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Following on from the discovery of cannabinoid receptors, of their endogenous agonists
(endocannabinoids) and of the biosynthetic and metabolic enzymes of the endocannabi-
noids, significant progress has been made towards the understanding of the role of the endo-
cannabinoid system in both physiological and pathological conditions. Endocannabinoids
are mainly n-6 long-chain PUFA (LCPUFA) derivatives that are synthesised by neuronal
cells and inactivated via a two-step process that begins with their transport from the extra-
cellular to the intracellular space and culminates in their intracellular degradation by
hydrolysis or oxidation. Although the enzymes responsible for the biosynthesis and metab-
olism of endocannabinoids have been well characterised, the processes involved in their
cellular uptake are still a subject of debate. Moreover, little is yet known about the roles
of endocannabinoids derived from n-3 LCPUFA such as EPA and DHA. Here, I provide
an overview of what is currently known about the mechanisms for the biosynthesis and
inactivation of endocannabinoids, together with a brief analysis of the involvement of the
endocannabinoids in both food intake and obesity. Owing to limited space, recent reviews
will be often cited instead of original papers.

Anandamide: 2-arachidonoyl-glycerol: Cannabinoid receptors: Food intake: Obesity

By definition, endocannabinoids are derivatives (amides,
esters and ethers) of a long-chain PUFA, specifically
arachidonic acid, capable of binding and functionally
activating the cannabinoid receptors(1). It was 1992
when the first endocannabinoid was isolated from brain
and named anandamide (from Sanskrit word ananda
‘supreme joy’)(2,3). This is the ethanolamide of arachido-
nic acid, and is thought to be a partial CB1 and CB2 recep-
tor agonist as well as a transient receptor potential
vanilloid (TRPV)1 receptor agonist(2,4–6). The other
widely investigated endocannabinoid, 2-arachidonoyl-
glycerol (2-AG), is the arachidonate ester of glycerol
that was isolated from peripheral tissues. This molecule
is able to activate CB1 and CB2 receptors with similar
potency and efficacy(7,8), and to interact with γ-aminobu-
tyric acid receptors(9). Other endocannabinoids might be
represented by both 2-AG ether (noladin ether), that
binds to CB1 receptors with relatively more affinity

that to CB2
( 10), and virodhamine, that is a CB2 receptor

agonist and CB1 receptor partial agonist/antagonist(11).
Other compounds that are thought to be endocannabi-
noids include N-arachidonoyl dopamine, that like anan-
damide behaves as an agonist at both CB1 and TRPV1
receptors(12) and antagonises the melastatin type 8
(TRPM-8) cation channels(13), N-dihomo-γ-linolenoyl
ethanolamine and N-oleoyl dopamine(14). Besides the
n-6 long-chain PUFA, our group recently reported evi-
dence that also the ethanolamides of n-3 fatty
acids, docosahexaenoyl-ethanolamide (DHEA) and
eicosapentaenoyl-ethanolamide, derived mainly from
fish oils in the human diet (DHA and EPA) can be
classified as endocannabinoids(15). Indeed, we found that
they both are able to bind to CB1 and CB2 receptors
with reasonable potency and they functionally activate
both receptors, although with low efficacy(15). DHEA
was first discovered in brain tissue and retina(16,17).
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In 2001, Berger et al., demonstrated that brain levels
of the ethanolamines of DHA and EPA, DHEA and
eicosapentaenoyl-ethanolamide (EPEA), in piglets were
modulated by the amount of n-3 long-chain PUFA
in the feed(18). Other studies have shown an increased
formation of DHEA and EPEA in various tissues, includ-
ing prostate and breast cancer cells, after administering
fish oil or individual n-3 long-chain PUFA(19,20).
Interestingly, we have also reported evidence that both
DHEA and EPEA show greater anti-proliferative
effects than their parent compounds, DHA and EPA, in
two prostate cancer cell lines, LNCaP and PC3 cells(15).
However, the mechanisms underlying these effects are
not clearly understood yet. Furthermore, when released,
endocannabinoids are accompanied by cannabinoid
receptor-inactive, saturated and mono- or di-unsaturated
congeners, which can influence their metabolism
and function. They include palmitoylethanolamide,
steaeroylethanolamide, oleoylethanolamide, oleamide,
2-linoeoyl-glycerol and 2-palmitoyl-glycerol. These com-
pounds appear to have cannabimimetic activity but
do not bind to the classical cannabinoid receptors.
It might be possible that these molecules exert their
cannabimimetic effects by acting as ‘entourage molecules’
that prevent anandamide or other true cannabinoids
being degraded by specific metabolic enzymes(21). This
hypothesis is supported by the following observations:
(a) oleamide greatly increases the efficiency of ananda-
mide binding to cannabinoid receptors(22); (b) both
2-palmitoyl- and 2-linoleoyl-glycerol have a similar
facilitatory effect on 2-AG binding to both cannabinoid
receptors as well as on the 2-AG inhibitory effect on
forskolin-activated adenylate cyclase(22,23) and (c) these
‘entourage’ effects were less pronounced in the pres-
ence of phenylmethylsulphonyl-fluoride, which inhibits
the main metabolic enzyme of anandamide and 2-AG,
thus suggesting that these effects were due, at least in
part, to inhibition of endocannabinoid hydrolysis by the
‘entourage’ compounds(22). Other mechanisms potentially
involved in the ‘entourage’ effects warrant further
investigation.

