
Psychological Medicine

cambridge.org/psm

Original Article

Cite this article: Lee YH, Thaweethai T, Sheu
Y-H, Feng Y-CA, Karlson EW, Ge T, Kraft P,
Smoller JW (2023). Impact of selection bias on
polygenic risk score estimates in healthcare
settings. Psychological Medicine 53, 7435–7445.
https://doi.org/10.1017/S0033291723001186

Received: 20 September 2022
Revised: 31 March 2023
Accepted: 11 April 2023
First published online: 25 May 2023

Keywords:
selection bias; polygenic risk score; biobank;
inverse probability weighting; causal inference

Corresponding author:
Jordan W. Smoller;
Email: jsmoller@mgh.harvard.edu

© The Author(s), 2023. Published by
Cambridge University Press

Impact of selection bias on polygenic risk score
estimates in healthcare settings

Younga Heather Lee1,2,3 , Tanayott Thaweethai3,4, Yi-Han Sheu1,2,3, Yen-Chen

Anne Feng1,2,3,5,6, Elizabeth W. Karlson3,7, Tian Ge1,2,3,8, Peter Kraft9,10 and Jordan

W. Smoller1,2,3,8

1Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General
Hospital, Boston, Massachusetts, USA; 2Stanley Center for Psychiatric Research, Broad Institute of MIT and
Harvard, Cambridge, Massachusetts, USA; 3Harvard Medical School, Boston, Massachusetts, USA; 4Biostatistics
Center, Massachusetts General Hospital, Boston, Massachusetts, USA; 5Analytic and Translational Genetics Unit,
Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; 6Division of
Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University,
Taipei, Taiwan; 7Division of Rheumatology, Immunity, and Inflammation, Department of Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts, USA; 8Center for Precision Psychiatry, Massachusetts General Hospital,
Boston, Massachusetts, USA; 9Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston,
Massachusetts, USA and 10Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston,
Massachusetts, USA

Abstract

Background. Hospital-based biobanks are being increasingly considered as a resource for
translating polygenic risk scores (PRS) into clinical practice. However, since these biobanks
originate from patient populations, there is a possibility of bias in polygenic risk estimation
due to overrepresentation of patients with higher frequency of healthcare interactions.
Methods. PRS for schizophrenia, bipolar disorder, and depression were calculated using
summary statistics from the largest available genomic studies for a sample of 24 153
European ancestry participants in the Mass General Brigham (MGB) Biobank. To correct
for selection bias, we fitted logistic regression models with inverse probability (IP) weights,
which were estimated using 1839 sociodemographic, clinical, and healthcare utilization
features extracted from electronic health records of 1 546 440 non-Hispanic White patients
eligible to participate in the Biobank study at their first visit to the MGB-affiliated hospitals.
Results. Case prevalence of bipolar disorder among participants in the top decile of bipolar
disorder PRS was 10.0% (95% CI 8.8–11.2%) in the unweighted analysis but only 6.2%
(5.0–7.5%) when selection bias was accounted for using IP weights. Similarly, case prevalence
of depression among those in the top decile of depression PRS was reduced from 33.5%
(31.7–35.4%) to 28.9% (25.8–31.9%) after IP weighting.
Conclusions. Non-random selection of participants into volunteer biobanks may induce clin-
ically relevant selection bias that could impact implementation of PRS in research and clinical
settings. As efforts to integrate PRS in medical practice expand, recognition and mitigation of
these biases should be considered and may need to be optimized in a context-specific manner.

Introduction

In recent years, large-scale healthcare systems have contemplated integrating polygenic risk
scores (PRS) into clinical practice given their potential to stratify diagnostic and therapeutic
strategies in common medical conditions (e.g. diabetes, cancer, obesity) (Khera et al., 2019,
2016; Läll, Mägi, Morris, Metspalu, & Fischer, 2017; Mavaddat et al., 2019; Pashayan et al.,
2015; Sharp et al., 2019) and, more recently, in psychiatric conditions (Murray et al., 2021).
For example, the Electronic Medical Records and Genomics (eMERGE) Network is conduct-
ing trials evaluating the impact of returning genomic results (‘return of results’ or RoR) in both
clinical and research venues (Electronic Medical Records and Genomics (eMERGE) Network,
n.d.; Leppig et al., 2022; Madden et al., 2022; Wiesner et al., 2020). Early evidence suggests that
patients are in favor of being informed of their genetic test results and receiving advice about
how to interpret and act on the results (Allen et al., 2014; Karlson, Boutin, Hoffnagle, & Allen,
2016; Pet et al., 2019).

