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Abstract. Let K be a totally real number field of degree r. Let K∞ denote the
cyclotomic �2-extension of K , and let L∞ be a finite extension of K∞, abelian over
K . The goal of this paper is to compare the characteristic ideal of the χ -quotient of
the projective limit of the narrow class groups to the χ -quotient of the projective limit
of the rth exterior power of totally positive units modulo a subgroup of Rubin–Stark
units, for some �2-irreducible characters χ of Gal(L∞/K∞).
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1. Introduction. Let K be a number field, and let Cl+K denote the narrow class
group of K , that is, the quotient group of the group of fractional ideals of K modulo the
subgroup of principal fractional ideals generated by a totally positive element α of K ,
i.e., α is an element of K∗ such that σ (α) is positive for every embedding σ : K �� �.
The natural homomorphism of Cl+K onto the ideal class group of K induces, for every
odd prime p, an isomorphism of the p-primary component of Cl+K onto the p-class
group of K . But, the 2-primary components are not necessarily isomorphic. Before we
explain our results in details, we set some notation.

Let K be a totally real number field of degree r = [K : �]. Let K∞ denote the
cyclotomic �2-extension of K and L∞ a finite extension of K∞, abelian over K . Fix a
decomposition of

Gal(L∞/K) = Gal(L∞/K∞) × �, � � �2.

Then, the fields L := L�
∞ and K∞ are linearly disjoint over K .

If F/K is a finite abelian extension of K , we write A+(F) for the 2-part of the
narrow class group of F and E+(F) for the group of the totally positive units of F . For
a �-module M, let M̂ = lim←− M/2nM denote the 2-adic completion of M. Let

A+
∞ := lim←− A+(F) and Ê+∞ := lim←− Ê+(F),

where the projective limit is taken over all finite sub-extensions of L∞, with respect to
the norm maps. Let

χ : GK �� �
×
2

,
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be a non-trivial totally even character of the absolute Galois GK of K (i.e., it is trivial on
all complex conjugations inside GK ) that factors through L. Denote the ring generated
by the values of χ over �2 by O, and let � be the Galois group Gal(L/K). Let O(χ )
denote the ring O on which � acts via χ . For any �2[�]-module M, we define the
χ -quotient Mχ of M by

Mχ := M ⊗�2[�] O(χ ).

For any profinite group G, we define the Iwasawa algebra

O[[G]] := lim←−O[G/H],

where the projective limit is over all finite quotients G/H of G. In case G = �, we shall
write

� := O[[�]].

Let Lχ denote the fixed field of ker(χ ), and let K(1) be the maximal 2-extension inside
the Hilbert class field of K . In the sequel, we will assume (for simplicity) that

L = Lχ and K = L ∩ K(1).

In particular, L is totally real.

For a 2-adic prime p of K , let Frobp denote a Frobenius element at p inside the
absolute Galois group of K . Assume that

(H1) the extension L/� is unramified at 2,
(H2) for any 2-adic prime p of K, we have χ (Frobp) 	= 1,
(H3) the Leopoldt conjecture holds for every finite extension F of L in L∞ for the

prime 2.

We will denote by Ŝt+∞ the projective limit lim←−
n

Ŝt+n , where St+n is the module constructed

by the Rubin–Stark elements (see Definition 3.1). In particular, Ŝt+∞ is a submodule of
r∧
Ê+∞.

In [9], for a fixed odd rational prime p, we used the theory of Euler systems to
bound the size of the χ -quotient of the p-class groups by the characteristic ideal of
the χ -quotient of the rth exterior power of units modulo Rubin–Stark units, in the
non-semi-simple case, thus extending the results of [4].

In this paper, we consider the case p = 2. More precisely, we use the Euler system
formed by Rubin–Stark elements to compare the characteristic ideal of the χ -quotient
of the projective limit of the 2-part of the narrow class groups to the χ -quotient of
the projective limit of the rth exterior power of totally positive units modulo Ŝt+∞. We
draw the attention of the reader to the fact that, because of many complications, the
case p = 2 is not often treated in the literature, unlike [6, 14]. The following theorem
summarizes our results.
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THEOREM 1.1. Assume that Hypotheses H1,H2 andH3 hold. Then,

char((A+
∞)χ ) divides λ · char

⎛
⎝

((
r∧
Ê+∞

)
/Ŝt+∞

)
χ

⎞
⎠ ,

where λ is a power of 2 explicitly given in formula (18).

Treating the case p = 2 leads to several complications. The first comes from the
non-triviality of the cohomology groups of the absolute Galois group of �. More
precisely, for a number field F and a real place w of F , the cohomology group
Hi(Fw, M) is not necessarily trivial, where M is a �p[GFw

]-module. Hence, the result
of [1, Proposition 3.8] does not apply, since the cohomological dimension of GK,	 is
infinite. The second complication is the need to modify the canonical Selmer structure
Fcan, and to study the �-structure of the projective limit of these Selmer groups. This
problem is treated in Section 2.3. For this, we use a relation between the universal
norms in �p-extension and the �-structure of certain modules. This is already known,
thanks to Vauclair who applied some homological proprieties in [19, 20] to determine
this relation.

To control the contributions from infinite places, we use a slight variant of Galois
cohomology, the so-called totally positive Galois cohomology H∗

+(GK,	, .), see Section
2.2, introduced by Kahn in [8], based on ideas of Milne [12]. Totally positive Galois
cohomology has been used by several authors, such as Chinburg et al. [5] and Assim
and Movahhedi [2].

