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The interaction of small-scale vortical structures with the surrounding fluid are
studied using a fully resolved three-dimensional experimental data set of homogeneous
turbulence measured at the centre of a von Kármán mixing flow facility and a direct
numerical simulation (DNS) data set of forced isotropic turbulence. To identify the
small-scale vortices and their boundaries, an objective observer-independent definition
was implemented to avoid arbitrariness and is the first implementation applied to
experimental measurements of small-scale turbulence. Volume-averaged and conditional
statistics are presented to demonstrate consistency between the experimental and DNS
data sets. To examine the interaction of the structures with the surrounding flow field,
we examine the flow across the boundary of vortex structures by adopting a similar
methodological approach to that used to investigate the local entrainment and detrainment
across the turbulent–non-turbulent interface. The probability density function (p.d.f.)
of entrainment velocity conditioned on the vortex boundary exhibited a non-Gaussian
distribution that skewed slightly in favour of entrainment and is remarkably similar to
the p.d.f.s of entrainment velocity observed in boundary layers and jets. We analyse the
enstrophy transport equation conditioned on radial and axial coordinates of the vortices to
quantify the inviscid and viscous components of the entrainment/detrainment process. A
comparison with Burgers vortices is made and it is found that the Burgers vortex model
captures the vortex structure average size and the mechanisms of enstrophy transport in the
radial direction, but is unable to capture local statistics and describe the governing physics
along the axes of the vortices.
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1. Introduction

The nature and structure of small-scale vortex structures have received considerable
attention in turbulence research and are typically defined as concentrated regions of
high enstrophy with life-times greater than the characteristic time scale of the flow
(Dubief & Delcayre 2000). These vortex tubes, filaments or so-called worms are the most
prominent small-scale structures at the dissipation scale having been identified in early
numerical simulations and experimentally observed by, amongst others, Siggia (1981),
Kerr (1985), She, Jackson & Orszag (1990), Vincent & Meneguzzi (1991), Cadot, Douady
& Couder (1995), Jiménez et al. (1993), Jiménez & Wray (1998) and Ishihara, Gotoh &
Kaneda (2009). Over the last few decades, the growth in computational power and new
experimental methods have enabled observation of small-scale vortices at ever higher
Reynolds numbers and in an increasingly wide range of flows. They appear to have
some universal features such as the preferential alignment of the vorticity vector with the
direction of intermediate principal strain found by Ashurst et al. (1987) and their average
radius of about 5η, where η is the Kolmogorov length scale, as verified in homogeneous
isotropic turbulence (Jiménez et al. 1993; Jiménez & Wray 1998; Ghira, Elsinga & Da
Silva 2022), jets (Ganapathisubramani, Lakshminarasimhan & Clemens 2008; da Silva,
dos Reis & Pereira 2011), channel flows (Kang, Tanahashi & Miyauchi 2009) and stratified
flows (Neamtu-Halic et al. 2021). Although the alignment of the vorticity vector with the
intermediate principal strain holds at small scales, and has been observed in a wide range
of flows, at larger length scales the vorticity preferentially aligns instead with the most
stretching principal strain (Ishihara, Yamazaki & Kaneda 2001; Leung, Swaminathan &
Davidson 2012).

In the seminal direct numerical simulation (DNS) of homogeneous isotropic turbulence
by Jiménez et al. (1993), it was found that small-scale vortex tubes produced low levels
of stretching demonstrating that self-amplification did not play a significant role in
their evolution. Jiménez et al. (1993) draw attention to the resemblance between these
small-scale vortices and axially stretched stable Burgers vortices by considering their
stability and lack of coupling with the strain field. The implication of this is significant
as it showed that at the small scale, these high-enstrophy vortex structures do not play a
significant role in the overall dynamics of the flow and can therefore be considered passive.
This was also emphasized by Tsinober (2009), who noted that the lack of self-amplification
via interaction with the strain field means that the worms are rather passive and decoupled
from the strain field. This is in direct contrast with sheet-like, strained vortices whose
presence modifies the local strain field significantly (Moffatt, Kida & Ohkitani 1994; Le
Dizes, Rossi & Moffatt 1996; Davidson 2015). In a later study, Jiménez & Wray (1998)
investigated the relationship between stretching at the points of maximum vorticity inside
the worms with their corresponding radii. The joint probability density function (p.d.f.) of
these two parameters showed good agreement with the values of radii based on the stable
Burgers vortex model. These observations have been expanded to include other flows, for
example the turbulent plane jet by da Silva et al. (2011). However, the lack of interaction
with the strain field does not mean that vortex tubes do not interact with the local flow in
other important ways, for example through the exchange of mass and momentum with their
surroundings. These interactions have not been investigated in detail to date. In this paper
we employ a fully resolved experimental data set and DNS to investigate the interaction of
vortex filaments with the surrounding flow. This is done by implementing a robust method
to detect the boundary of the vortices and then analysing conditional flow features to show
that they entrain and detrain mass and momentum.

