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C
∗-Algebras and Factorization Through

Diagonal Operators

Narcisse Randrianantoanina

Abstract. Let A be a C∗-algebra and E be a Banach space with the Radon-Nikodym property. We

prove that if j is an embedding of E into an injective Banach space then for every absolutely summing

operator T : A → E, the composition j ◦ T factors through a diagonal operator from l2 into l1. In

particular, T factors through a Banach space with the Schur property. Similarly, we prove that for

2 < p < ∞, any absolutely summing operator from A into E factors through a diagonal operator

from lp into l2.

1 Introduction

Diagonal operators between lp-spaces are probably the most well-understood among

the many classes of operators involved in the theory of Banach spaces. Indeed, many

ideals of operators in the literatures are based on factorizations through diagonal op-

erators such as p-nuclear operators. It is well known that if E is a Banach space with

the Radon Nikodyn property (RNP) then every absolutely summing operator from

any C(K)-spaces into E is nuclear. Recognizing that C(K)-spaces are C∗-algebras, one

may wonder if such permanent property extends to operators on C∗-algebras. This

note is an attempt to isolate permanent properties of absolutely summing operators

when the domain spaces are extended to include (non-commutative) C∗-algebras in

general. Since absolutely summing operators from C∗-algebras are not necessarily

integral operators, one should not expect that the result for C(K)-spaces would ex-

tend to non-commutative C∗-algebras. In fact, it is not even clear if such operators

are p-nuclear for p > 1. The Hilbert space case was settled in [7] where it was

shown that any absolutely summing operator from a C∗-algebra into a Hilbert space

factors through a Hilbert space operator belonging to the 4-Schatten von Neumann

class. Our main result is Theorem 3.1 below, which roughly states that any absolutely

summing operator from a C∗-algebra into a Banach space with the (RNP) factors

through a diagonal operators from l2 into l1 when viewed as an operator into an in-

jective space. Our proof is based on a factorization technique proved in [8] along

with basic properties of nuclear and integral operators.

Our terminology and notation are standard as may be found in [1, 3] for Banach

spaces, [4, 11] for C∗-algebras and operator algebras.
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616 N. Randrianantoanina

2 Preliminary Definitions

In this section, we recall some definitions.

Definition 2.1 Let X and Y be Banach spaces and 0 < p < ∞. An operator

T : X → Y is said to be p-summing if there is a constant C such that for any finite

sequence {xi}
n
i=1 of X, one has

(

n
∑

i=1

‖Txi‖
p
)

1

p

≤ C sup
{(

n
∑

i=1

|〈xi , x∗〉|p
)

1

p

; x∗ ∈ X∗, ‖x∗‖ ≤ 1
}

.

The smallest constant C for which the above inequality holds is denoted by πp(T)

and is called the p-summing norm of T.

Definition 2.2 We say that an operator T : X → Y is an integral operator if it admits

a factorization:

X
iT

//

α

��

Y ∗∗

L∞(µ)
J

// L1(µ)

β

OO

where i is the natural inclusion from Y into Y ∗∗, µ is a probability measure on a

compact space K, J is the natural inclusion and α and β are bounded linear operators.

We define the integral norm i(T) := inf {‖α‖ · ‖β‖} where the infimum is taken

over all such factorizations.

Similarly, we shall say that T is strictly integral if T is integral and on the factoriza-

tion above β takes its values in Y .

It is well known that integral operators are 1-summing but the converse is not

true.

If X = C(K) where K is a compact Hausdorff space then it is well known that

every 1-summing operator from X into Y is integral. Similarly, if the range space Y

is an injective Banach space, then every absolutely summing operator from X into Y

is (strictly) integral.

Definition 2.3 ([6, p. 243]) Let 0 < r ≤ ∞, 1 ≤ p, q ≤ ∞ and 1+1/r ≥ 1/q+1/p.

An operator S : X → Y is said to be (r, p, q)-nuclear if it admits a factorization:

X
S

//

A

��

Y

lq ′

D
// lp

B

OO

where 1/q + 1/q ′
= 1 and D is a diagonal operator of the form D((ξi)i) = (σiξi)i

with (σi)i ∈ lr .
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Diagonal Operators 617

In this case, the (r, p, q)-nuclear norm is defined by

N(r,p,q)(S) := inf {‖B‖ · ‖(σi)‖lr · ‖A‖}

where the infimum is taken over all such factorizations.

We remark that (p, p, 1)-nuclear corresponds to the usual p-nuclear operators.