2. Iwasawa theory of Selmer groups.

2.1. Selmer structures. In this subsection, we recall some definitions concerning
the notion of Selmer structure introduced by Mazur and Rubin in [10, 11]. For any
field k and a fixed separable algebraic closure k of k, we write Gk := Gal(k/k) for the
Galois group of k/k. Let O be the ring of integers of a finite extension 
 of �2, and
let D denote the divisible module 
/O. For a 2-adic representation T with coefficients
in O, we define

D(1) = D ⊗ �2(1), T∗ = HomO(T, D(1)),

where �2(1) := lim←− μ2n is the Tate module.

For a number field F , let Fw denote the completion of F at a given place w of F .
Let us recall the local duality theorem (cf. [12, Corollary I.2.3 ]): For i = 0, 1, 2, there
is a perfect pairing

H2−i(Fw, T) × Hi(Fw, T∗)
〈 , 〉w �� H2(Fw, D(1)) ∼= D, if w is finite,

Ĥ2−i(Fw, T) × Ĥi(Fw, T∗)
〈 , 〉w �� Ĥ2(Fw, D(1)), if w is infinite,

(1)

where Ĥ∗(Fw, .) denotes the Tate cohomology group.

DEFINITION 2.1. Let T be a 2-adic representation of GF with coefficients in O, and
let w be a non-2-adic prime of F . A local condition F at the prime w on T is a choice of
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an O-submodule H1
F (Fw, T) of H1(Fw, T). For the 2-adic primes, a local condition at

2 will be a choice of an O-submodule H1
F (F2, T) of the semi-local cohomology group:

H1(F2, T) := ⊕w|2H1(Fw, T).

Let Iw denote the inertia subgroup of GFw
. We say that T is unramified at w if

the inertia subgroup Iw of w acts trivially on T . We assume in the sequel that T is
unramified outside a finite set of places of F .

DEFINITION 2.2. A Selmer structure F on T is a collection of the following data:
• a finite set 	(F) of places of F , including all infinite places, all 2-adic places

and all places where T is ramified,
• a local condition on T , for every w ∈ 	(F).

If w 	∈ 	(F), we will write H1
F (Fw, T) = H1

ur(Fw, T), where H1
ur(Fw, T) is the subgroup

of unramified cohomology classes:

H1
ur(Fw, T) = ker( H1(Fw, T) �� H1(Iw, T) ).

If F is a Selmer structure on T , we define the Selmer group H1
F (F, T) ⊂ H1(F, T)

to be the kernel of the localization map

H1(GF,	(F), T) ��

⊕
w∈	(F)

(H1(Fw, T)/H1
F (Fw, T))

,

where GF,	(F) := Gal(F	(F)/F) is the Galois group of the maximal algebraic extension
of F unramified outside 	(F).

A Selmer structure F on T determines a Selmer structure F∗ on T∗. Namely,

	(F) = 	(F∗), H1
F∗ (Fw, T∗) := H1

F (Fw, T)⊥, if w ∈ 	(F∗) − 	2,

under the local Tate pairing 〈 , 〉w and

H1
F∗ (F2, T∗) := H1

F (F2, T)⊥,

under the pairing ⊕w|2〈 , 〉w. Here, 	2 denotes the set of 2-adic places of F .

There is a natural partial ordering on the set of Selmer structures on T . Namely,
we will say that F ≤ F ′ if and only if

H1
F (Fw, T) ⊂ H1

F ′(Fw, T) for all places w.

If F ≤ F ′, we have an exact sequence [10, Theorem 2.3.4]

H1
F (F, T) � � �� H1

F ′(F, T) ��
⊕

w H1
F ′(Fw, T)/H1

F (Fw, T) �� H1
F∗(F, T∗)∨

�� �� H1
F ′,∗ (F, T∗)∨, (2)

where ()∨ denotes the Pontryagin dual.
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EXAMPLE 2.3. Let w be a place of F , and let Fur
w denote the maximal unramified

extension of Fw. Define the subgroup of universal norms

H1(Fw, T)u =
⋂

Fw⊂k⊂Fur
w

cork,Fw
H1(k, T),

where the intersection is over all finite unramified extensions k of Fw. Let H1(Fw, T)u,sat

denote the O-saturation of H1(Fw, T)u in H1(Fw, T), i.e., H1(Fw, T)/H1
Fur

(Fw, T) is a
free O-module and H1

Fur
(Fw, T)/H1(Fw, T)u has a finite length. For a submodule N of

a finitely generated O-module M, the O-saturation Nsat of N in M is the pre-image
under the canonical map M �� M ⊗O 
 of N ⊗O 
. Following [11, Definition 5.1],
we define the unramified Selmer structure Fur on T by

• 	(Fur) := {q : T is ramified at q} ∪ {p : p | 2} ∪ {w : w | ∞},
• H1

Fur
(Fw, T) =

{
H1(Fw, T)u,sat, if w � 2∞;
H1(Fw, T), if w | ∞.

, and

H1
Fur

(F2, T) = ⊕
p|2 H1(Fp, T)u,sat.

For future use, we record here the following well-known properties of unramified
Selmer structure:

(i)

H1
F∗

ur
(Fw, T∗) = H1

ur(Fw, T∗)div, H1
F∗

ur
(F2, T∗) =

⊕
p|2

H1
ur(Fp, T∗)div. (3)

(ii) If w � 2 and T is unramified at w, then

H1
Fur

(Fw, T) = H1
ur(Fw, T) and H1

F∗
ur

(Fw, T∗) = H1
ur(Fw, T∗).