When it comes to precisely defining and detecting small-scale vortical structures,
researchers usually adopt one of two well-known and broadly used approaches:
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thresholding on the vorticity (Hussain 1986; Jiménez et al. 1993; da Silva et al. 2011;
Ghira et al. 2022) or the vorticity relative to the strain field (Hua & Klein 1998).
The problem with these classical detection methods is that they are arbitrary and
depend on the observer’s frame of reference (Haller 2005). For instance, using classical
detection methods, an observer in fixed laboratory coordinates will not identify the same
vortex structures as an observer that is moving with the flow. Methods developed in
a recent string of research articles, summarized in the review paper by Haller (2015),
have been shown to overcome these limitations and permit identification of objective
(i.e. observer-independent) coherent structures necessary for repeatable experiments.
The method proposed by Haller et al. (2016) to detect rotationally coherent structures
from the vorticity field was previously adapted and implemented to identify large-scale
vortex structures in three-dimensional turbulence measurements of a gravity flow by
Neamtu-Halic et al. (2019). The primary advantage of this method is that it provides an
objectively defined vortex boundary permitting an investigation of the conditional fluxes
across it to reveal how small-scale vortical structures interact with the surrounding flow
from both a local and global perspective.

The aim of this study is to investigate the interaction of objectively identified small-scale
vortical structures in more detail than what has been done so far in the literature to
obtain a better understanding of their interaction with the surrounding flow. We adopt an
approach which treats them as turbulent structures embedded in a turbulent background
flow and borrows a similar methodological approach to that used to investigate local
entrainment across turbulent–non-turbulent interfaces (TNTIs) as exemplified by Mathew
& Basu (2002), Westerweel et al. (2005), Holzner & Lüthi (2011), Wolf et al. (2012),
Mistry et al. (2016) and Mistry, Philip & Dawson (2019) in order to evaluate their
interaction with the surrounding flow by evaluating the enstrophy transport equation which
enables direct comparison with the Burgers vortex model. (Although we adopt a similar
methodology to that of these studies, we are not suggesting an equivalence between the
boundary of a vortex structure and the TNTI.) To do this we make use of two data
sets. The first is a fully resolved three-dimensional experimental data set of stationary
homogeneous turbulence measured at the centre of a von Kármán mixing flow with a
Reynolds number based on the Taylor microscale of Rλ = 179 (Lawson & Dawson 2014,
2015). Until recently, experimental access to the full velocity gradient tensor of small-scale
turbulence at reasonably high Reynolds number has remained elusive and almost all
previous studies of small-scale vortical structures have been restricted to DNS data sets
without an experimental counterpart. This is the first time that the three-dimensional
objective vortex definition of Haller et al. (2016) has been implemented on an experimental
data set of resolved small-scale turbulence. To complement the experimental data set,
results are compared with the DNS data set of homogeneous isotropic turbulence of Li
et al. (2008) at Rλ = 418.

The paper is organized as follows. Section 2 describes the large-scale von Kármán
facility, a brief description of the experimental data set from Lawson & Dawson (2014,
2015) and the implementation of the detection method by Haller et al. (2016) for objective
Eulerian coherent structures (OECS) as well as how to calculate the entrainment velocity
from the enstrophy transport equation derived by Holzner & Lüthi (2011). The results in
§ 3 begin with presenting volume-averaged and conditional statistics of the small-scale
vortices to illustrate consistency between the experimental and DNS data sets. Attention
is then turned to statistics of entrainment and the balance of the different terms in the
enstrophy transport equation. The enstrophy balance is considered from two different
perspectives, the first being conditioning on the radial direction of the vortices and the
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2 m

2 m

1.25 m

1.6 m

Figure 1. Two-dimensional schematic of the large tank facility with dimensions. The blue lines show the flow
pattern in azimuthal (horizontal) planes and the black lines show the flow pattern in an axial (vertical) plane
passing the geometric centre of the tank. The measurement volume is represented by a square at the centre of
the tank.

second from conditioning on their axes. The results are discussed and interpreted in the
context of expected quantities from the Burgers vortex model.

2. Methods

2.1. Description of facility and data sets
The experimental data set used in this study is from the scanning particle image
velocimetry measurements of homogeneous axisymmetric turbulence produced by the
large von Kármán mixing flow facility reported in Lawson & Dawson (2014, 2015). Due
to the large size of the facility and the slow rotation rate of the impellers, spatially
and temporally resolved measurements at the Kolmogorov scale were achievable. A
two-dimensional schematic of the experimental facility is shown in figure 1 highlighting
key dimensions and the general flow pattern. The flow inside the tank can be considered
a superposition of a stationary axisymmetric shear flow generated by the counter-rotating
impellers and a centrifugal pumping leading to a radially inward flow along the mid-plane
of the tank and axial flow away from the geometric centre along the rotational symmetry
axis. The shear generated by the counter-rotation of the impellers results in a region of
homogeneous, axisymmetric turbulence near the centre of the tank with a near-zero mean
velocity in all directions (Lawson & Dawson 2014, 2015).

