Strong Multiplicity One for the Selberg Class

K. Soundararajan

Abstract. We investigate the problem of determining elements in the Selberg class by means of their Dirichlet series coefficients at primes.

In [7] A. Selberg axiomatized properties expected of L-functions and introduced the "Selberg class" which is expected to coincide with the class of all arithmetically interesting L-functions. We recall that an element F of the Selberg class S satisfies the following axioms.

- In the half-plane $\sigma > 1$ the function F(s) is given by a Dirichlet series $\sum_{n=1}^{\infty} a_F(n) n^{-s}$ with $a_F(1) = 1$ and $a_F(n) \ll_{\epsilon} n^{\epsilon}$ for every $\epsilon > 0$.
- There is a natural number m_F such that $(s-1)^{m_F}F(s)$ extends to an analytic function of finite order in the entire complex plane.
- There is a function $\Phi_F(s) = Q_F^s \Gamma_F(s) F(s)$ where $Q_F > 0$ and

$$\Gamma_F(s) = \prod_{j=1}^{r_F} \Gamma(\lambda_j(F)s + \mu_j(F))$$

with $\lambda_j(F) > 0$ and $\text{Re } \mu_j(F) \ge 0$ such that $\Phi_F(s) = \omega_F \bar{\Phi}_F(1-s)$, where $|\omega_F| = 1$ and for any function f we denote $\bar{f}(s) = \overline{f(s)}$. We let $d_F := 2 \sum_{j=1}^r \lambda_j$ denote the "degree" of F.

We may express $\log F(s)$ by a Dirichlet series

$$\log F(s) = \sum_{n=2}^{\infty} b_F(n) \Lambda(n) / (n^s \log n)$$

where $b_F(n) \ll n^{\vartheta}$ for some $\vartheta < \frac{1}{2}$. We adopt the convention that $b_F(n) = 0$ if n is not a prime power. From the assumption $a_F(n) \ll_{\epsilon} n^{\epsilon}$ it follows that $b_F(p^k) \ll_{k,\epsilon} p^{\epsilon}$.

It is believed that the Selberg class satisfies the following "strong multiplicity one" principle: If F and G are two elements of the Selberg class with $a_F(p) = a_G(p)$ (equivalently $b_F(p) = b_G(p)$) for all but finitely many primes p then F = G. In [5]

Received by the editors October 19, 2002.

The author is partially supported by the American Institute of Mathematics and by the National Science Foundation.

AMS subject classification: 11M41, 11M26, 11M06.

[©] Canadian Mathematical Society 2004.

R. Murty and K. Murty prove such a result under the additional hypothesis that $a_F(p^2) = a_G(p^2)$ for all but finitely many primes p. Recently J. Kaczorowski and A. Perelli [2] have established this principle under the additional hypothesis that

$$\lim_{\sigma \to 1^+} (\sigma - 1) \sum_p \frac{|a_F(p^2) - a_G(p^2)|}{p^\sigma} \log p < \infty.$$

This criterion is equivalent to saying that $a_F(p^2) - a_G(p^2)$ is bounded on average, that is for all large x

(1)
$$\sum_{p < e^{x}} \frac{|a_{F}(p^{2}) - a_{G}(p^{2})|^{2}}{p} \log p \ll x.$$

In this note we develop a different method which establishes the strong multiplicity one principle under a much weaker hypothesis than (1), but which fails (barely) to prove the full principle. We use \log_j to denote the j-fold iterated logarithm; thus $\log_2 = \log\log_3 = \log\log\log\log_3 = \log\log\log\log$ and so on.

Theorem Suppose F and G are elements of the Selberg class with $a_F(p) = a_G(p)$ (equivalently, $b_F(p) = b_G(p)$) for all $p \notin \mathcal{E}$ where \mathcal{E} is a thin set of primes satisfying

for some fixed $\delta > 0$. Then F and G have the same degree: $d_F = d_G$. If in addition we have

(3)
$$\sum_{p \le e^{x}} \frac{|a_F(p^2) - a_G(p^2)|^2}{p} \log p \ll \exp\left(\frac{x}{\log x (\log_2 x)^5}\right),$$

then F = G.

Although (3) is a considerably weaker restriction than (1) it is still stronger than the bound $\ll e^{\epsilon x}$ which is all we know in general. When combined with the classification of elements of the Selberg class of degree 1 by Kaczorowski and Perelli (see [3] and also the exposition [8]) our Theorem permits the following corollary.