With the prospect of using PRS to guide clinical decision making, optimizing the accuracy
of the risk estimates they provide becomes especially important (Polygenic Risk Score Task
Force of the International Common Disease Alliance, 2021). In research settings, including
biobank-based studies, genetic analyses are usually restricted to individuals who have volun-
teered to provide biospecimens for research investigations. More specifically, application of
PRS in a biobank or other research cohort typically entails a sequence of sampling procedures
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(see Fig. 1a). First, the cohort is limited to participants who pro-
vided consent, and had blood samples drawn and genotyped prior
to the time of analysis. Next, this subsample is further restricted to
those who have passed a genomic quality control (QC) process.
However, restricting analyses without considering the complexity
of selection mechanism can change or induce spurious associa-
tions between factors directly or indirectly related to selection
into the PRS analysis.

Inverse probability (IP) weighting is an established method for
correcting such bias in which the contribution of each sampled
individual is weighted by the inverse of their probability of
being sampled (Seaman & White, 2013). In most volunteer-based
studies, information about those who were not enrolled is typic-
ally limited, precluding in-depth exploration of selection bias
that can result from non-random sampling. However, biobanks
nested within healthcare systems where demographic and clinical
data are available for the full healthcare system population provide
a unique opportunity to evaluate factors that may influence the
probability of being selected into an analytic sample. In these set-
tings, one can use IP weighting to construct a hypothetical popu-
lation in which participants are weighted such that they represent
the entire population of participants and non-participants with
respect to the predictors of selection and conduct analyses that
account for non-random sampling.

A key assumption of IP weighting, however, is that one has
correctly identified and weighted the predictors of sampling; vio-
lation of this assumption may lead to residual or even greater bias
(Cole & Hernán, 2008). Meeting this requirement could be par-
ticularly challenging in the case of hospital-based biobanks,
since selection may be dynamic and reflect a large number of
poorly understood factors – including patient comorbidity pro-
files and the diversity of clinical settings in which recruitment
was conducted. Instead of solely relying on expert knowledge to
specify the weight model, Haneuse and Daniels suggest combin-
ing clinical knowledge with data-driven strategies for covariate
selection (Meier, Van De Geer, & Bühlmann, 2008; Tibshirani,
1997; Zou, 2006), especially when working with high-dimensional
electronic health records (EHRs) (Haneuse & Daniels, 2016).
Accordingly, we use a two-step approach to correct for non-
random sampling in PRS analyses. First, we apply a machine
learning approach to examine the relative contribution of sociode-
mographic, clinical, and healthcare utilization characteristics
(captured in the longitudinal EHRs) and estimate IP weights for
selection into the nested biobank study. Next, we estimate the
association between PRS and the target conditions in an
IP-weighted sample in which selection into the biobank study
occurred at random. Using this two-step approach, we find that
standard PRS analyses that do not account for the non-random
sampling of biobank samples may lead to biased estimation of
polygenic risk in the context of psychiatric conditions.

Finally, we address the fact that selection into biobank-based
studies typically involves multiple steps – such as recruitment,
consent, biospecimen collection, genotyping, and genomic QC –
each of which may be influenced by a unique set of determinants.
Haneuse and Daniels proposed a general statistical framework for
EHR-based research that explicitly models the chain of interac-
tions and decisions made by patients and healthcare providers
which ultimately shape the underlying mechanism for study par-
ticipation and data availability in a given health system (Haneuse
& Daniels, 2016). In practical terms, they recommend modulariz-
ing the complex selection mechanism into a series of sub-
mechanisms that are relatively easier to characterize and model

(Haneuse, Arterburn, & Daniels, 2021). Applying this modular
IP weighting framework, we evaluate the discrepancy between
PRS effect estimates for psychiatric conditions when using stand-
ard v. modular approaches to define selection mechanisms (see
Figs 1b and c).

Methods

Study sample

Mass General Brigham (MGB) Research Patient Data Registry
(RPDR)
The primary data source was the MGB RPDR, an EHR data ware-
house covering 4.6 million patients across the MGB integrated
healthcare system (formerly Partners HealthCare) in the USA
serving 1.5 million people annually across 11 inpatient hospitals,
a rehabilitation network, 20 community health centers, a home-
based service network, and hundreds of outpatient clinics. To
assemble the cohort for this study, we queried the MGB RPDR
for 1 546 440 patients who self-identified as non-Hispanic
White (i.e. 76% of the overall MGB patient population) having
at least three visits after 2005, more than 30 days apart between
the first and last visits, and at least one visit greater than age 10
and less than age 90, as of February 2020 (Bayramli et al., 2021;
Castro et al., 2021) (see Fig. 1). The race and ethnicity restriction
was applied here because the subsequent PRS analyses were based
on samples of European ancestry.

