OPTICAL SHORT-TERM VARIABILITY IN THE X-RAY-SELECTED BL LAC OBJECT IE 0317+186 AND THE RADIO-SELECTED BL LAC OBJECT ON231

- F.Z.Cheng^{1,2}, J.F.Lu², G.Z.Xie^{1,3}, K.H.Li³, Z.L.Li³, L.F.Wang²
- 1. Center of Astronomy and Astrophysics, CCAST(World Lab.).
- 2. Center for Astrophysics, University of Science and Technology of China, Hefei, Anhui, P.R.China.
- Yunnan Observatory, Academia Sinica, Kunming, Yunnan, P.R. China.

1. OBSERVATIONS

In order to compare X-ray-selected BL Lac objects with radio-selected BL Lac objects, we have carried out optical monitoring of some of these objects for about three years at Yunnan Observatory in China. All observations have been made with a CCD-image system at the f/13.3 Cassegrain focus of the 102-cm RCC telescope. The CCD-image system was developed by Ye et al. in Kitt Peak National Observatory of USA (Ye et al., 1985). The filters used were as follows: B-GG385(2mm)+BG12(1mm)+BG18(1mm), V-GG495(2mm)+BG18(2mm). After observing many times, more complete light curves have obtained for the X-ray-selected BL Lac object IE 0317+186 and the radio-selected BL Lac object ON 231, respectively(Fig 1 and Fig 2). Fig 1 shows that IE 0317+186 has a characteristic timescale of about 4.5hours with an amplitudes of $\Delta V \simeq 0.65$ mag. Fig 2 indicates that a timescale of short-term variability in ON 231 is about 70 min with an amplitudes of $\Delta B \simeq 0.8$ mag.

2. ARGUMENTS FOR RELATIVISTIC BEAMING

Using two methods, we discuss possibility of relativistic beaming for IE 0317+186 and ON 231. First method is that assuming the observed time variability, Δt_{ob} , the deduced Eddington luminosity $L_{Edd} \leq 2.60 \times 10^{42} \Delta t_{ob}$ erg/s. If the variable source luminosity $\Delta L \gg L_{Edd}$, relativistic beaming is suggested(Worrall 1986). Second one is according to $\eta \geq 5.0 \times 10^{-43} \Delta L/\Delta t$ (Fabian and Ress 1979), η is the efficiency of mass-to-energy conversion in the acctetion process. Our estimates are tabulated in Table I which shows that η of both IE 0317+186 and ON 231 are larger than 0.1, and relativistic beaming is a possible conclusion.

TABLE I	The	estimated	results	of	physical	parameters
	and the second se					-

Name	Z	$\Delta t (= \Delta t_{ob}/1 + Z)$	L _{Edd} (erg/s)	L _{bol} (erg/s)	η	ref				
IE 0317+186	0.19	1.36x10 ⁴ sec	4.21x10 ⁴⁶	3.38x1045	≥0.12	1				
<u>ON 231</u>	0.102	<u>3.80x10³ sec</u>	1.10x10 ⁴⁶	2.02×10^{45}	≥0.27	2,3,4				
1. Giommi et	t al.	1987; 2. Worral	ll et al. 1986	; 3. Madejsk	i and	Schwartz,				
1983; 4. Weistrop et al. 1985.										

108

D. E. Osterbrock and J. S. Miller (eds.), Active Galactic Nuclei, 108–109. © 1989 by the IAU.

REFFERENCES

Fabian, A.C. and Ress, M.J. <u>1979 X-Ray Astronomy</u>, eds. W.A.Baity and L. E.Peterson, (Pergaman Press), P381. Giommi, P., et al. 1987, <u>Ap.J.</u>, <u>322</u>, 662. Madejski, G.M., and Schwartz, D.A. 1983, <u>Ap.J.</u>, <u>275</u>, 467. Weistrop, D., et al. 1985, <u>Ap.J.</u>, <u>292</u>, 614. Worrall, D.M. 1986, <u>The Proceedings of the Workshop "The Continuum Emission in Active Galactic Nuclei"</u>, January 11-14, 1986, Tucson, Arizona, USA. Worrall, D.M., et al. 1986, <u>Ap.J.</u>, <u>303</u>, 589.

Ye, B.X., et al. 1985, Acta Astron. Sinica., 2, 175.

Fig 1. The light curve of IE 0317+186 in V band. Error bars are total error.

Fig 2. The light curve of ON 231 in B band. Error bars are total error.