(iii) Let ClF denote the ideal class group of F . Then,

H1
F∗

ur
(F, �2/�2)∨ ∼= ClF ⊗ �2,

where for an abelian group A, Adiv denotes the maximal divisible subgroup of A.
Assertion (i) follows from [15, Section 2.1.1, Lemme] and Assertions (ii) and (iii)

follow immediately from [17, Lemma 1.3.5] and [10, Section 6.1], respectively.

2.2. Totally positive Galois cohomology. Let 	 be a finite set of places of F
containing infinite places and all 2-adic places. If F ′ is an extension of F , we denote
also by 	 the set of places of F ′ lying above places in 	. Let GF,	 be the Galois group
of the maximal algebraic extension F	 of F , which is unramified outside 	. If w is a
place of F , we denote the decomposition group of w in F/F by Gw.

For a finite O[GF,	 ]-module M, we write M+ for the cokernel of the injective map

M �� ⊕w|∞IndGF
Gw

M ; 0 �� M �� ⊕w|∞IndGF
Gw

M �� M+ �� 0,

where IndGF
Gw

M denotes the induced module. Following [8], we define the ith totally
positive Galois cohomology Hi

+(GF,	, M) of M by

Hi
+(GF,	, M) := Hi−1(GF,	, M+).

We first list the following facts that hold for an arbitrary number field F .
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PROPOSITION 2.4. We have the following properties:
(i) There is a long exact sequence

· · · �� Hi
+(GF,	, M) �� Hi(GF,	, M) �� ⊕w|∞Hi(Fw, M)

�� Hi+1
+ (GF,	, M) �� · · · .

(ii) For i 	∈ {1, 2}, we have Hi
+(GF,	, M) = 0.

(iii) If F ′/F is an extension unramified outside 	 with Galois group G, then there is a
cohomological spectral sequence

Hp(G, Hq
+(GF ′,	, M)) =⇒ Hp+q

+ (GF,	, M).

Proof. See [8, Section 5]. �
The following corollary is a direct consequence of (ii) in Proposition 2.4.

COROLLARY 2.5. Let F ′/F be a finite 	-ramified extension with Galois group G.
Then, the corestriction map induces an isomorphism

H2
+(GF ′,	, M)G

∼ �� H2
+(GF,	, M) . �

To go further, we need the following remark. If M	 denotes the cokernel of the

canonical map M �� ⊕w∈	IndGF
Gw

M, then for all i ≥ 0, we have

Hi(GF,	, M	) = Hi+1
c (GF,	, M), (4)

where Hi+1
c (GF,	, .) is the continuous cohomology with compact support (for the

definition, see [13, Section 5.7.2]). Note that

Hi
c(GF,	, M) ∼= H3−i(GF,	, M∗)∨, (5)

for all i ≥ 1, cf. [13, Proposition 5.7.4], where M∗ = Hom�2 (M, μ2∞ ).

PROPOSITION 2.6. Let 	f denote the set of finite places in 	. Then, there is a long
exact sequence

⊕w∈	f H1(Fw, M) �� H1(GF,	, M∗)∨ �� H2
+(GF,	, M) �� ⊕w∈	f H2(Fw, M)

�� �� H0(GF,	, M∗)∨ . (6)

Proof. Consider the commutative exact diagram

0 �� M �� ⊕w∈	IndGF
Gw

M ��

����

M	

��

�� 0

0 �� M �� ⊕w|∞IndGF
Gw

M �� M+ �� 0.
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Using the snake lemma, we obtain the exact sequence

0 �� ⊕w∈	f IndGF
Gw

M �� M	
�� M+ �� 0 . (7)

Taking the GF,	-cohomology of the exact sequence (7) and since Hi
+(GF,	, M) = 0 for

i 	∈ {1, 2} (see Proposition 2.4), we get the exact sequence

⊕w∈	f H1(Fw, M) �� H1(GF,	, M	) �� H2
+(GF,	, M) �� ⊕w∈	f H2(Fw, M)

�� �� H2(GF,	, M	).

To obtain the desired result, it suffices to observe that

H1(GF,	, M	) = H1(GF,	, M∗)∨ and H2(GF,	, M	) = H0(GF,	, M∗)∨;

this is a consequence of properties (4) and (5). �

2.3. Iwasawa theory. Throughout this subsection, we fix a totally real number
field K . Let r = [K : �] and K∞ = ⋃

n≥0 Kn denote the cyclotomic �2-extension of K .

Assume that all algebraic extensions of K are contained in a fixed algebraic closure �

of �. If F is a finite extension of K and w is a place of F , fix a place w of � lying above
w. The decomposition (resp. inertia) group of w in �/F is denoted by Gw (resp. Iw). If
v is a place of K and F is a Galois extension of K , we denote the decomposition group
of v in F/K by Dv(F/K). Recall that

χ : GK �� O×

is a non-trivial totally even character, factoring through a finite abelian extension
L of K . Assume that L and K∞ are linearly disjoint over K . Let Ln = LKn and let
L∞ = LK∞ be the cyclotomic �2-extension of L. In the sequel, we will denote by T
the 2-adic representation

T = �2(1) ⊗ O(χ−1).

Let 	 be a finite set of places of K containing all infinite places, all 2-adic places and
all places where T is ramified. If F is an extension of K , we denote also by 	 the set of
places of F lying above places in 	.