MGB Biobank
The MGB Biobank is a hospital-based research program launched
in 2010 to empower genomic and translational research for
human health (Boutin et al., 2022; Karlson et al., 2016).
Participants are patients at MGB-affiliated hospital(s) above age
18 (at the time of the recruitment) who provided informed con-
sent to join the Biobank study. Each consented participant was
asked to provide blood samples (e.g. plasma, serum, DNA),
which are then linked to their clinical data in the EHRs as well
as survey data on lifestyle, behavioral and environmental factors,
and family history. Leveraging in-person and electronic recruit-
ment methods, the MGB Biobank has currently enrolled 141
451 participants (85% self-identify as White), collected 95 213
DNA samples, and generated genotyping microarray data for
more than 65 081 participants (4919 using the Illumina MEGA,
5332 using the Illumina MEGA EX, 26 135 using the Illumina
MEG, and 53 284 using the Illumina GSA) (Castro et al., 2021).
Further details on the participant recruitment and consent pro-
cess can be found in eMethods. This research was conducted as
part of the PsycheMERGE Consortium (Smoller, 2018), under
approval from the MGB Institutional Review Board
(2018P002642).

Exposure: polygenic risk scores for three psychiatric conditions

We generated PRS for the 24 153 MGB Biobank participants of
European ancestry using their genotype data and weights derived
by applying PRS-CS-Auto (Ge, Chen, Ni, Feng, & Smoller, 2019),
a Bayesian polygenic prediction method, to publicly available
summary statistics from the largest genome-wide association
studies (GWAS) of schizophrenia (The Schizophrenia Working
Group of the Psychiatric Genomics Consortium, Ripke, Walters,
& O’Donovan, 2020), bipolar disorder (Mullins et al., 2021),
and depression (Howard et al., 2019) on populations of
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European ancestry (see online Supplementary eMethods for
details on genomic data processing and online Supplementary
eTable 2 for further information on discovery GWAS). In prepar-
ation for the main analysis, we fitted linear regression models with
age, sex assigned at birth, top 20 genetic principal components,
and genotyping microarray as predictors of each respective psy-
chiatric PRS. We then extracted and standardized the residuals
from each regression model and generated a categorical version
of the PRS using deciles. In the current study, we primarily

focus on disease risk for the top decile of the standardized resi-
duals of PRS, a threshold commonly used to define high genetic
risk in the context of clinical translation (Lewis & Vassos, 2017).

Outcome: clinical diagnosis of three psychiatric conditions

We identified cases of the three psychiatric traits by mapping the
entire longitudinal health records available on all patients at
MGB-affiliated hospital(s) to the phecode system using the

Figure 1. Schematic of sample curation for polygenic risk score analysis using Mass General Brigham (MGB) Biobank and visualization of standard and modular
inverse probability (IP) weighting approaches. (a) Sample curation for polygenic risk score analysis using the MGB Biobank sample. (b) Visualization of the standard
(left) and modular (right) inverse probability (IP) weighting approach.
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PheWAS R package (Carroll, Bastarache, & Denny, 2014; Wei
et al., 2017). We identified qualifying ICD-9CM and
ICD-10CM codes for schizophrenia (phecode 295.1), bipolar dis-
order (phecode 296.1), and depression (phecode 296.2), and
defined cases as those having at least two phecode for a given out-
come occurring on different dates (see the full list of qualifying
diagnostic codes in online Supplementary eTable 3).

Statistical approach

We compared effect estimates of the associations between schizo-
phrenia, bipolar disorder, and depression PRS and their respective
target diagnoses using three weighting schemes defined by how
the IP weight models were specified: (1) unweighted, (2) standard
IP-weighted, and (3) modular IP-weighted. In the unweighted
approach, PRS effect estimates are calculated without accounting
for non-random sampling (i.e. standard PRS analysis). In con-
trast, the latter two approaches involve a systematic evaluation
and adjustment for differential probabilities of being selected
into the analytic sample for the PRS analyses, with the modular
approach involving additional specification of the intermediate
steps of selection (see Figs 1b and c). The application of IP
weights allows us to construct a hypothetical population in
which we can estimate the effects of PRS in the absence of spuri-
ous associations induced by participation-related factors specified
in the IP weight model (see the causal diagram in Fig. 2b).