Cannabinoid receptors

Cannabinoid CB1
( 24,25) and CB2

( 26) receptors belong
to the G-protein-coupled receptor superfamily. Their
activation inhibits adenylate cyclase and Ca2+ (N-
and P/Q-type) channels, activates K+ channels and
mitogen-activated protein kinase cascades(27), specifically
extracellular signal-regulated kinases and p38 mitogen-
activated protein kinase cascades(28,29). Cannabinoid
CB1 receptors are mainly expressed in the central nervous
system where they mediate inhibition of ongoing release
of various neurotransmitters (acetylcholine, noradrena-
line, dopamine, 5-hydroxytryptamine, γ-aminobutyric
acid, glutamate, D-aspartate and cholecystokinin)(30,31),
and at lower levels in testis, heart, vascular tissue and
in immune cells. Within the central nervous system,
CB1 receptors are highly expressed in the cerebral cortex,
hippocampus, lateral caudate-putamen, substantia nigra

pars reticulate, globus pallidus, entopeduncular nucleus
and cerebellum as well as in the pain pathways in brain
and spinal cord. In these areas endocannabinoids control
processes such as cognition, memory, motor function
and analgesia(32). Unlike CB2, CB1 receptors are associ-
ated with special membrane microdomains, named
‘lipid rafts’(33). This association is greatly affected by
cholesterol content; indeed, membrane cholesterol
enrichment in both primary and immortalised cell lines
reduces the binding to CB1; instead cholesterol depletion
modifies anandamide-induced endocytosis of CB1, which
apparently loses the ability to be directed towards the
lysosomal compartment(33). Importantly, the existence
on the CB1 cannabinoid receptors of an allosteric bind-
ing site that can be recognised by synthetic small mol-
ecules was reported for the first time by our group(34).
Whether the CB2 receptor, such as CB1, possesses an
allosteric binding site, warrants further investigation.
Cannabinoid CB2 receptors are mainly expressed in
immune cells, and recently they have also been detected
in microglia, astrocytes and in central neurons(35,36).
Finally, the existence of a third type of cannabinoid
receptor, GPR55, is still a subject of debate(37).