Let us recall the definition of the canonical Selmer structure Fcan on T :
• 	(Fcan) = 	,

• H1
Fcan

(Fw, T) =
{

H1
Fur

(Fw, T), if w � 2∞
H1(Fw, T), if w | ∞ and

H1
Fcan

(F2, T) = ⊕w|2H1(Fw, T),
where Fur is the unramified local condition, see Example 2.3. Let

H1
Fcan

(FK∞, T) := lim←−
n

H1
Fcan

(FKn, T), H1
F∗

can
(FK∞, T∗) := lim−→

n

H1
F∗

can
(FKn, T∗),

where the projective (resp. injective) limit is taken with respect to the corestriction
(resp. restriction) maps. For an O-module M, we denote by M∨ := Hom�2 (M, �2/�2)
its Pontryagin dual.
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Note that the Kolyvagin system (see [17, 10]) machinery permits to obtain bounds
on the associated Selmer groups. More precisely, the Kolyvagin–Rubin approach shows
(see [17, Theorem 2.3.3]) that if a non-trivial Euler system exists, then the index of the
Euler system in H1

Fcan
(K∞, T) gives a bound for H1

F∗
can

(K∞, T∗)∨. It is well know that
the Rubin–Stark elements give rise to Euler systems for the 2-adic representation
T = �2(1) ⊗ O(χ−1) [16]. To find a bound for the narrow class group, we need to
modify the canonical Selmer structure, cf. Proposition 2.12.

DEFINITION 2.7. Let F be a finite extension of K , and let F be a Selmer structure
on T . We define the positive Selmer structure F+ by

• 	(F+) = 	(F),

• H1
F+(Fw, T) =

{
H1

F (Fw, T), if w � ∞,
0, if w | ∞.

The following lemma is a first step towards our purpose.

LEMMA 2.8. Let F be a finite Galois extension of L, and let Cl+F be the narrow class
group of F. Then,

H1
F+,∗

ur
(F, T∗) ∼= Hom(Cl+F , T∗).

Proof. Let w be a finite place of F . Since χ is a character factoring through L, the
decomposition group Gw acts trivially on T∗. Then,

H1
ur(Fw, T∗) ∼= Hom(Gw/Iw, T∗).

Moreover, Gw/Iw is torsion-free and T∗ is divisible, then Hom(Gw/Iw, T∗) is divisible;
therefore,

H1
F∗

ur
(Fw, T∗) = H1

ur(Fw, T∗),

by (3). In particular, H1(Fw, T∗)/H1
F∗

ur
(Fw, T∗) injects into Hom(Iw, T∗). Hence,

H1
F+,∗

ur
(F, T∗) = ker( H1(GF,	, T∗) ��

⊕
w∈	 H1(Fw, T∗)/H1

F+,∗
ur

(Fw, T∗) )

= ker( Hom(GF,	, T∗) ��
⊕

w∈	f
Hom(Iw, T∗) ).

Using class field theory, we obtain the result. �
Let

H1
F+

can
(FK∞, T) := lim←−

n

H1
F+

can
(FKn, T), H1

F+,∗
can

(FK∞, T∗) := lim−→
n

H1
F+,∗

can
(FKn, T∗),

where the projective (resp. injective) limit is taken with respect to the corestriction
(resp. restriction) maps.

We now want to study the relation between H1
F+,∗

can
(K∞, T∗) and H1

F+,∗
can

(L∞, T∗).

DEFINITION 2.9. We define the Selmer structures F	 on T by
• 	(F	) = 	,

• H1
F	

(Fw, T) = H1(Fw, T) if w ∈ 	.
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Let

H1
F+

	

(FK∞, T) := lim←−
n

H1
F+

	

(FKn, T), H1
F+,∗

	

(FK∞, T∗) := lim−→
n

H1
F+,∗

	

(FKn, T∗),

where the projective (resp. injective) limit is taken with respect to the corestriction
(resp. restriction) maps.

LEMMA 2.10. Let G denote the Galois group Gal(L∞/K). Then, the O[[G]]-modules
H1

F+,∗
can

(L∞, T∗) and H1
F+,∗

	

(L∞, T∗) are isomorphic.

Proof. Let 	2 denote the set of 2-adic places. Observe that F+,∗
	 ≤ F+,∗

can , then by
(2) we have an exact sequence

0 �� H1
F+,∗

	

(Ln, T∗) �� H1
F+,∗

can
(Ln, T∗) �� ⊕w∈	f −	2 H1

F∗
ur

(Ln,w, T∗) .

Passing to direct limit over n, the result follows from the proof of
[1, Proposition 3.5]. �

The following proposition is crucial for our purpose.

PROPOSITION 2.11. The �-modules H1
F+,∗

can
(K∞, T∗)∨ and (H1

F+,∗
can

(L∞, T∗)∨)Gal(L∞/K∞)

are pseudo-isomorphic.

Before we prove this result, we need a preliminary result: For every finite Galois
extension F of K , we have the exact sequence

0 �� H1
F+,∗

	

(F, T∗)∨ �� H2
+(GF,	, T) �� ⊕̃w∈	f H2(Fw, T) �� 0, (8)

where ⊕̃w∈	f H2(Fw, T) denotes the kernel of the map

⊕w∈	f H2(Fw, T) �� H0(F, T∗)∨ .

Indeed, by dualizing the exact sequence defining the module H1
F+,∗

	

(F, T∗)

0 �� H1
F+,∗

	

(F, T∗) �� H1(GF,	, T∗) �� ⊕w∈	f H1(Fw, T∗),

we obtain the exact sequence

⊕w∈	f H1(Fw, T) �� H1(GF,	, T∗)∨ �� H1
F+,∗

	

(F, T∗)∨ �� 0.

Hence, the exact sequence (8) follows from Proposition 2.6.

Now, we prove the Proposition 2.11.