The facility is comprised of a large dodecagonal Perspex tank that is 2 m tall and 2 m
in cross-section that was filled with water. The impellers at the top and bottom of the tank
were 1.6 m in diameter and operated at constant angular velocity in a counter-rotating
mode. Vertical baffles were placed at each vertex with the same height as the tank
protruding 100 mm into the flow. The Reynolds number based on the impeller radius
defined as Re = ΩIR2

I /ν, where ΩI is the rate of rotation of the impellers, RI is the radius
of the impellers and ν is the kinematic viscosity of the flow, was 23 000. The Reynolds
number based on Taylor microscale was Rλ = 179 and the Kolmogorov length scale was
η = 0.926 mm. The measurement volume was located at the geometric centre of the tank
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with dimensions Lx × Ly × Lz = 129 mm × 128 mm × 26.2 mm. The spatial resolution
of the data set was approximately 1η over a non-dimensional measurement volume
of Lx/η × Ly/η × Lz/η = 135 × 134 × 25.4. The data set consists of 1003 statistically
independent volumes constructed from a time series of 10 volumetric vector fields with a
particle image velocimetry separation time of ≈ 0.068τη, where τη is the Kolmogorov time
scale. There was no spatial averaging applied to the data. A predictor-corrector scheme
was implemented in a Lagrangian tracking algorithm performing forward and backward
in time over the time-resolved velocity fields to minimize noise (Novara & Scarano 2013).
The data set is of very low noise and highly resolved enabling direct comparisons with
DNS up to third-order gradient statistics (Lawson & Dawson 2014, 2015).

A DNS data set of forced isotropic turbulence of Rλ = 418 from the Johns Hopkins
Turbulence Database (Li et al. 2008) was also analysed for comparison with the
experimental data set. This DNS data set is a time series of a periodic forced cube with
10243 nodes over five large-eddy turnover times. Fifty independent volumes of the flow
(snapshots of the cubes with 1283 nodes) with a dimension size of Lx/η × Ly/η × Lz/η =
279 × 279 × 279 were chosen at random time steps over the five large-eddy turnover
times. The spatial resolution is about 2.2η.

2.2. Detection of OECS
To analyse the intense small-scale vortex structures a robust detection method based on
the definition of OECS proposed by Haller et al. (2016) was implemented. The OECS are
detected using a scalar field corresponding to the instantaneous vorticity deviation (IVD)
which is defined in (2.1):

IVD(x, t) = |ω(x, t) − ω̄(t)|, (2.1)

where ω(x, t) is the vorticity vector at the time step t at point x in space and ω̄(t) is
the average value of vorticity over the volume of the flow at the time step t. Since the
DNS is homogeneous and isotropic and the experimental data are also approximately
homogeneous and isotropic with negligible mean flow, the normalization by the volumetric
average is not sensitive to volume size. However, in other flows that are not homogeneous
and isotropic, the normalization by the volumetric average in the OECS method may
introduce a dependence of the results on volume size that should be taken into account.
This definition is an observer-independent (objective) scalar field that represents the local
rotation rate of fluid elements. The OECS are defined as a nested family of tubular level
surfaces of IVD(x, t) in which the value of IVD(x, t) is non-increasing when moving
outward from the centre. Along each of these tubular surfaces the rotation rates of the
fluid elements are equal. The boundary is defined as the outermost almost convex level
surface of IVD(x, t) and the centre is the maximum level surface of the nested family.
As discussed in Haller et al. (2016), this definition detects vortical structures that are
observer-independent and ensures instantaneous coherence in the rate of their material
bulk rotation. No thresholding is therefore needed to define/detect these vortical structures.
We refer the reader to Haller (2015) and Haller et al. (2016) for further details.

The numerical detection algorithm used to detect the three-dimensional OECS to the
data set of Lawson & Dawson (2015) is described in detail by Neamtu-Halic et al.
(2019). Therefore we only provide a brief description of the detection algorithm for
completeness. The detection algorithm consists of three main steps. In the first step, the
vorticity field is evaluated followed by the IVD scalar field according to (2.1). In the second
step, ridges corresponding to the local maximum values of the IVD are detected using
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a three-dimensional gradient ascent method starting from point clouds of high spatial
gradient of IVD values as the initial guess. The Cauchy–Lipschitz theorem was used
to solve the ordinary differential equation of the gradient ascent algorithm. The ridges
represent the centre lines of the vortex structures. In the third step, two-dimensional
contours of IVD are calculated on planes locally normal to the ridges which are then
used to build three-dimensional level surfaces for the structures. The outermost convex
level surface is chosen as the boundary of the structure. Successful implementation
for the detection of small-scale structures requires a fully resolved three-dimensional
three-component velocity field with low levels of noise. So far, this has only been applied
to the experimental data set by Neamtu-Halic et al. (2019) where the resulting structures
were comparatively large on average (R ≈ 15η).