Corollary Suppose χ is a primitive Dirichlet character and that F is an element of the Selberg class with $f(p) = \chi(p)$ for all $p \notin \mathcal{E}$ where \mathcal{E} is a set of primes satisfying (2). Then $F(s) = L(s, \chi)$.

To deduce the Corollary we note that our Theorem implies that the degree of *F* is 1. Since Kaczorowski and Perelli [3] have shown that the only elements of the Selberg class of degree 1 are Dirichlet *L*-functions the Corollary follows.

We now embark on the proof of our Theorem. Put $c(n) = b_F(n) - b_G(n)$ and observe that in Re $s > \frac{3}{2}$ we have

(4)
$$-\frac{F'}{F}(s) + \frac{G'}{G}(s) = \sum_{n=1}^{\infty} \frac{c(n)\Lambda(n)}{n^s} = \sum_{k=1}^{\infty} \sum_{p} \frac{c(p^k)\log p}{p^{ks}}.$$

470 K. Soundararajan

Since c(p)=0 unless $p\in\mathcal{E}$ we see from (2) that $\sum_p c(p)\log p/p^s$ is entire in $\operatorname{Re}(s)>\frac{1}{2}-\delta$. Since $c(p^2)$ and $c(p^3)$ are $\ll p^\epsilon$ we see that $\sum_p c(p^2)\log p/p^{2s}$ and $\sum_p c(p^3)\log p/p^{3s}$ are entire in $\operatorname{Re} s>\frac{1}{2}$ and $\frac{1}{3}$ respectively. Lastly since $c(n)\ll n^\vartheta$ for $\vartheta<\frac{1}{2}$ it follows that $\sum_{k=4}^\infty\sum_p c(p^k)\log p/p^{ks}$ is entire in $\operatorname{Re} s>\frac{1}{2}$. Thus the RHS of (4) is an entire function in $\operatorname{Re} s>\frac{1}{2}$ furnishing an analytic continuation of $-\frac{F'}{G}(s)+\frac{G'}{G}(s)$ in this region. It follows that the zeros of F and G in this region coincide (including multiplicities), and also that F and G have poles of the same order at 1 (that is, $m_F=m_G$). Arguing similarly with $\bar{F}(s)=\sum_n \overline{a_F(n)}n^{-s}$ and $\bar{G}(s)$ we see that their zeros in $\operatorname{Re} s>\frac{1}{2}$ also coincide. Using the functional equation it follows that the zeros of $\Phi_F(s)$ and $\Phi_G(s)$ in $\operatorname{Re} s<\frac{1}{2}$ also coincide. Summarizing we see that $\Phi_F(s)$ and $\Phi_G(s)$ have the same zeros except possibly on the critical line $\operatorname{Re} s=\frac{1}{2}$, and that they have (possibly) poles of the same order at s=1.

Let $\rho_F = \frac{1}{2} + i\gamma_F$ and $\rho_G = \frac{1}{2} + i\gamma_G$ denote typical zeros of $\Phi_F(s)$ and $\Phi_G(s)$. We do not suppose that γ_F and γ_G are real, although this version of the Riemann hypothesis is expected to be true. A standard application of the argument principle shows that $\#\{\rho_F: |\operatorname{Im}\rho_F| \leq T\} = \frac{d_F}{\pi}T\log T + c_FT + O_F(\log T)$ where d_F is the degree and c_F is a constant. Similar estimates apply for the zeros ρ_G up to height T.

We now recall an explicit formula connecting the zeros ρ_F to the prime power values $b_F(n)\Lambda(n)$; for details see for example Z. Rudnick and P. Sarnak [6]. Let g be a smooth compactly supported function and put $h(s) = \int_{-\infty}^{\infty} g(u)e^{isu} du$. We may recover g from h by means of the Fourier inversion formula

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(u)e^{-ixu} du.$$

The explicit formula now reads

$$\sum_{\gamma_F} h(\gamma_F) = m_F \left(h\left(-\frac{i}{2}\right) + h\left(\frac{i}{2}\right) \right)$$

$$+ \frac{1}{2\pi} \int_{-\infty}^{\infty} h(r) \left(2\log Q_F + \frac{\Gamma_F'}{\Gamma_F} \left(\frac{1}{2} + ir\right) + \frac{\overline{\Gamma_F}'}{\overline{\Gamma_F}} \left(\frac{1}{2} - ir\right) \right) dr$$

$$- \sum_{r=1}^{\infty} \left(\frac{b_F(n)\Lambda(n)}{\sqrt{n}} g(\log n) + \frac{\overline{b_F(n)}\Lambda(n)}{\sqrt{n}} g(-\log n) \right).$$
(5)