We first evaluated the impact of IP-weighting on PRS pene-
trance, which represents the case prevalence as a function of
PRS and provides an estimate of the absolute disease risk
(Bigdeli et al., 2022; Zheutlin et al., 2019). To assess this impact,
we compared the IP-weighted penetrance against the unweighted
penetrance. Next, we evaluated the discrimination ability of the
PRS using the area under the receiver operator characteristic
curve (hereafter, the AUC) (Robin et al., 2011). Under the
unweighted approach, we fitted standard logistic regression mod-
els adjusting for covariates. Under the IP-weighted approaches, we
inputted the standard and modular IP-weights, respectively, and
fitted weighted logistic regression models (Lumley, 2021). We
then calculated the AUC to compare the discrimination ability
of the unweighted and IP-weighted logistic regression models
(Mangiafico, 2022). Lastly, we explored potential effect modifica-
tion of the discrimination ability of psychiatric PRS by sex
assigned at birth and current age.

Data-driven specification of IP weight models for selection

We utilized a large set of demographic and clinical features
extracted from high-dimensional EHRs, including 15 sociodemo-
graphic, 1814 diagnostic, and 10 healthcare utilization character-
istics to identify the key determinants of non-random sampling of
biobank participants and calculate the IP selection weights (refer
to online Supplementary eTable 4 for the full list of features and
online Supplementary eMethods for how they were curated). To
achieve this, we employed a machine learning approach,
Extreme Gradient Boosting (XGBoost) classification (Chen &
Guestrin, 2016), which is an open-source library that provides a
computationally efficient and high-performance implementation
of gradient-boosted decision trees (https://github.com/dmlc/
xgboost).

In the first set of IP-weighted analyses (i.e. standard
IP-weighted approach), we fitted an XGBoost model classifying
the inclusion into the PRS analysis (N = 24 153) from a pool of

1 546 440 adult patients at MGB-affiliated hospital(s) self-
identifying as non-Hispanic White. Considering that a very
small proportion of the patient population participated in the
Biobank study, we ensured that the training and test sample
(with a split ratio of 80:20) had the same proportion of the target
outcome in a given selection step (e.g. included v. not included in
the PRS analysis). After fitting the model, we derived weights by
taking the inverse of the predicted probabilities of being selected
into the final PRS analysis. We further stabilized the IP weights by
dividing the predicted probabilities by the marginal probability of
selection and truncated the top and bottom 1% of the distribution
to account for extreme weights.

In the second set of IP-weighted analyses (i.e. modular
IP-weighted approach), we fit three separate sets of XGBoost
models classifying each of the three selection steps (see Fig. 1c).
The three targets for classification were: 1) consent status
among eligible participants, 2) biospecimen collection and geno-
typing status among consented participants, and 3) inclusion in
the PRS dataset among participants who are eligible, consented,
and had biospecimens collected and genotyped. We extracted pre-
dicted probabilities from each of the three models and took the
product of these conditional probabilities to calculate the joint
probabilities of being included in the final analytic sample given
the three sequential steps of selection. We then stabilized and
truncated the inverse of the joint probabilities in the same way
as we did for the standard IP-weighted approach, and performed
weighted PRS analyses.

In addition, we applied a game theory-based algorithm called
Shapley Additive Explanations (SHAP) method to further eluci-
date the complex selection mechanism of the MGB Biobank
(Lundberg & Lee, 2017). We calculated Shapley values, which
are the weighted average of the marginal contribution of each fea-
ture value toward the model’s decision, to explain how changes in
a feature value would shift the models’ decision both in terms of
absolute magnitude and directionality. This way, we characterized
the importance of each feature to the predicted probability of
being retained in the study sample at each step of selection (see
magnitude and directionality of contribution by the top 20 fea-
tures in online Supplementary eFigs 1 and 2, respectively).