Endocannabinoids biosynthesis and uptake

Although the biosynthetic and metabolic pathways
have been largely studied for the n-6 endocannabinoids,
it is probably that similar routes can occur for the n-3
endocannabinoids. Endocannabinoids are not stored in
cells such as classical neurotransmitters waiting to be
released after cell stimulation, but instead they
are rapidly formed from membrane phospholipids ‘on
demand’, where and when needed, and immediately
released to target cannabinoid receptors mainly locally.
Although anandamide and 2-AG are similar in structure,
these endocannabinoids exhibit some differences in
terms of biochemical and metabolic pathways. Both
endocannabinoids are produced at post-synaptic neur-
ons. For anandamide, the main biosynthetic pathway
consists of a two-step process: (1) formation of N-acyl-
phosphatidyl-ethanolamine (NAPE) from phosphatidyl-
ethanolamine by a calcium-dependent N-acyltransferase,
and (2) hydrolysis of NAPE to form N-acylethanolamines
in a process that is catalysed by NAPE-hydrolysing phos-
pholipase D(38–40) (Fig. 1). Since cells lacking NAPE-
phospholipase D are also able to synthesise anandamide,
alternative pathways have been proposed(41–47) and they
are summarised in Fig. 1. The main biosynthetic path-
way for 2-AG consists of hydrolysis by phospholipase
C of inositol phospholipids containing arachidonic
acid at the sn-2 position and further hydrolysis by diacyl-
glycerol lipase (DAGL) of the arachidonic acid-
containing DAG to 2-AG(48) (Fig. 2). In 2003, human
DAGL was cloned and further characterised(49). It exists
as two closely related genes designated α and β(49).
Pharmacological studies have revealed that during neur-
onal development, localisation of DAGLα and DAGLβ
changes from pre- to post-synaptic elements, i.e. from
axonal tracts in the embryo to dendritic fields in the
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adult, suggesting a different need for 2-AG synthesis from
pre- to the post-synaptic compartment during brain
development(49,50). Furthermore, several studies suggest
thatDAGLα plays an essential role in the regulation of ret-
rograde synaptic plasticity and neurogenesis. In support
of this hypothesis two recent studies suggest that: (1)
DAGLα-knockout mice show marked (up to 80%)
reductions in 2-AG levels in brain and spinal cord with
concomitant decrease in arachidonic acid levels, whereas
DAGLβ-knockout animals exhibited either no(51) or up
to 50% reduction(52) in brain 2-AG levels; (2) several
forms of retrograde endocannabinoid-mediated synaptic
suppression, such as depolarisation-induced suppression
of excitation and depolarisation-induced suppression of
inhibition, were absent in hippocampus, cerebellum
and striatum in DAGLα-knockout, but not in
DAGLβ-knockout mice(51–53). Like anandamide, also
2-AG can be synthesised by alternative pathways.
However, the physiological meaning of these proposed
pathways is not yet clear. Endocannabinoids function as
retrograde messengers. Indeed, after their biosynthesis,
they are released from post-synaptic neurons upon post-
synaptic depolarisation and/or receptor activation and
act on presynaptic CB1 receptors to induce transient sup-
pression of transmitter release. Two forms of short-term
synaptic plasticity have been identified so far, named
depolarisation-induced suppression of inhibition, which
involves GABAergic transmission, and depolarisation-
induced suppression of excitation, which involves

glutamatergic transmission(54,55). These processes
were found mainly in the hippocampus and cerebellum,
where it seems they play an important role in physio-
logical processes such as memory and motor co-
ordination(56–58). Additional forms of synaptic
transmission involve the induction of long-term synaptic
plasticity, named long-term potentiation and long-term
depression(59). After targeting their receptors, the endo-
cannabinoids are inactivated by a two-step process. The
first process is the endocannabinoid transport from the
extracellular to the intracellular space, followed by their
metabolism. Whether this cellular uptake depends on the
presence of an ‘endocannabinoid membrane transporter’
is currently a subject for debate as no such transporter
has yet been cloned. Recently, Fowler has elegantly
reviewed the current state of the art of endocannabinoid
uptake(60).

Endocannabinoid metabolism

Whatever is the mechanism by which endocannabinoids
are taken up by cells, after the uptake, they are metab-
olised by hydrolysis or oxidation (Fig. 2).