We now choose g to be a smooth non-negative function in [-1,1] such that $g(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(r) dr \gg 1$ and such that

(6)
$$|h(t)| \ll \exp(-|t|/\log^2|t|),$$

for large |t|. A result of A. E. Ingham [1] shows that such a choice of g is possible. For example, following Ingham we may take

$$h(t) = \prod_{n=N}^{\infty} \left(\frac{\sin\left(2\pi t / \left(n(\log n)^{\frac{3}{2}}\right)\right)}{2\pi t / \left(n(\log n)^{\frac{3}{2}}\right)} \right)^{2}$$

for some large N and then one could check that h and its Fourier transform g are a permissible choice.

Let *T* be a large positive number and let *t* be in (T, 2T). Let $\log^2 T \ge L \ge \log T$ be a large parameter to be chosen later. Then an application of (5) gives that

$$\sum_{\gamma_{F}} h(L(\gamma_{F} - t))$$

$$= m_{F} \left(h \left(L \left(-\frac{i}{2} - t \right) \right) + h \left(L \left(\frac{i}{2} + t \right) \right) \right)$$

$$+ \frac{1}{2\pi} \int_{-\infty}^{\infty} h(L(r - t)) \left(2 \log Q_{F} + \frac{\Gamma_{F}'}{\Gamma_{F}} \left(\frac{1}{2} + ir \right) + \frac{\overline{\Gamma_{F}}'}{\overline{\Gamma_{F}}} \left(\frac{1}{2} - ir \right) \right) dr$$

$$(7) \qquad - \frac{1}{L} \sum_{n=1}^{\infty} \left(\frac{b_{F}(n)\Lambda(n)}{n^{\frac{1}{2} + it}} g \left(\frac{\log n}{L} \right) + \frac{\overline{b_{F}(n)}\Lambda(n)}{n^{\frac{1}{2} - it}} g \left(-\frac{\log n}{L} \right) \right).$$

We call the middle term on the RHS above $H_F(t, L)$ and the third term there $D_F(t, L)$. Stirling's formula shows that

(8)
$$H_F(t,L) = \frac{d_F \log T + O(1)}{L} \frac{1}{2\pi} \int_{-\infty}^{\infty} h(r) dr = g(0) \frac{d_F \log T}{L} + O(1/L).$$

We apply the explicit formula (7) for G as well and subtract the two formulae. From our remarks on the poles of F and G and their zeros not on the critical line we conclude that

(9a)
$$Z_F(t,L) - Z_G(t,L) = H_F(t,L) - H_G(t,L) - D_F(t,L) + D_G(t,L),$$

where

(9b)
$$Z_F(t,L) = \sum_{\gamma_F \in \mathbb{R}} h(L(\gamma_F - t))$$
 and $Z_G(t,L) = \sum_{\gamma_G \in \mathbb{R}} h(L(\gamma_G - t))$.

We now record a mean-value estimate for the $D_F(t,L)-D_G(t,L)$ terms. Since $|c(p)|\ll p^\epsilon$ we see from (2) that $\sum_p |c(p)g(\log p/L)|\log p/\sqrt{p}=O(1)$. Further as noted earlier $\sum_{k>3}\sum_p |c(p^k)\log pg(k\log p/L)|/p^{k/2}=O(1)$. Thus

$$L(D_{F}(t,L) - D_{G}(t,L)) \ll 1 + \Big| \sum_{p} \frac{a_{F}(p^{2}) - a_{G}(p^{2})}{p^{1+2it}} \log pg\left(\frac{2\log p}{L}\right) \Big| + \Big| \sum_{p} \frac{\overline{a_{F}(p^{2})} - \overline{a_{G}(p^{2})}}{p^{1-2it}} \log pg\left(-\frac{2\log p}{L}\right) \Big|.$$

472 K. Soundararajan

Using now a familiar mean-value estimate of Montgomery and Vaughan ([4], see Corollary 3) we see that

$$\int_{T}^{2T} \left| \sum_{p} \frac{a_{F}(p^{2}) - a_{G}(p^{2})}{p^{1+2it}} \log pg\left(\frac{2\log p}{L}\right) \right|^{2} dt$$

$$\ll \sum_{p \leq e^{L/2}} \frac{|a_{F}(p^{2}) - a_{G}(p^{2})|^{2}}{p^{2}} (T+p) \log^{2} p$$

$$\ll T + \sum_{p \leq e^{L/2}} \frac{|a_{F}(p^{2}) - a_{G}(p^{2})|^{2}}{p} \log^{2} p.$$