Proof. Let n be a nonnegative integer, and let �n denote the Galois group
Gal(Ln/Kn). Then, the exact sequence (8) induces the commutative diagram

(H1
F+,∗

	

(Ln, T∗)∨)�n

N ′
n��

�� H2
+(GLn,	, T)�n

Nn�
��

�� (⊕̃w∈	f H2(Ln,w, T))�n
��

N ′′
n

��

0

0 �� H1
F+,∗

	

(Kn, T∗)∨ �� H2
+(GKn,	, T) �� ⊕̃w∈	f H2(Kn,w, T) �� 0,
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where all vertical maps are induced by the corestriction. The one of the middle is an
isomorphism by Corollary 2.5. By the snake lemma, we obtain

coker(N ′
n) ∼= ker(N ′′

n ) and ker(N ′
n) ∼= coker(αn),

where

αn : H1(�n, H2
+(GLn,	, T)) �� H1(�n, ⊕̃w∈	f H2(Ln,w, T)).

The orders of the groups

H0(�n, ⊕̃w∈	f H2(Ln,w, T)) and H1(�n, ⊕̃w∈	f H2(Ln,w, T)),

are bounded independently of n (cf. [1, Lemma 3.7]). Therefore, the �-modules
H1

F+,∗
can

(K∞, T∗)∨ and (H1
F+,∗

can
(L∞, T∗)∨)Gal(L∞/K∞) are pseudo-isomorphic. This

finishes the proof. �
For a nonnegative integer n, let A+

n denote the 2-part of the narrow class group of
Ln, and let

A+
∞ := lim←−

n

A+
n ,

where the injective limit is taken with respect to the norm maps.

PROPOSITION 2.12. If one of the hypotheses H2 or H3 holds, then

char((A+
∞)χ ) divides char(H1

F+,∗
can

(K∞, T∗)∨).

Proof. Consider the exact sequence

H1
F∗

ur
(Ln,2, T∗)∨ �� H1

F+,∗
ur

(Ln, T∗)∨ �� H1
F+,∗

can
(Ln, T∗)∨ �� 0.

Since

H1
F∗

ur
(Ln,2, T∗) ∼= ⊕w|2Hom(Gw/Iw, T∗),

we obtain

H1
F∗

ur
(Ln,2, T∗)∨ ∼= ⊕v|2O(χ−1)[Gal(Ln/K)/Dv(Ln/K)].

Passing to the projective limit and taking the �-co-invariants, we get

(O(χ−1)[G/Dv(L∞/K)])� �
{

finite, if χ (Dv(L/K)) 	= 1;
O[Gal(K∞/K)/Dv(K∞/K)], if χ (Dv(L/K)) = 1,

where � = Gal(L∞/K∞). Using Proposition 2.11 and Lemma 2.8, we obtain

char((A+
∞)χ ) divides J s · char(H1

F+,∗
can

(K∞, T∗)∨),

where J is the augmentation ideal of � and s = #{v | 2 ; χ (Frobv) = 1}. Since L is
totally real, the characteristic ideal char((A∞)χ ) is prime to J , by Leopoldt conjecture.
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The exact sequence

⊕v|∞H1
Iw(Kv, T) �� H1

F+,∗
ur

(K∞, T∗)∨ �� H1
F∗

ur
(K∞, T∗)∨ �� 0

and Lemma 2.8 show that

char((A+
∞)χ ) | char((A∞)χ ) · char(⊕v|∞H1

Iw(Kv, T)),

where H1
Iw(Kv, T) := lim←−n

(⊕w|vH1(Kn,w, T)). Since v in an infinite prime,

2H1
Iw(Kv, T) = 0 and then the characteristic ideal char(⊕v|∞H1

Iw(Kv, T)) is prime to
J . Hence, char((A+

∞)χ ) is prime to J . This permits to conclude. �

To obtain some information about the �-structure of H1
F+

can
(K∞, T), we need some

facts from universal norms in �2-extension [19, 20]. Let

H1
Iw(K, .) := lim←−

n

H1(GKn,	, .) and H1
Iw,+(K, .) := lim←−

n

H1
+(GKn,	, .).

The next proposition is a first step towards Theorem 2.14, which claims that the
�-modules H1

F+
can

(K∞, T) and H1
Fcan

(K∞, T) are �-free.

PROPOSITION 2.13. There are canonical isomorphisms
(1) H1

Fcan
(K∞, T) ∼= H1

Iw(K, T).
(2) H1

F+
can

(K∞, T) ∼= H1
Iw,+(K, T).

Proof. Let n be a nonnegative integer. By definition, we have the exact sequence

0 �� H1
Fcan

(Kn, T) �� H1(GKn,	, T) ��
⊕

w∈	f −	2
H1(Kn,w, T)/H1

Fur
(Kn,w, T).

Passing to projective limit over n, Assertion (1) follows from the proof of [1, Proposition
3.5]. In order to obtain (2), we have on the one hand the exact sequence

0 �� H1
F+

can
(Kn, T) �� H1

Fcan
(Kn, T) �� ⊕w|∞H1(Kn,w, T) .