Results

Descriptive statistics

As shown in Table 1, we first compared participants in the ana-
lytic (Biobank) sample (N = 24 153) for the PRS analyses against
those who were not included (from the broader pool of eligible
patients in the healthcare system). In general, the included indivi-
duals were significantly more likely to be male, veterans, and mar-
ried, have publicly funded insurance, and have markedly greater
healthcare utilization compared to those excluded and those in
the overall source population. Additionally, we compared the
prevalence estimates for common health conditions of those
included in the final analytic sample against those of excluded
participants (see online Supplementary eTable 1). Consistent
with their higher frequency of healthcare interactions, individuals
included in the PRS analysis were more likely to have clinical
diagnoses of all disease conditions examined, including up to
three times higher rates of endocrine, nutritional, and metabolic
diseases (e.g. type 1 and 2 diabetes mellitus, obesity), neuro-
psychiatric conditions (e.g. neurological disorders, major depres-
sive disorder, suicidal behavior), and circulatory conditions (e.g.
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Figure 2. Identification of key features predicting inclusion (e.g. healthcare utilization, income) and a causal diagram illustrating how stratification on healthcare
utilization may introduce bias in standard PRS estimation in hospital-based biobanks. (a) A visual demonstration of top 20 features from the standard IP weight
model based on mean absolute Shapley values. Features with higher mean absolute Shapley values have a greater impact on the model’s decision than those with
lower values. The vertical axis shows the features rank-sorted according to the magnitude of the mean absolute Shapley values, from highest (top) to lowest (bot-
tom). (b) A causal diagram (directed acyclic graph or DAG) illustrating how non-random sampling into hospital-based biobanks may introduce bias in a standard
PRS estimation. Using the example of a bipolar disorder PRS, the figure depicts two DAGs to illustrate how selection bias could inflate PRS effect estimates in an
unweighted PRS analysis. The relationship of interest is denoted by the dotted line connecting PRSBIP (bipolar disorder polygenic risk score) with bipolar disorder
diagnosis. Restriction of PRS analysis to biobank participants is represented as a box around biobank enrollment in the causal diagram. Healthcare utilization is a
common effect of PRSBIP (through the effect of PRSBIP on depression) and clinical diagnosis of bipolar disorder. In this example, stratification on biobank enroll-
ment, a descendant of healthcare utilization, can induce a spurious association between the PRS and the target trait (represented as a dripping faucet in the
figure). Thus, the estimated effect could include not only true causal effects but also the spurious association, resulting in larger estimates in standard PRS analysis
when non-random sampling is not addressed. In contrast, when selection bias is accounted for using IP weighting, socioeconomic status (SES) and healthcare
utilization are no longer associated with biobank enrollment, and so biobank enrollment is no longer a descendant of a collider. Therefore, stratifying on biobank
enrollment would not open the non-causal path blocked by healthcare utilization (represented as a tight faucet in the figure). Thus, IP-weighted PRS estimates
would likely represent effects through the causal path only.
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essential hypertension, myocardial infarction). Of note, the preva-
lence of rheumatoid arthritis was up to five times greater among
those included than those not included in the PRS analyses, likely
reflecting recruitment into the MGB Biobank from rheumatology
clinics. Lastly, the prevalence estimates of the three target traits in
the analytic sample of 24 153 MGB Biobank participants were
1.0% (ncase = 236), 4.5% (ncase = 1079), and 26.2% (ncase = 6329)
for schizophrenia, bipolar disorder, and depression, respectively.

Identification of key determinants of selection

In the XGBoost model under the standard IP-weighted approach,
visit count, note count, current age, and clinical encounters at
Massachusetts General Hospital (MGH) or Brigham and
Women’s Hospital (BWH) were the five most important features
that differentiated those included and those not included in the
PRS analysis, followed by clinical encounters at Northshore
Medical Center or Newton-Wellesley Hospital and median neigh-
borhood income in 2010 (see Fig. 2a). The top features indicative
of healthcare utilization from the standard IP-weighted approach
also appeared in the three XGBoost models under the modular
IP-weighted approach. The modular approach identified add-
itional features that contributed to the probability of being
retained in each step of selection, such as anxiety, phobic, and

dissociative disorders, ischemic heart disease, clinical encounters
at Faulkner Hospital, and rheumatoid arthritis and other inflam-
matory polyarthropathies (see online Supplementary eFigs 1a–c).

In addition to overall feature importance, we further examined
the directionality of feature contributions to being retained in each
step of selection in the modular IP-weighted approach. This
was motivated in part by prior work showing that standard IP
weighting may lead to biased estimates when a given feature plays
a different role in each step of a sequential selection procedure
(Haneuse et al., 2021; Peskoe et al., 2021; Thaweethai, Arterburn,
Coleman, & Haneuse, 2021). To address this, we calculated
Shapley values at every observed value of each feature across all pos-
sible combinations with other features and evaluated whether key
features had dynamic contributions across the three selection
steps. Interestingly, visit count, which was the most important fea-
ture in every step of selection, exhibited different directions of
associations with retention probabilities across the three selection
steps (see online Supplementary eFigs 2b–d). For example, an
increasing number of visits was associated with a higher likelihood
of providing consent to participate in the Biobank but a lower
likelihood of being retained in the subsequent steps of selection.
Although the modularization of the IP weight model did not sub-
stantially improve the adjustment of selection bias in the PRS ana-
lysis relative to standard IP weighting, our results underscore the