We conclude unconditionally that

(10a)
$$\int_{T}^{2T} \left(L|D_{F}(t,L) - D_{G}(t,L)| \right)^{2} dt \ll T + e^{L\epsilon},$$

and if we assume the condition (3) that

(10b)
$$\int_T^{2T} \left(L|D_F(t,L) - D_G(t,L)| \right)^2 dt \ll T + \exp\left(\frac{L}{\log L(\log_2 L)^5}\right).$$

Let $W \ge 1$ be a real parameter and let $\mathcal{L} = \mathcal{L}(W)$ denote the set of $t \in [T, 2T]$ such that there exists either γ_F or γ_G in $(t - 1/(W \log T), t + 1/(W \log T))$. Let $\bar{\mathcal{L}}$ denote the complementary set $[T, 2T] \setminus \mathcal{L}$. Since there are $\ll T \log T$ ordinates γ_F or γ_G in [T, 2T] we see that $\operatorname{meas}(\mathcal{L}) \ll T/W$. Now

$$L\int_{t\in ilde{\mathcal{L}}} |Z_F(t,L)|\,dt \ll L\int_T^{2T} \sum_{\substack{\gamma_F\in \mathbb{R} \ |\gamma_F-t|\geq 1/(W\log T)}} \left|h\left(L(\gamma_F-t)
ight)
ight|\,dt.$$

If the distance of γ_F from (T,2T) exceeds n then by (6) the contribution of such a γ_F to the RHS above is $\ll \exp\left(-nL/(\log nL)^2\right)$. Further the number of ordinates γ_F whose distance from (T,2T) is between n and n+1 is $\ll \log\left(T(n+1)\right)$ and so we conclude that the contribution to the RHS above from zeros not in (T-1,2T+1) is $\ll 1$. Thus

$$L \int_{t \in \bar{\mathcal{L}}} |Z_F(t, L)| dt \ll 1 + \sum_{\gamma_F \in (T - 1, 2T + 1)} \int_{|y| \ge L/(W \log T)} |h(y)| dy$$

$$\ll 1 + T \log T \int_{|y| \ge L/(W \log T)} |h(y)| dy.$$

A similar estimate applies for $|Z_G(t, L)|$ so that

(11)
$$L \int_{t \in \bar{\mathcal{L}}} |Z_F(t, L) - Z_G(t, L)| dt \ll 1 + T \log T \int_{|y| \ge L/(W \log T)} |h(y)| dy.$$

With these preliminaries in place we are now ready to finish the proof of our Theorem. Suppose first that $d_F \neq d_G$. Then by (8) we know that $L(H_F(t,L)-H_G(t,L)) \gg \log T$. Integrating (9a) over $t \in \bar{\mathcal{L}}$ we find that

$$T \log T \ll \int_{t \in \bar{\mathcal{L}}} L \Big| H_F \Big((t, L) - H_G(t, L) \Big) \Big| dt$$

$$\ll \int_{t \in \bar{\mathcal{L}}} L |Z_F(t, L) - Z_G(t, L)| dt + \int_{t \in \bar{\mathcal{L}}} L |D_F(t, L) - D_G(t, L)| dt$$

$$\ll 1 + T \log T \int_{|y| > L/(W \log T)} |h(y)| dy + (T + e^{L\epsilon}),$$

using (11) and (10a) above. We now choose $L = W^2 \log T$ and choose W to be large but smaller than $1/\sqrt{\epsilon}$. Then for large T the above gives that $1 \ll \int_{|y|>W} |h(y)| dy$ which is impossible for sufficiently large W in view of (6).