On the other hand, by Proposition 2.4 we have an exact sequence

⊕w|∞H0(Kn,w, T) �� H1
+(GKn,	, T) �� H1(GKn,	, T) �� ⊕w|∞H1(Kn,w, T). (9)

Since T = �2(1) ⊗ O(χ−1) and w is a real place, we have H0(Kn,w, T) = 0. Hence,

H1
F+

can
(K∞, T) ∼= H1

Iw,+(K, T). �

We will need the following isomorphism: For any Galois extension F/F ′ of number
fields, K ⊂ F ′ ⊂ F , the restriction map

res : H1(F ′, T)
∼ �� H1(F, T)Gal(F/F ′) (10)
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induces an isomorphism. Indeed, since χ has finite order, we can assume that χ (GF ) =
1. Then,

TGF = (�2(1) ⊗ O(χ−1))GF

= �2(1)GF ⊗ O(χ−1)

is trivial. Hence, the inflation–restriction exact sequence

0 �� H1(F/F ′, TGF ) �� H1(F ′, T) �� H1(F, T)Gal(F ′/F) �� H1(F/F ′, TGF )

gives isomorphism (10).

For an O-module M, let
TorO(M) is the torsion submodule and
FrO(M) = M/TorO(M) is the maximal torsion-free quotient of M.

THEOREM 2.14. The �-modules H1
F+

can
(K∞, T) and H1

Fcan
(K∞, T) are �-free.

Proof. By Proposition 2.13, it suffices to prove that the �-modules H1
Iw(K, T) and

H1
Iw,+(K, T) are �-free. For this, we claim that

(i) the groups H1(�n,H1
+(K∞, T)) and H1(�n,H1(K∞, T)) are finite, and

TorO(H1
+(K∞, T)) = 0 and TorO(H1(K∞, T)) = 0,

(ii) the groups H1(�n, FrO(H1
+(K∞, T))) and H1(�n, FrO(H1(K∞, T))) are co-

finitely generated O-modules,
where �n denotes the Galois group Gal(K∞/Kn), and

H1(K∞, .) := lim−→
n

H1(GKn,	, .) and H1
+(K∞, .) := lim−→

n

H1
+(GKn,	, .).

Using this claim, Theorem 1.9 of [19] shows that the �-module H1
Iw(K, T) and

H1
Iw,+(K, T) are free.

Proof of the claim: On the one hand, the Hochschild–Serre spectral sequence (see
Proposition 2.4)

Hp(�n,Hq
+(K∞, T)) =⇒ Hp+q

+ (GKn,	, T)

induces the exact sequence

H1(�n,H1
+(K∞, T)) � � �� H2

+(GKn,	, T) �� H2
+(K∞, T)�n �� H2(�n,H1

+(K∞, T)).

Since H2
+(GKn,	, T) is a finitely generated O-module and H1(�n,H1

+(K∞, T)) is O-
torsion, the module H1(�n,H1

+(K∞, T)) is finite. On the other hand, the Hochschild–
Serre spectral sequence

Hp(�n,Hq(K∞, T)) =⇒ Hp+q(GKn,	, T)

shows that

H1(�n,H1(K∞, T)) � � �� H2(GKn,	, T).
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Hence, H1(�n,H1(K∞, T)) is finite. Since Ln is totally real, by isomorphism (10),
we get TorO(H1(GKn,	, T)) = 0. Therefore, the exact sequence (9) shows that
TorO(H1

+(GKn,	, T)) = 0; hence,

TorO(H1
+(K∞, T)) = TorO(H1(K∞, T)) = 0.

This proves Assertion (i). Assertion (ii) is a direct consequence of (i). �

COROLLARY 2.15. The �-modules H1
Fcan

(K∞, T) and H1
F+

can
(K∞, T) have �-rank

[K : �];

rank�(H1
F+

can
(K∞, T)) = rank�(H1

Fcan
(K∞, T)) = [K : �].

Proof. Since F+
can ≤ Fcan, by (2) we have an exact sequence

0 �� H1
F+

can
(K∞, T) �� H1

Fcan
(K∞, T) �� lim←−

n

(⊕w|∞H1(Kn,w, T)).

Then,

rank�(H1
F+

can
(K∞, T)) = rank�(H1

Fcan
(K∞, T)).

Using the fact that H1(GLn,	, �2(1)) ∼= U	(Ln) ⊗ �2, where U	(Ln) denotes the
	-units of Ln, Dirichlet’s unit theorem and isomorphism (10) show that

rankO(H1(GKn,	, T)) = r2n + t,

where r = [K : �] and t is an integer independent of n. Then, rank�(H1
Fcan

(K∞, T)) = r.
This proves the corollary. �

3. Proof of Theorem 1.1. We will take the notations and the conventions of [9].
In particular, the construction of the group of Rubin–Stark units [9, Definition 4.5]
goes on the same lines.

For a nonnegative integer n, the product of all distinct non-2-adic prime ideals
dividing the finite part of the conductor of Ln/K is denoted by h̃, which does not
depend on n. For any ideal g | h̃, the maximal subextension of Ln whose conductor is
prime to h̃g−1 is denoted by Ln,g. Let us fix a finite set S of places containing all infinite
places, and at least one finite place, but does not contain any 2-adic prime of K , and a
second finite, nonempty set T of places of K , disjoint from S and does not contain any
2-adic prime of K . Let SLn,g

= S ∪ Ram(Ln,g/K), where Ram(Ln,g/K) denotes the set
of ramified primes in Ln,g/K . Since Ln,g is a totally real field, Hypotheses 2.1.1–2.1.5
in [16, Hypotheses 2.1] on SLn,g

, T and r are satisfied.
Let En (resp. E+

n ) denote the group of units (resp. totally positive units) of Ln.
Following [9], we gave the following definition.

DEFINITION 3.1. Let n be a nonnegative integer. We denote by St+n the
�[Gal(Ln/K)]-module generated by the inverse images of εn,g,T under the map
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∧r E+
n

�� � ⊗ ∧r En for all g | h̃, where εn,g,T is the Rubin–Stark element of the
Rubin–Stark conjecture RS(Ln,g/K, SLn,g

, T , r) [16, Conjecture B′].