In this case, N(p,p,1)( · ) is denoted by Np( · ) and for p = 1, the nuclear norm will

be denoted by N( · ). For more details on the different properties of the ideals of

operators involved, we refer to [2, 6].

The following simple fact will be needed in the sequel (see for instance, [3, Corol-

lary 5, p. 174]).

Proposition 2.4 If Y is a Banach space with the (RNP), then every absolutely sum-

ming operator T from any C(K)-space into Y is nuclear. In this case, π1(T) = N(T).

More generally, the preceding proposition can be extended to strictly integral opera-

tors.

Proposition 2.5 Let T : X → Y be a strictly integral operator. If Y has the (RNP)

then T is nuclear with i(T) = N(T).

Proof The operator T has a factorization T = β Jα where α : X → L∞(µ),

J : L∞(µ) → L1(µ) and β : L1(µ) → Y are as in the above definition. Note that

J is 1-summing so β J : L∞(µ) → Y is 1-summing and since L∞(µ) is a C(K)-space

and Y has the (RNP), β J (and hence T) is nuclear.

We will now recall some basic facts about C∗-algebras and von Neumann algebras.

Let A be a C∗ algebra, we denote by A the set of Hermitian (self adjoint) elements of

A. For x ∈ A and f ∈ A∗, as is customary, x f (resp., f x) denotes the element of A∗

defined by x f (y) = f (yx) (resp., f x(y) = f (xy)) for every y ∈ A.

Definition 2.6 A von Neumann algebra is said to be σ-finite if it admits at most

countably many orthogonal projections.

We refer to [4, 11] for some characterizations and examples of σ-finite von Neumann

algebras. Of particular use in this paper is that a von Neumann algebra M is σ-finite

if and only if there exists a faithful normal state ϕ ∈ M∗.

3 The Results

The main result of this paper is Theorem 3.1 below which provides a factorization

of absolutely summing operators through diagonal operators. The reader is referred

to [3] for extensive exposition on Banach spaces with the Radon-Nikodym properties

(RNP).

Theorem 3.1 Let A be a C∗-algebra and E be a Banach space with the (RNP) and

T : A → E be an absolutely summing operator. Then for every operator S : E →
L∞[0, 1] , the composition ST is (2, 1, 2)-nuclear with N(2,1,2)(ST) ≤ 2‖S‖π1(T).

https://doi.org/10.4153/CMB-2004-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-059-9


618 N. Randrianantoanina

For the proof, we will consider first the following particular case:

Proposition 3.2 Let M be a σ-finite von Neumann algebra and E be a Banach space

with the (RNP). If T : M → E is absolutely summing and is weak* to weakly continuous

and S : E → L∞[0, 1] then ST is (2, 1, 2)-nuclear with N(2,1,2)(ST) ≤ 2‖S‖π1(T).

Proof Let δ > 0. From Lemma 2.3 of [8], there exists a faithful state f in M∗ such

that for every x ∈ M,

‖Tx‖ ≤ 2(1 + δ)π1(T)‖x f + f x‖M∗
.

If L2( f ) is the completion of the prehilbertian space (M, 〈 · , · 〉) where 〈x, y〉 =

f ((xy⋆ + y⋆x)/2) then we have the following factorization:

M

J

��

T
// E

L2( f )
θ

// L2( f )∗
J∗

// M∗

L

bbF
F

F

F

F

F

F

F

F

where J is the inclusion map, θ( Jx) = 〈 · , J(x⋆)〉 for every x ∈ M and

L((x f + f x)/2) = Tx.

Here we denote by x⋆ the adjoint of the element x ∈ M. We recall that L is a

well defined bounded linear map since {x f + f x ; x ∈ M} is dense in M∗ and

‖L(x f + f x)‖ ≤ 4(1 + δ)π1(T)‖x f + f x‖M∗
. By duality, the proposition will follow

from the following lemma:

Lemma 3.3 For every S : E → L∞[0, 1], the composition JL∗S∗ is 2-nuclear.

Remark that L∗S∗ : L∞[0, 1]∗ → M so the composition TL∗S∗ : L∞[0, 1]∗ → E

is well-defined and is absolutely summing as T is absolutely summing.

Claim LT∗ : E∗ → E is such that LT∗
= (LT∗)∗ = TL∗.