Hydrolysis

Fatty acid amide hydrolase (FAAH) is the main enzyme
involved in anandamide hydrolysis, and it is able to
recognise as substrates also other N-acyl-ethanolamines
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such as oleamide(61,62), and N-acyl-taurines(63). FAAH
is a membrane-associated serine hydrolase belonging to
the amidase signature family(64). The catalytic triad is
composed of Lys142, Ser217 and Ser241(65). This enzyme
is widely distributed in various tissues of rat(64,66,67),
mouse(68,69) and human subjects(61,70), and its optimal
pH lies within the range 8·5–10. Other enzymes involved
in anandamide hydrolysis are N-acylethanolamine
acid amidase(71) and FAAH-2(70), this latter being an iso-
zyme of FAAH-1 with about 20% sequence identity at
the amino acid level, mainly expressed in human sub-
jects, but not in rodents(70). N-acylethanolamine
acid amidase is an N-glycosylated protein, localised
in the lysosomes or the Golgi apparatus with an
optimal pH of 4·5–5(71–74). FAAH-2 is more effective
at metabolizing oleamide than anandamide or other
N-acyl-ethanolamines. FAAH-1 and FAAH-2 are
located in the cytosolic and luminal sides of intracellular
membranes, respectively. FAAH is also able to metab-
olise, although to a lesser extent, 2-AG(75,76). Recently,
three ‘guardians’ of 2-AG signalling have been reported:
monoacylglygerol lipase, α/β-hydrolase domain (ABHD)-6
and ABHD-12. As recently reviewed(53), MAG lipase is
a serine hydrolase belonging to the α/β-hydrolase super-
family, whose catalytic triad is composed of Ser122,
Asp239 and His269(77,78). It was originally purified, and
subsequently cloned from adipose tissue(77,79), and it is

detected in both cytosol and membrane preparation(80).
This enzyme accounts for about 80–85% of 2-AG
hydrolysis, but it is also involved in the hydrolysis of
other 2-monoacylglygerols and 1-monoacylglygerols.
Its localisation is mainly presynaptic, where it often
co-localises with CB1 receptors in the axon terminals(81).
ABHD-6 and ABHD-12 belong to the α/β-hydrolase
family with the postulated catalytic triad serine-aspartic
acid-histidine(53,82). ABHD-6 is mainly post-synaptic
where it regulates 2-AG levels at the site of its gener-
ation(83). This enzyme is also expressed in the mouse
microglial cell line BV-2, in which monoacylglygerol
lipase is not expressed(83). The ABHD-6 catalytic triad
has not been resolved yet, but it is predicted to face the
cytosol/intracellular membrane(53,75). ABHD-12 is highly
expressed in microglia, macrophages and osteoclasts. Its
catalytic triad is not resolved yet but it is predicted to
face the luminal/extracellular side(53,75). Inactivating
ABHD-12 mutations have been causally linked to neuro-
degenerative conditions, known as polyneuropathy, hear-
ing loss, ataxia, retinitis pigmentosa and cataract(53,84).

Oxidation

Both endocannabinoids can also be metabolised by oxi-
dation involving enzymes such as cytochrome P-450,
cyclooxygenase-2 (COX-2) and by the 12- and
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15-lipoxygenases, 12-LOX and 15-LOX(85) (Fig. 2).
Specifically, anandamide can undergo oxidation by
several human cytochrome P-450 isoenzymes, including
CYP3A4, CYP4F2, CYP4X1 and the polymorphic
CYP2D6 resulting in a number of structurally diverse
epoxy derivatives that are still able to act on both
cannabinoid receptors, CB1 and CB2, and on vanilloid
TRPV4 receptors(86). Little evidence exists for the
oxidation of 2-AG by any P-450 enzymes from different
tissue preparations(21). Lipoxygenases generate
hydroxyl-endocannabinoids that activate both cannabi-
noid receptors and vanilloid TRPV1 receptors(86).
Finally, Yu et al.(87) showed that COX-2 but not
COX-1 oxygenates anandamide, indicating substrate
specificity for the two isoforms. The catalysis mediated
by COX-2 induces the formation of both prostamides
and PG-glycerol esters, that do not appear to act as
ligands for CB1 and CB2 cannabinoid receptors or of
any of the EP1-4 eicosanoid receptors, but that have
been shown to act through other receptors such as
PPAR and NF-κB receptors(21).

The physiological and pathological roles of the
endocannabinoids

Under physiological conditions, the endocannabinoid
system has been reported to modulate several other sys-
tems that range from the central and autonomic nervous
systems to the endocrine system, the gastrointestinal tract
and the reproductive, immune and cardiovascular sys-
tems(14,88). Furthermore, there is convincing evidence
too that the endocannabinoid system plays a crucial
role also in several pathological conditions. An
up-regulation of the endocannabinoid system has already
been observed in a wide range of disorders such as mul-
tiple sclerosis, cancer, schizophrenia, post-traumatic
stress disorders, certain types of pain, some intestinal
and cardiovascular diseases, excitotoxicity and traumatic
head injury. On the one hand, this up-regulation may
play an ‘autoprotective’ role with consequent reduction
of the severity of symptoms or a slowing of disease pro-
gression(14,27). However, there are also disorders in which
up-regulation of the endocannabinoid system contributes
to the production or exacerbation of unwanted effects,
and so is ‘auto-impairing’(14,27). These disorders include
obesity, impaired fertility, stroke, cystitis, ileitis and
paralytic ileus. It will be really important to understand
which are the mechanisms underlying the alterations in
the endocannabinoid levels and to explore whether
these are due to an increase in their biosynthesis or a
decrease in their enzymatic degradation. Here, I will
briefly describe the role played by the endocannabinoid
system in the control of food intake (physiological role)
and in obesity (pathological role).