Recall that for any number field F , Kummer theory gives a canonical isomorphism

H1(F, �2(1)) ∼= F×,∧ := lim←− F×/(F×)2n
.

Since χ (GLn ) = 1 for every n ≥ 0,

H1(Ln, �2(1)) ⊗ O(χ−1) ∼= H1(Ln, �2(1) ⊗ O(χ−1)).

Therefore,

L×,∧
n ⊗ O(χ−1) ∼= H1(Ln, �2(1) ⊗ O(χ−1)). (11)

For simplicity of notation, we let εn stand for the Rubin–Stark element εn,̃h,T for
RS(Ln/K, SLn , T , r). Remark 4.2 in [9] shows that εn can be written as ε1 ∧ · · · ∧ εr,
with εi ∈ � ⊗ L×

n (this expression is not unique over Gal(Ln/K), even though εn is ).
Let

εn,χ := ε̂1 ⊗ 1χ−1 ∧ · · · ∧ ε̂r ⊗ 1χ−1 , (12)

where ε̂i is the image of εi by the natural map � ⊗ L×
n

�� �2 ⊗�2 L×,∧
n . Then, under

isomorphism (11), we can view each

εn,χ as an element of �2 ⊗
r∧

H1(Ln, �2(1) ⊗ O(χ−1)).

For every n ≥ 0, we define

cn = cor(r)
Ln,Kn

(εn,χ ), (13)

where cor(r)
Ln,Kn

is the map

�2 ⊗
r∧

H1(Ln, T) ��
�2 ⊗

r∧
H1(Kn, T)

induced by the corestrection map

corLn,Kn : H1(Ln, T) �� H1(Kn, T).

Let ι denote the composite of the natural maps:

r∧
lim←−

n

H1
+(Kn, T) �� lim←−

n

r∧
H1

+(Kn, T) �� lim←−
n

(�2 ⊗�2

r∧
H1(Kn, T)), (14)

and let

τ :
r∧

lim←−
n

H1
+(Kn, T) ��

r∧
lim←−

n

H1(Kn, T).
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By Corollary 2.15, it is clear that τ is injective.

Let c∞ := {cn}n≥0 ∈ lim←−
n

(�2 ⊗�2

r∧
H1(Kn, T)), where cn is defined in (13). The

collection {cn}n≥0 gives rise to an Euler system for the 2-adic representation T =
�2(1) ⊗ O(χ−1), in the sense of [17, Definition 2.1.1] (see, e.g., [9, Proposition 4.7]).
Recall that we can associate a Kolyvagin derivative class to any Euler system for any 2-
adic representation [17, Section 4.4]. In the sense of [10, Definition 3.1.3], this turn out
to construct a Kolyvagin system of the canonical Selmer structure Fcan [10, Theorem
3.2.4].

LEMMA 3.2. Let η denote the lcm of the 2-adic numbers 1 − χ (Frobp), where p run
through the set of 2-adic place of K. Let c be an element in ι−1(η · c∞). Under Hypothesis
H3,

char(H1
F∗

can
(K∞, T∗)∨) divides char((

r∧
H1

Fcan
(K∞, T))/�τ (c)).

Proof. The proof is identical to the proof of Theorem 6.3 of [9] line by line.
To obtain Theorem [9, Theorem 6.3], we proved a variant of Rubin’s theorem [17,
Theorem 2.3.3], loc. cit. [9, Theorem 6.1] by constructing an ad-hoc Selmer structure [9,
Definition 5.6] and an associated Kolyvagin system [9, Lemma 5.13]. The construction
uses the structure of H1

Iw(K(r)v, T) [9, Theorem 5.1], deduced from a result of Greither
[7, Theorem 2.2]. Since Greither’s result is also available for p = 2 [6, Proposition 2.10],
the strategy used to obtain [9, Theorem 6.3] is also applicable for Lemma 3.2. �

For each place v of K , let

H1
Iw(Kv, T) = lim←−

n

(⊕w|vH1(Kn,w, T)).

By a standard argument (see [10, Lemma 5.3.1]), we have

H1
Iw(Kv, T) ∼= H1(Kv, T ⊗ �).

Hence, Proposition 4.2.3 of [13] shows that H1
Iw(Kv, T) is a finitely generated �-module.

The following proposition is the key to the proof of our main theorem.

PROPOSITION 3.3. With the assumptions of Lemma 3.2, we have

char(H1
F+,∗

can
(K∞, T∗)∨) divides char((

r∧
H1

F+
can

(K∞, T))/�c) · char(⊕v|∞H1
Iw(Kv, T)).

Proof. Since F+
can ≤ Fcan, we have an exact sequence

H1
F+

can
(K∞, T) � � �� H1

Fcan
(K∞, T) �� ⊕v|∞H1

Iw(Kv, T) �� H1
F+,∗

can
(K∞, T∗)∨

�� �� H1
F∗

can
(K∞, T∗)∨ . (15)

Corollary 2.15 shows that the �-modules H1
F+

can
(K∞, T) and H1

Fcan
(K∞, T) are �-free

of rank r = [K : �], and therefore, the injection H1
F+

can
(K∞, T) � � β

�� H1
F+

can
(K∞, T)
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induces an exact sequence:

0 ��

(
r∧

H1
F+

can
(K∞, T)

)
/�c ��

(
r∧

H1
Fcan

(K∞, T)

)
/�c �� �� coker(β(r)) ,

where β(r) denotes the map induced on the rth exterior power. Using the fact that

char(coker(β)) = char(coker(β(r)))

(cf. [3, p. 258]), we get

char((
r∧

H1
F+

can
(K∞, T))/�c) · char(⊕v|∞H1

Iw(Kv, T)) · char(H1
F∗

can
(K∞, T∗)∨)

= char((
r∧

H1
Fcan

(K∞, T))/�c) · char(H1
F+,∗

can
(K∞, T∗)∨).