In fact, for every e∗ and f ∗ in E∗, we have:

〈LT∗(e∗), f ∗〉 = 〈e∗, TL∗( f ∗)〉

= 〈e∗, L J∗θ JL∗( f ∗)〉

= 〈 JL∗(e∗), θ( JL∗)( f ∗)〉

= 〈 JL∗(e∗), J((L∗( f ∗))⋆)〉L2( f ).

By the definition of the scalar product on L2( f ),

〈LT∗(e∗), f ∗〉 = f
( L∗(e∗)L∗( f ∗) + L∗( f ∗)L∗(e∗)

2

)
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which is symmetric on e∗ and f ∗. That is, 〈LT∗(e∗), f ∗〉 = 〈LT∗( f ∗), e∗〉 and hence,

(LT∗)∗ = LT∗ and the claim is verified.

As LT∗
= TL∗ is absolutely summing and L∞[0, 1] is injective, SLT∗ is strictly

integral. Consequently, its adjoint TL∗S∗ : L∞[0, 1]∗ → E is strictly integral. Since E

has the (RNP), Proposition 2.5 implies that TL∗S∗ is nuclear. A fortiori,

STL∗S∗ : L∞[0, 1]∗ → L∞[0, 1]

is nuclear.

To complete the proof of the lemma, fix ( fn)∞n=1 and (gn)∞n=1 bounded sequences

in L∞[0, 1] with limn→∞ ‖ fn‖∞ = limn→∞ ‖gn‖∞ = 0 and (λn)∞n=1 ∈ l1 such that

STL∗S∗ =

∞
∑

n=1

λn fn ⊗ gn.

For every ξ ∈ L∞[0, 1]∗, STL∗S∗(ξ) =

∑∞
n=1 λn〈 fn, ξ〉gn and hence,

(3.1) 〈STL∗S∗(ξ), ξ〉 =

∞
∑

n=1

λn〈 fn, ξ〉〈gn, ξ〉.

On the other hand, one can see that

(3.2) 〈STL∗S∗(ξ), ξ〉 = ‖ JL∗S∗(ξ)‖2
L2( f ).

Combining (3.1) and (3.2), we get that

(3.3)
∥

∥ JL∗S∗(ξ)
∥

∥

2

L2( f )
≤

1

2

∞
∑

n=1

∣

∣λn

∣

∣ ·
∣

∣ 〈 fn, ξ〉
∣

∣

2
+

1

2

∞
∑

n=1

∣

∣λn

∣

∣ ·
∣

∣ 〈gn, ξ〉
∣

∣

2
.

If we set h2n := fn and h2n+1 := gn, and α2n = α2n+1 =

√

|λn|/2, then

∥

∥ JL∗S∗(ξ)
∥

∥

2

L2( f )
≤

∞
∑

n=1

α2
n

∣

∣ 〈hn, ξ〉
∣

∣

2
.

Define the operator U : L∞[0, 1]∗ → c0 by setting for ξ ∈ L∞[0, 1]∗, U (ξ) =

(〈hn, ξ〉)
∞
n=1 and D : c0 → l2 the diagonal operator (an)n 7→ (αnan)∞n=1. Also if Z

is the subspace of l2 defined by Z = span{(αn〈hn, ξ〉)
∞
n=1, ξ ∈ L∞[0, 1]∗}, then

(αn〈hn, ξ〉)
∞
n=1 7→ JL∗S∗(ξ) defines a bounded linear map from Z into L2( f ). Since

Z is a complemented subspace of l2, it can be extended to a bounded linear map V

from l2 into L2( f ). It is now clear that

L∞[0, 1]∗
JL∗S∗

//

U

��

L2( f )

c0

D
// l2

V

OO
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is a commutative diagram that shows that JL∗S∗ is 2-nuclear.

For the estimate of N(2,1,2)(ST), note that for ε > 0, the sequence {λn}
∞
n=1 can be

chosen so that
∑∞

n=1 |λn| ≤ N(STL∗S∗) + ε. We now have the following estimate:

∞
∑

n=1

|λn| − ε ≤ ‖S‖N(TL∗S∗)

= ‖S‖i(TL∗S∗) = ‖S‖i(SLT∗)

= ‖S‖π1(SLT∗) ≤ ‖S‖2π1(LT∗).

As LT∗
= TL∗ and ‖L‖ ≤ 4(1 + δ)π1(T), we deduce that

∞
∑

n=1

|λn| − ε ≤ ‖S‖24(1 + δ)π1(T)2.

which shows that ‖(αn)‖l2 ≤ ‖S‖2(1 + δ)1/2π1(T) + ε. Taking infimum over δ and

ε, we conclude that N(2,1,2)(ST) ≤ 2‖S‖π1(T). The proof of the proposition is com-

plete.