Endocannabinoids in the control of food intake
and energy expenditure

In mammals, the need for feeding is governed by
endogenous controllers that include signals released

from the gastrointestinal tract after meals, such as ghre-
lin, cholecystokinin, and peptide YY, as well as signals
more strictly related to metabolism, such as the circulat-
ing hormones insulin and leptin(19). All stimuli involved
in feeding are centrally integrated by the hypothalamus,
a brain area known to play an important role in
homoeostatic control, thus maintaining an adequate
body weight(19). There is now convincing evidence
that the endocannabinoid system is involved in the
regulation of food intake and energy expenditure.
This is supported by the following observations:
(i) Δ9-tetrahydrocannabinol, the main psychotropic
ingredient of Cannabis sativa, has been found to induce
signs of hyperphagia by activating cannabinoid CB1
receptors(89,90). Indeed, tetrahydrocannabinol was found
to improve appetite and increase body weight in
advanced cancer patients or in anorexic patients with
AIDS or Alzheimer’s disease(91). Moreover, (ii) cannabi-
noid CB1 receptors are activated after brief food depri-
vation in a manner that increases the levels of
orexigenic and anorexigenic mediators and induces
food intake(92); (iii) the levels of endocannabinoids in
the hypothalamus are higher in rodents deprived of
food for several hours v. ad libitum-fed animals(92); and
(iv) when directly injected into the hypothalamus or the
nucleus accumbens shell, endocannabinoids induce
food intake in satiated animals(92). The fact that all
these effects are attenuated by CB1 receptor antagonists
strongly supports a role of the endocannabinoid system
in the regulation of food intake. Accordingly, cannabi-
noid CB1 receptors have been found to exert both central
and peripheral effects on food intake and energy homo-
eostasis(93). In the central nervous system, cannabinoid
CB1 receptors have been found in the olfactory bulb, cor-
tical regions (neocortex, pyriform cortex, hippocampus
and amygdala) and several parts of the basal ganglia,
thalamic and hypothalamic nuclei, cerebellar cortex,
brainstem nuclei as well as in areas involved in reward/
reinforcement circuitry(93). Furthermore, cannabinoid
CB1 receptors have been found to co-localise with
other receptors in the central nervous system whose
activities are essential in the processes of feeding and sati-
ety. For example, the dopaminergic system, which is
involved in reward regulation, interacts with CB1 recep-
tors and co-localisation between dopamine receptors
(D1 and D2) and CB1 receptors was reported in mouse
hippocampus (CB1 and D2), and striatum and olfactory
tubercle (CB1, D1 and D2)

(93). In addition, it has been
found that cannabinoid CB1 receptor antagonists,
such as SR141716 (also known as rimonabant),
AM251 or AM1387, suppress food intake and disrupt
food-reinforced behaviour(94); that food-deprived CB1

−/−

mice eat less than their wild-type littermates (SR141716
does not affect the food intake of these animals)(95,96)

and that levels of endocannabinoids are elevated
in leptin-deficient mice and rats, suggesting that endo-
cannabinoids form part of the leptin-regulated neural
circuitry that is involved in appetite regulation(95). In
periphery, the endocannabinoid system acts directly
to regulate processes such as gastric emptying, lipo-
genesis and glucose intake(97) through cannabinoid
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receptors expressed by peripheral cells and tissues con-
trolling energy homoeostasis, including the gut, the
liver and hepatocytes, white adipose tissue, and adipo-
cytes, skeletal muscle and the pancreas(92). In this way,
signals from these peripheral organs can be collectively
converged and fed back centrally, allowing the brain
to constantly monitor the metabolic state of an
organism(93).