Table 1. Comparison of demographic and healthcare utilization characteristics of European ancestry patients in the overall MGB patient population1 against those
included in the PRS analysis (shown in number of participants and prevalence of a given condition)

Category
Overall patient population1

(N = 1 546 440)
Not included
(N = 1 522 287)

Included
(N = 24 153) p value

Sociodemographic characteristics [N (%)]

Mean age (S.D.) 58.2 (19.3) 58.1 (19.3) 63.0 (16.3) <0.001

Gender, N (%) Female 887 810 (57.4) 874 943 (57.5) 12 867 (53.3) <0.001

Male 658 565 (42.6) 647 279 (42.5) 11 286 (46.7)

Unknown 65 (0.0) 65 (0.0) 0 (0.0)

Veteran status, N (%) Yes 98 723 (6.4) 96 322 (6.3) 2401 (9.9) <0.001

No 1 191 436 (77.0) 1 171 391 (76.9) 20 045 (83.0)

Unknown 256 281 (16.6) 254 574 (16.7) 1707 (7.1)

Health insurance, N (%) Private 888 548 (57.5) 878 586 (57.7) 99,62 (41.2) <0.001

Public 657 892 (42.5) 643 701 (42.3) 14 191 (58.8)

Marital status, N (%) Divorced 93 297 (6.0) 91 524 (6.0) 1773 (7.3) <0.001

Married 823 131 (53.2) 808 753 (53.1) 14 378 (59.5)

Other/unknown 48 181 (3.1) 47 843 (3.1) 338 (1.4)

Partner 7395 (0.5) 7206 (0.5) 189 (0.8)

Separated 12 331 (0.8) 12 112 (0.8) 219 (0.9)

Single 478 402 (30.9) 472 380 (31.0) 6022 (24.9)

Widowed 83 703 (5.4) 82 469 (5.4) 1234 (5.1)

Healthcare utilization [mean (S.D.)]

Visit count 73.71 (114.9) 71.34 (110.5) 223.27 (229.3) <0.001

ICD code count2 185.1 (332.7) 178.25 (317.2) 615.95 (743.7) <0.001

CPT code count2 140.63 (255.2) 135.38 (244.5) 471.15 (537.9) <0.001

Note count 360.70 (566.7) 349.81 (545.8) 1047.00 (1145.2) <0.001

1The denominator (‘overall MGB patient population’) is defined as adult patients (18 years and older by 2010) of European ancestry having at least three visits after 2005 and more than 40
days apart with at least one clinical note (N = 1 546 440; see Fig. 1).
2ICD, International Classification of Diseases; CPT, Current Procedural Terminology.
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importance of considering the possibility that some factors may
affect retention probability differently across multiple phases of
selection in biobank studies.

Polygenic risk estimation

Case prevalence per deciles of standardized residuals of
psychiatric PRS
After standardizing PRS by principal components, sex, age, and
genotyping microarray, case prevalence for schizophrenia in the
top decile of standardized residuals of schizophrenia PRS was
2.7% (2.1–3.3) in the unweighted analysis, and 2.0% (1.2–2.7)
in the standard IP-weighted analysis (see Fig. 3a). The unweighted
and IP-weighted estimates differed more substantially in the case
of bipolar disorder; case prevalence of bipolar disorder in the top
PRS decile was 10.0% (8.8–11.2) in the unweighted analysis, but
only 6.2% (5.0–7.5) when selection bias was accounted for
using IP weights. Finally, case prevalence of depression in the
top decile of standardized residuals of depression PRS was
33.5% (31.7–35.4) in the unweighted analysis but was reduced
to 28.9% (25.8–31.9) after standard IP weighting. Results using
modular IP weighting based on intermediate selection steps
were similar to those observed with standard IP weighting (see
online Supplementary eTables 5–7).

Discrimination ability at the top decile of psychiatric PRS
We found the largest impact of IP weighting on tail discrimin-
ation with respect to schizophrenia relative to bipolar disorder
and depression (see online Supplementary eTable 8). When strati-
fied by sex assigned at birth, the AUC estimates were generally
higher among male participants than female participants regard-
less of the weighting scheme (see Fig. 3b). The impact of IP
weighting was also greater among males (AUC = 0.792 and
0.711 from unweighted and modular IP-weighted models,
respectively) than females (AUC = 0.711 and 0.675 from
unweighted and modular IP-weighted models, respectively).

In addition, we found that both the magnitude and direction-
ality of the impact of IP weighting varied by age, especially for
schizophrenia (see Fig. 3c). For example, among participants
whose age was less than 40 years, the AUC of schizophrenia
PRS from the unweighted model was lower than the AUC from
the modular IP-weighted model. Conversely, the AUC from the
unweighted model was higher than the AUC from the modular
IP-weighted model among participants whose age was greater
than or equal to 40.