For the proof of Theorem 3.1, it is enough to reduce the general case to the particu-

lar case of Proposition 3.2. Recall that any C∗-algebra can be considered as a concrete

C∗-algebra via its universal representation ([11, Theorem 2.4]) and its second dual

can be identified with its universal enveloping von Neumann algebra. Denote by M

the universal enveloping von Neumann algebra of A.

Proposition 3.4 There exists a countably decomposable projection p in M such that

T∗∗(x∗∗) = T∗∗(px∗∗p) for every x∗∗ ∈ A
∗∗

= M.

Since E has the (RNP), it has the compact range property. From [9], the operator

T is compact and therefore T∗(E∗) is separable. Let {ϕn}
∞
n=1 be a countable dense

subset of T∗(E∗).

Lemma 3.5 There exists a countably decomposable projection p ∈ M such that for all

n ≥ 1, pϕn = ϕn p = ϕn.

Fix an orthogonal family of cyclic projections {eα}α∈I in M such that 1 =

∨

α∈I eα

(see for instance, [5, Proposition 5.5.9]). For each n ∈ N and ε > 0, set

En,ε := {α ∈ I ; ‖eαϕn‖ > ε} and En := {α ∈ I ; ‖eαϕn‖ 6= 0}.

Claim En,ε is finite (hence En is countable).

To see this, assume that En,ε is infinite. Then there exists an infinite sequence

{ek}
∞
k=1 in {eα}α∈I such that ‖ekϕn‖ ≥ ε for all k ∈ N. If J is a finite subset of N, then

∥

∥

∥

∑

k∈ J

ekϕn

∥

∥

∥
=

∥

∥

∥

(

∑

k∈ J

ek

)

ϕn

∥

∥

∥

=

∥

∥

∥

(

∨

k∈ J

ek

)

ϕn

∥

∥

∥
≤ ‖ϕn‖.
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So ‖
∑

k∈ J ekϕn‖ ≤ ‖ϕn‖ (a constant independent of J) which shows that
∑∞

k=1 ekϕn

is a weakly unconditionally Cauchy (w.u.c.) series in A∗
= M∗ but since M∗ does

not contain any copies of c0,
∑∞

k=1 ekϕn is unconditionally convergent and hence

limk→∞ ‖ekϕn‖ = 0 (see for instance, [1, p. 45]). This is in contradiction with the

assumption that ‖ekϕn‖ ≥ ε for all k ∈ N. We have proved that En,ε is finite. It is

clear that En =

⋃

k∈N
En,k−1 so it is at most countable. The claim is verified.

Similarly, if Rn = {α ∈ I, ‖ϕneα‖ 6= 0} then Rn is at most countable.

Let C =

⋃∞
n=1(Rn∪En). The set C is at most countable and if we set p :=

∨

α∈C eα,

then p is a union of a countable family of disjoint cyclic projections in M so p is

countably decomposable in M ([5, Proposition 5.5.19]). Moreover, the construction

of p implies that pϕn = ϕn p = ϕn for all n ≥ 1. The lemma is proved.

To complete the proof of the proposition, let x∗∗ ∈ A∗∗
= M and e∗ ∈ E∗. Fix an

ultrafilter U in N such that T∗(e∗) = limn,U ϕn.

〈T∗∗(x∗∗), e∗〉 = 〈x∗∗, T∗(e∗)〉

= lim
n,U

〈x∗∗, ϕn〉.

As ϕn p = pϕn = ϕn for all n ≥ 1, we have

〈T∗∗(x∗∗), e∗〉 = lim
n,U

〈x∗∗, pϕn p〉

= lim
n,U

〈px∗∗p, ϕn〉

= 〈px∗∗p, T∗(e∗)〉

which shows that 〈T∗∗(x∗∗), e∗〉 = 〈T∗∗(px∗∗p), e∗〉 and as e∗ is arbitrary, the pro-

position follows.

To complete the proof, note that since p is countably decomposable, the von Neu-

mann algebra pMp is σ-finite and the following commutes:

A

T
//

j

��

E

A
∗∗

= M

Q
// pMp

T∗∗|pMp

OO

where j is the natural inclusion and Q(x∗∗) = px∗∗p for all x∗∗ ∈ A∗∗. It is clear

that T∗∗|pMp satisfies the conditions of Proposition 3.2.