Endocannabinoids in obesity

Besides its role in the regulation of food intake, there
is also evidence that the endocannabinoid system is
overactivated and dysregulated in human obesity.
Obesity is a pathological condition whose incidence con-
tinues to increase as a global nutrition and health pro-
blem. One of the key factors leading to obesity is a
significant imbalance between energy intake and expen-
diture. In addition, the high amount of n-6 PUFA,
such as linolenic acid and arachidonic acid, over the
n-3 PUFA, in the Western diet has hugely contributed
to the onset of obesity. Unfortunately, the mechanisms
by which different fatty acids contribute to obesity are
not well-understood yet and further research is needed.
The involvement of the endocannabinoid system in
obesity is supported by the following observations:
(i) CB1 receptor antagonists are significantly more effica-
cious in reducing caloric intake and body weight in
rodents with diet-induced or genetic obesity than in
their respective lean controls(95,98,99); (ii) CB1

−/− mice
are resistant to diet-induced obesity(100,101); and (iii)
both an up-regulation of CB1 receptors and elevated
endocannabinoid levels have been detected in the adipose
tissue of obese compared with lean patients(102,103).
Importantly, CB1 receptor antagonists show significant
anti-obesity effects. Rimonabant, which is a CB1 recep-
tor inverse agonist/antagonist, has been found (i) to
reduce food intake in both lean and obese rodents and
to lower body weight both in experimental models of
obesity and in clinical trials(104); (ii) to decrease fat intake
as well as hunger ratings(104); and (iii) to improve waist
circumference, plasma TAG, HDL cholesterol and
blood pressure(104). Rimonabant was approved in 2006
as a weight loss medication in the European Union.
Unfortunately, however, the use of this drug in the clinic
has been suspended because of serious psychiatric side
effects, particularly an increased incidence of depression
and suicidality.

In this regard, the use of CB1 receptor antagonists that
do not cross the blood–brain barrier might provide a
novel pharmacological approach to controlling obesity
without the psychiatric side-effects observed with rimo-
nabant and its analogues. In addition, the development
of ‘neutral’ CB1 antagonists, that do not show any signifi-
cant signs of inverse agonism, has provided very promis-
ing results at the preclinical level, particularly in terms of
their reversal of insulin and leptin resistance(105).
Furthermore, in the light of the fact that the increased
endocannabinoid tone observed in metabolic disorders
can be attributed to increased endocannabinoid biosyn-
thesis, an alternative strategy to regulate dysregulated

endocannabinoid tone in obesity might be to use
DAGL inhibitors with consequent reduction in 2-AG
biosynthesis(106). Finally, changes in diet can be ben-
eficial in preventing the onset of both obesity and other
metabolic disorders. Indeed, several data reported in
the literature suggest that dietary intake can modulate
the endocannabinoid system. Thus, high-fat diets
increase intestinal motility and the levels of the endocan-
nabinoids, probably due to decreased monoacylglygerol
lipase and FAAH activity and increased NAPE-
phospholipase D action(107). Interestingly, the role of
dietary fish oil n-3 fatty acids, EPA and DHA, in modu-
lating endocannabinoid biosynthesis has been widely
studied. Indeed, increased intake of EPA and DHA,
that are able to displace arachidonic acid from phospho-
lipid membranes, not only contributes to a marked
decrease in endocannabinoid biosynthesis, but also
causes a decrease in NAPE-phospholipase D, FAAH
and CB1 mRNA expression with a consequent reduction
of receptor stimulation(107). However, such a change in
diet should be considered with caution in newborn
since it can cause long-lasting alterations in brain phos-
pholipid composition and function(105).

Conclusions and future directions

It is now generally accepted that the endocannabinoid
system plays a crucial role in several physiological
processes and pathological conditions in both central
and peripheral tissues. One challenge now is to develop:
(a) new peripherally restricted CB1 receptor agonists and/
or antagonists that while maintaining the sought-after
therapeutic effect do not show the unwanted side-effects
that have been observed with direct CB1 ligands which
cross the blood–brain barrier; (b) new medicines that
affect the tissue level of endocannabinoids at their recep-
tors for the treatment of a range of disorders, such as, to
mention just a few, pain, multiple sclerosis, hypertension
and cancer.
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