Discussion

In the present study, we demonstrated that effect estimates of psy-
chiatric PRS can be sensitive to selection bias, using the MGB
Biobank as a case example. First, we showed that volunteer-based
biobank participants may substantially differ from patients in the
underlying healthcare system with respect to a wide range of
patient profiles including sociodemographic, clinical, and health-
care utilization characteristics. Notably, prevalence of disease con-
ditions and rates of healthcare utilization were substantially
higher in the analytic sample than in the overall MGB patient
population. This suggests that, in contrast to the well-known phe-
nomenon of ‘healthy volunteer bias’ in population-based bio-
banks (Fry et al., 2017; Swanson, 2012; Tyrrell et al., 2021),
patients enrolled in hospital-based biobanks may have a greater
burden of illness than those in the underlying healthcare system

from which they were selected. In addition, we demonstrated
that an efficient machine learning algorithm can help discover
key sociodemographic, clinical, and healthcare utilization charac-
teristics associated with the probability of retention in each selec-
tion step of PRS analyses, allowing for a more comprehensive
adjustment of selection bias.

Using IP weighting procedures, we found that selection bias
can produce meaningful impact on estimates of penetrance and
discrimination ability of psychiatric PRS in biobank samples
derived from healthcare system populations. Overall, unweighted
effect estimates of psychiatric PRS were larger than the
IP-weighted estimates for the three psychiatric traits examined
in the current study. In the example of a bipolar disorder PRS,
Fig. 2b shows a causal diagram that illustrates how selection
bias could inflate PRS effect estimates in hospital-based biobanks
that tend to be enriched with patients with higher frequency of
healthcare interactions compared to the underlying patient popu-
lation. Restriction of PRS analysis to biobank participants is repre-
sented as a box around biobank enrollment in the causal diagram.
In this example, stratification on the descendent of healthcare
utilization, a common effect (i.e. collider) of bipolar disorder
PRS and clinical diagnosis of bipolar disorder, can induce a spuri-
ous association between the PRS and the target trait – a phenom-
enon commonly referred to as ‘collider stratification bias’ and
known to pose a potential threat to the internal validity
(Hernán, Hernández-Díaz, & Robins, 2004). As such, the esti-
mated effect could include not only true causal effects but also
the spurious association, thereby resulting in larger estimates in
standard PRS analysis when non-random sampling is not
addressed.

These findings underscore the complex nature of selection bias
and the difficulty of predicting the magnitude or directionality of
the effects by this type of bias on PRS estimates in real-world set-
tings. For example, individuals who are more health-conscious or
better informed about the clinical utility of genomic findings may
be more willing to participate in a biobank, as has been shown in
the UK Biobank (Fry et al., 2017; Swanson, 2012; Tyrrell et al.,
2021; van Alten, Domingue, Galama, & Marees, 2022).
Conversely, patients whose illness leads to more frequent encoun-
ters with the healthcare system may have more opportunities to be
selected for biobank participation, leading to an overrepresenta-
tion of less healthy individuals. In addition, some individuals
may enroll in genetic studies because they have a family history
of heritable conditions, such as cancer, and are thus motivated
to learn about their risk of illness; enrichment for family history
of specific diseases may contribute to differences between biobank
cohorts and their underlying source populations.

Recently, several analytic approaches to model and mitigate
selection bias in EHR data have been proposed, with varying con-
ceptual definitions of selection bias and statistical approaches to
modeling underlying selection mechanisms. For instance,
Haneuse and Daniels encourage researchers to modularize com-
plex selection mechanisms into a series of sub-mechanisms that
are easier to characterize and model (Haneuse & Daniels, 2016;
Haneuse et al., 2021). In the current study, we adapted this stat-
istical framework to accommodate the selection procedures
unique to PRS analyses conducted in hospital-based biobanks,
though modular IP weighting did not differ substantially from
standard IP weighting in its impact on polygenic risk estimation.
Nevertheless, the modular approach revealed that certain features
(e.g. visit count) may have differing impacts on retention prob-
ability at different stages of selection and provided useful insights
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into the variable contributions of features that would not have
been identified otherwise. As an alternative to Haneuse and
Daniels’ approach, Goldstein and colleagues proposed controlling
for the number of healthcare encounters (Goldstein, Bhavsar,
Phelan, & Pencina, 2016). However, as they note, stratification
on healthcare utilization may actually induce spurious association
between two disease phenotypes in cases where healthcare

encounters may be the common outcome of the exposure and
outcome (i.e. collider stratification bias).

