8) => (3.10) in Theorem 3.7. 
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Of greater significance is the fact that their work presents a substantial step towards 
answering Question 3.18.. 
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