We may now suppose that $d_F = d_G$. In this case we will require the additional hypothesis (3) which permits the bound (10b) above. Let m be a fixed integer with $c(m) \neq 0$. Naturally if no such m exists then F = G. We multiply (9a) by Lm^{it} and integrate for $t \in \bar{\mathcal{L}}$. Using (11) we see that the LHS gives

(12a)
$$\int_{t \in \bar{\mathcal{L}}} Lm^{it} \left(Z_F(t, L) - Z_G(t, L) \right) dt \ll 1 + T \log T \int_{|y| \ge L/(W \log T)} |h(y)| dy.$$

On the other hand using the RHS of (9a) this is also equal to

$$\int_{t\in\bar{\mathcal{L}}} Lm^{it} \left(H_F(t,L) - H_G(t,L) - D_F(t,L) + D_G(t,L) \right) dt.$$

Now

$$\begin{split} \int_{t \in \bar{\mathcal{L}}} L m^{it} \left(H_F(t,L) - H_G(t,L) \right) \, dt \\ &= \int_T^{2T} L m^{it} \left(H_F(t,L) - H_G(t,L) \right) \, dt + O \left(\int_{t \in \mathcal{L}} L |H_F(t,L) - H_G(t,L)| \, dt \right). \end{split}$$

Since $d_F = d_G$ we see by (8) that the second term above is $\ll \text{meas}(\mathcal{L}) \ll T/W$. Further using integration by parts, and since $L\frac{d}{dt}(H_F(t,L) - H_G(t,L)) \ll 1/T$ by Stirling's formula, we see that the first term above is $\ll 1$. Thus

(12b)
$$\int_{t\in\bar{\mathcal{L}}} Lm^{it} \left(H_F(t,L) - H_G(t,L) \right) dt \ll 1 + T/W.$$

Further

$$\int_{t\in\bar{\mathcal{L}}} Lm^{it} \left(D_F(t,L) - D_G(t,L) \right) dt$$

$$= \int_T^{2T} Lm^{it} \left(D_F(t,L) - D_G(t,L) \right) dt + O\left(\int_{t\in\mathcal{L}} L|D_F(t,L) - D_G(t,L)| dt \right).$$

474 K. Soundararajan

The second term above is $\ll (T + \exp(\frac{L}{\log L(\log_2 L)^5})/\sqrt{W})$ upon using (10b) and Cauchy's inequality. Integrating term by term we see that the first term is

$$T\frac{c(m)}{\sqrt{m}}\Lambda(m) + O\left(\sum_{n < e^L} \frac{|c(n)|\log n}{\sqrt{n}}\right) = T\frac{c(m)}{\sqrt{m}}\Lambda(m) + O\left(\exp\left(\frac{L}{\log L(\log_2 L)^5}\right)\right)$$

using (2) and (3). Thus we conclude that

(12c)
$$\int_{t \in \tilde{\mathcal{L}}} Lm^{it} \left(D_F(t, L) - D_G(t, L) \right) dt$$
$$= T \frac{c(m)}{\sqrt{m}} \Lambda(m) + O\left(\frac{T}{\sqrt{W}} + \exp\left(\frac{L}{\log L(\log_2 L)^5} \right) \right).$$

Combining (12a, b, c) we get that

$$1 \ll \frac{c(m)}{\sqrt{m}} \Lambda(m) \ll \frac{1}{T} + \log T \int_{|y| \ge L/(W \log T)} |h(y)| \, dy + \frac{1}{\sqrt{W}} + \frac{\exp(\frac{L}{\log L(\log_2 L)^5})}{T}.$$

We now choose $W = \log_3 T$, $L = \log T \log_2 T (\log_3 T)^4$ and use (6) to obtain a contradiction.

Acknowledgements I am grateful to Hugh Montgomery for referring me to Ingham's paper [1].

References

- [1] A. E. Ingham, A note on Fourier transforms. J. London Math. Soc. 9(1934), 29–32.
- [2] J. Kaczorowski and A. Perelli, Strong multiplicity one for the Selberg class. Comptes Rendus Acad. Sci. Paris Ser. I Math. 332(2001), 963–968.
- [3] _____, On the structure of the Selberg class. I. $0 \le d \le 1$. Acta Math. 182(1999), 207–241.
- [4] H. L. Montgomery and R. C. Vaughan, *Hilbert's inequality*. J. London Math. Soc. (2) **8**(1974), 73–82.
- [5] M. R. Murty and V. K. Murty, Strong multiplicity one for the Selberg class. Comptes Rendus Acad. Sci. Paris Ser. I Math. 319(1994), 315–320.
- [6] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory. Duke Math. J. 81(1996), 269–322.
- [7] A. Selberg, Old and new conjectures about a class of Dirichlet series. Collected papers II, Springer, Berlin, 1991, 47–63.
- [8] K. Soundararajan, Degree 1 elements of the Selberg class, to appear.

Department of Mathematics University of Michigan Ann Arbor, Michigan 48109 USA

e-mail: ksound@umich.edu