More recently, Beesley and Mukherjee proposed calibration
weighting and IP weighting methods to account for selection
bias in EHR-linked biobank studies (Beesley & Mukherjee,
2022). They focus on the form of selection bias that arises from
the lack of representativeness and propose constructing weights

Figure 3. Evaluation of the impact of the modular inverse probability (IP) weighting approach on the polygenic risk estimation of schizophrenia, bipolar disorder,
and depression. (a) Case prevalence by polygenic risk score (PRS) decile for three psychiatric traits using two different weighting schemes – unweighted and modu-
lar IP-weighted. PRS were adjusted for potential confounding by top genetic principal components, sex, age, and genotyping microarray. The solid lines indicate
point estimates, and the bands indicate 95% confidence intervals for corresponding point estimates. Note that the standard IP-weighted model is not shown in this
figure, since the estimates were nearly identical to the modular IP-weighted model. Numeric estimates from all three models can be found in online Supplementary
eTables 5–7. (b) Comparison of discrimination by psychiatric PRS (area under the receiver operating characteristic curve or AUC) across groups defined by sex
assigned at birth and age.
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from external data that better represent the demographic and clin-
ical characteristics of the source population, such as national dis-
ease registries for target traits of interest. However, different
healthcare systems serve different patient populations, each char-
acterized by unique profiles of sociodemographic, clinical, and
healthcare utilization characteristics. As such, it may not be feas-
ible to directly transport selection weight models trained in one
healthcare system to another. Instead, adjustment may require a
context-specific examination of underlying distributions of the
key determinants leading to retention in the analytic sample for
PRS analyses. To that end, we leveraged the longitudinal EHRs
linked to genomic data collected to derive a set of weights that
are specific to the underlying selection mechanism for the MGB
Biobank.

Relatedly, different health system biobanks may rely on varying
strategies for recruitment and biospecimen collection. For
example, at the MGB Biobank, participant enrollment is con-
ducted using a range of procedures including recruitment via
(a) outpatient primary care or specialty clinics; (b) inpatient set-
tings; (c) at centralized phlebotomy services; (d) online enroll-
ment; or (e) collaborating studies. For a subset of patients,
biospecimen collection was obtained by placing an order into
the Epic EHR system (Epic Systems Corporation, n.d.) collect a
sample concurrently with a clinically ordered blood draw.
Although an overrepresentation of less healthy individuals could
be a general characteristic of hospital-based biobanks given that
they originate from patient populations, the degree of over-
representation may further vary depending on the distinct
method of recruitment and sample collection used in each bio-
bank study.

Our study has several limitations that should be considered
when interpreting the results. First, our approach does not address
the distributional mismatch between samples used to train and
validate the PRS and the sample in which the PRS is implemen-
ted. This can lead to miscalibration of PRS estimates if the sam-
ples differ with respect to sample characteristics, such as age, sex,
and socioeconomic status (Mostafavi et al., 2020). Although this is
an important issue in the implementation of PRS in clinical prac-
tice, it was beyond the scope of our current study. Second, caution
is advised when generalizing our findings to other traits as our
study focused on three psychiatric traits. It is possible that the
impact of selection bias may vary across different clinical condi-
tions. Third, our study was restricted to participants of
European ancestry, primarily due to the limited availability of
non-European ancestry participants in the MGB Biobank, par-
ticularly in the subsample with genotype data available for ana-
lysis. As a result, we were unable to investigate the impact of
selection bias in non-European populations or potential varia-
tions in participation by genetic ancestry. Notably, patients
from diverse populations are more likely to be exposed to socio-
demographic disadvantages, such as low income, low health liter-
acy, lack of access to healthcare, mistrust in biomedical research,
and cultural beliefs, which can contribute to low participation
rates among diverse populations in biobank studies (Prictor,
Teare, & Kaye, 2018). Therefore, further investigation and valid-
ation in more diverse samples and contexts are necessary to
ensure equitable translation of PRS into clinical practice
(Landry, Ali, Williams, Rehm, & Bonham, 2018).

In conclusion, our analyses demonstrate a novel, interdiscip-
linary approach for detecting and accounting for unrecognized
selection bias in hospital-based biobanks, particularly in the con-
text of PRS analyses. As efforts to integrate PRS into research and

clinical settings continue to expand, recognizing and mitigating
these biases is increasingly important, since these biases may
have implications for patient care and outcomes. Moreover,
further research and validation in more diverse populations will
be essential to ensure the generalizability and applicability of
our approach in different contexts.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723001186.
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