For the next extension, we refer to [12] for definitions and examples of JB∗-triples

and JBW ∗-triples.

Corollary 3.6 Let A be a JB∗-triple and E be a Banach space with the (RNP). If

T : A → E is absolutely summing operator then for every S : E → L∞[0, 1], ST is

(2, 1, 2)-nuclear.
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Proof Let T : A → E and S : E → L∞[0, 1] as in the statement, A∗∗ is a JBW ∗-trip-

les. Since JBW ∗-triples are (as Banach space) isometric to complemented subspaces

of von Neumann algebras, it follows that ST is (2, 1, 2)-nuclear.

Remarks 3.7

(i) In Theorem 3.1, the space L∞[0, 1] can be replaced by any injective Banach

spaces.

(ii) In general, the operator T itself cannot be (2, 1, 2)-nuclear. In fact, it is enough

to consider the Hilbert space. If every absolutely summing operator from A to l2

were to be (2, 1, 2)-nuclear then it factors through a Hilbert-Schmidt operator.

An example was provided in [7] to show that this is not the case in general.

It was noted in [7] that in general, absolutely summing operators from C∗-alge-

bras into Hilbert space are not L1-factorable. Theorem 3.1 also implies the following:

Corollary 3.8 Let A be a C∗-algebra and E be a Banach space with the (RNP). Every

absolutely summing operator from A into E factors through a subspace of l1.

One can refine the argument given in the proof of Proposition 3.2 to get the fol-

lowing stronger result:

Theorem 3.9 Let A be a C∗-algebra and E be a Banach space with the (RNP) and

T : A → E be an absolutely summing operator. Then for every operator S : E →
L∞[0, 1] and every 1 < p < ∞, the composition ST is (p, 1, p)-nuclear.

The theorem can be deduced from the following two results due to Saphar [10] and

Lewis-Stegall [3, p. 66], respectively.

Theorem 3.10 ([10, Theorem 8]) For 1 < p < ∞, every compact operator from l1

into l2 is p-nuclear.

Theorem 3.11 Every representable operator from L1[0, 1] into any given Banach

space factors through l1.

Sketch of the proof of Theorem 3.9 It is enough to verify that for 1 < p < ∞,

(ST)∗ is p-nuclear. Since (ST)∗ is 2-nuclear, there exist compact operators U :

L∞[0, 1]∗ → c0, a diagonal operator D : c0 → l2 and V : l2 → A∗ such that (ST)∗ =

V DU . Since U is compact, by Theorem 3.11, it factors through l1, that is there are

U1 : L∞[0, 1]∗ → l1 and U2 : l1 → c0 such that U = U2U1. By Theorem 3.10, V DU2

is p-nuclear and hence (ST)∗ is p-nuclear.

Our final result provides a factorization of absolutely summing operators without

embedding the range space into an injective space.

Corollary 3.12 Let A be a C∗-algebra and E be a Banach space with the (RNP) and

T : A → E be an absolutely summing operator. Then for every 2 < p < ∞, T factors

through a diagonal operator from lp into l2.
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Proof We can assume that E is separable. Let j be an embedding of E into L∞[0, 1].

Let 2 < p < ∞. From Theorem 3.9, there exists a diagonal operator D : lp → l1

such that jT factors through D. That is, there exist operators A : A → and B : l1 →
L∞[0, 1] such that jT = BDA. Fix (αn)∞n=1 such that D((an)n) = (αnan)n for all

(an)n ∈ lp. Clearly, (αn)n ∈ lq where 1/p + 1/q = 1. For 1/2 = 1/p + 1/r,

let γn := |αn|
q/r for all n ≥ 1. It is clear that (γn)n ∈ lr so a diagonal operator

D0 → lp → l2 defined by D((an)n) = (γnan)n for all (an)n ∈ lp is a well defined

bounded operator and jT = CD0A for some operator C → l2 → L∞[0, 1]. Since

X = C−1( j(E)) is complemented in l2 and C|X has its range in j(E), one can define

an operator S → l2 → E such that T = SD0A. The proof is complete.
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[10] P. Saphar, Applications p décomposantes et p absolument sommantes. Israel J. Math. 11(1972),

164–179.
[11] M. Takesaki, Theory of operator algebras. I. Springer-Verlag, New York, 1979.
[12] H. Upmeier, Symmetric Banach manifolds and Jordan C∗-algebras. Notas de Matemática
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