Lemma 3.2 permits to conclude. �
Let n be a nonnegative integer, we write A+

n for the 2-part of the narrow class group
of Ln, E ′

n for the 2-units of Ln and E ′,+
n for the totally positive 2-units of Ln. Let

A+
∞ := lim←−

n

A+
n , Ê ′∞ := lim←−

n

Ê ′
n, Ê ′,+∞ := lim←−

n

Ê ′,+
n ,

where all inverse limits are taken with respect to norm maps. It is well known that

lim←−
n

H1(GLn,	, �2(1)) ∼= Ê ′∞.

Since Ln is a totally real field, Proposition 2.4 leads an exact sequence

0 �� H1
+(GLn,	, �2(1)) �� H1(GLn,	, �2(1)) �� ⊕w|∞H1(Ln,w, �2(1)) .

Hence,

lim←−
n

H1
+(GLn,	, �2(1)) ∼= Ê ′,+∞ . (16)

Recall that St+n denotes the �[Gal(Ln/K)]-module constructed by the Rubin–Stark
elements (see Definition 3.1). Recall also that

cn = cor(r)
Ln,Kn

(εn,χ )

denotes the element defined in (13). Let St+∞ := lim←−n
St+n , and let ε∞,χ := {εn,χ }n≥1.

Since for n ≥ 1, cn = cor(r)
Ln,Kn

(εn,χ ), it follows that

res(r)
Kn,Ln

(cn) = res(r)
Kn,Ln

(cor(r)
Ln,Kn

(εn,χ ))

= |�|r−1N�(εn,χ ),

where N� = ∑
σ∈� σ . Therefore, using the fact that the restriction map

resKn,Ln : H1(Kn, T) �� H1(Ln, T)Gal(Ln/Kn)
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is an isomorphism by (10), we obtain

|�|r−1N�((Ŝt+∞)χ ) = �c,

where c is an element in the inverse image of |�|r−1N�(ε∞,χ ) under the composite map:

∧r lim←−n
H1

+(Kn, T) �� lim←−n

∧r H1
+(Kn, T) �� lim←−n

(�2 ⊗�2

∧r H1(Kn, T)).

Using Proposition 2.13 and isomorphisms (10) and (16), we get

H1
F+

can
(K∞, T) ∼= (Ê ′,+∞ ⊗ O(χ−1))Gal(L∞/K∞). (17)

Proof of Theorem 1.1. On the one hand, the commutative exact diagram

(Ŝt+∞)χ ��

|�|r−1N�

����

r∧
(Ê+∞)χ

�� ��

N(r)
�

��

( r∧
Ê+∞/Ŝt+∞

)
χ

��

0 �� �c ��
r∧

(Ê+∞)χ �� ��

����

(
r∧

(Ê+∞)χ )/�c

coker(N(r)
� )

shows that

char((
r∧

(Ê+∞)χ )/�c) divides char
(( r∧

Ê+∞/Ŝt+∞
)
χ

)
· char(coker(N(r)

� )),

where (Ê+∞)χ = (Ê+∞ ⊗�2 O(χ−1))�. On the other hand, isomorphism (17) and
Propositions 3.3 and 2.12 show that

char((A+
∞)χ ) divides char((

r∧
(Ê ′,+∞ )χ )/�c) · char(⊕v|∞(H1

Iw(Kv, T))),

where c is the element appearing in Proposition 3.3. Since χ (Dv(L/K)) 	= 1 for any
2-adic prime of K , we get

(Ê ′,+∞ ⊗�2 O(χ−1))� ∼= (Ê+∞ ⊗�2 O(χ−1))�.

Hence, using the fact that ι(c) = η · ι(c) ( ι is the map (14)), we obtain

char((A+
∞)χ ) divides λ · char

(
((

r∧
Ê+∞)/Ŝt+∞)χ

)
,

where

λ = η · char(coker(N(r)
� )) · char(⊕v|∞(H1

Iw(Kv, T))), (18)

and η is the lcm of the 2-adic numbers 1 − χ (Frobp), where p runs through the set of
2-adic place of K .
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REMARK 3.4. The cokernel of the morphism

(Ê+∞)χ
N� �� (Ê+∞)χ

is isomorphic to Ĥ0(�, Ê+∞ ⊗�2 O(χ−1)), where Ĥ0(., .) denotes the modified Tate
cohomology group. The module coker(N(r)

� ) is then a finitely generated torsion �-
module, annihilated by |�|. Hence, the characteristic ideal char(coker(N(r)

� )) is a power
of 2. By a standard argument (see, e.g., [10, Lemma 5.3.1]), we have

⊕v|∞H1
Iw(Kv, T) ∼= ⊕v|∞H1(Kv, T ⊗ �).

Moreover, as the absolute Galois group of the field Kv = � is cyclic of order 2, using
the cohomology of cyclic groups, we show that

H1(Kv, T ⊗ �) ∼= �/2� ⊗� (T ⊗�2 �).

Therefore,

λ = 2r · η · char(coker(N(r)
� ))

is a power of 2, where r = [K : �].
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