2.3. Equations and models
To investigate the flow field within and immediately surrounding the vortex filaments as
well as compare with the Burgers vortex model, the detected boundaries of the vortex
filaments are treated with the methodological approach applied to the TNTI enabling
the investigation of the fluxes passing across it. To do this we evaluate various terms
in the enstrophy transport equation (2.2), where the first term on the right-hand side
(2ωiωjsij) corresponds to the inviscid production/destruction of enstrophy by vortex
stretching/compression, the second term (ν(∂2ω2/∂xj∂xj)) is the viscous diffusion of
enstrophy due to the presence of gradients and the final term (−2ν(∂ωi/∂xj)(∂ωi/∂xj))
corresponds to the viscous dissipation of enstrophy (Pope 2000; Tsinober 2009):

Dω2

Dt
= 2ωiωjsij + ν

∂2ω2

∂xj∂xj
− 2ν

∂ωi

∂xj

∂ωi

∂xj
. (2.2)

Using the enstrophy transport equation, Holzner & Lüthi (2011) derived an equation for
the entrainment velocity, vn, which can be applied at the boundary of the structures:

vn = −2ωiωjsij

|∇ω2| −
ν

∂2ω2

∂xj∂xj

|∇ω2| +
2ν

∂ωi

∂xj

∂ωi

∂xj

|∇ω2| , (2.3)

where the entrainment velocity, vn, is defined as V = vnn̂ = us − u. In this definition,
us is the velocity vector of an iso-surface element, for example the boundary of the
vortex structure, u is the fluid velocity vector at the iso-surface and n̂ = ∇ω2/|∇ω2|
is the iso-surface normal vector. Based on this definition, vn ≤ 0 corresponds to the
entrainment of fluid from the surroundings into the structures whereas vn > 0 corresponds
to the detrainment of fluid from inside the structures to the surrounding fluid (Holzner
& Lüthi 2011; Mistry et al. 2019). Based on the entrainment velocity, the local flux of
other quantities across the boundary can be calculated through multiplication with vn.
For example, the specific flux of enstrophy defined as vnω

2 and the kinetic energy vnuiui.
Equation (2.3) is valid on an iso-surface of enstrophy and follows from the fact that for an
observer moving with an iso-surface (denoted by the superscript s) the iso-level is constant,
i.e. Dsω2/Dst = 0 (Holzner & Lüthi 2011). According to the definition of the IVD in
(2.1) and given that ω̄(t) is a constant under statistically stationary and homogeneous
conditions, it follows that Dsω2/Dst = 0 and Ds(IVD)/Dst = 0 are interchangeable.
Thus, (2.3) can be used to calculate the entrainment velocity at the boundary of detected
vortex structures where the IVD is considered.
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We also compare features of the small-scale vortical structures with the classical
Burgers vortex model to further elucidate similarities and differences. For a Burgers vortex
(Burgers 1948), it is assumed that the flow is incompressible and the vorticity field is
unidirectional. The vorticity field is normally assumed to be one-dimensional or both the
vorticity field and the strain field axisymmetric (Saffman 1995). A sketch of Burgers vortex
is shown in figure 2. The stability of the Burgers vortex results from a balance between
the inviscid effects of vortex stretching and viscous effects of vorticity diffusion and
dissipation. This leads to outflow along the axis of symmetry (uz) and radial entrainment
(ur) to maintain the rotational energy and mass conservation. The radial velocity is shown
in (2.4) where α > 0 is the strain of the flow and it is a constant. Equation (2.5) governs the
enstrophy profile where RB is the Burgers vortex radius and ν is the kinematic viscosity.
In the Burgers vortex model all the terms in the enstrophy transport equation (2.2) can
be evaluated analytically by using (2.5)–(2.9) (Taveira & da Silva 2014; Davidson 2015;
Watanabe et al. 2017).

ur(r) = −1
2αr, (2.4)

ωz(r) = ω0 exp

(
− r2

R2
B

)
;ω0 = ω(r = 0), R2

B = 4ν

α
, (2.5)

2ωiωjsij = 2ω2
z (r)α = 2ω2

0α exp

(
−2

r2

R2
B

)
, (2.6)

ν
∂2ω2

∂xj∂xj
= ν

1
r

∂

∂r

(
r
∂ω2

z (r)
∂r

)
= 2αω2

0

(
2

r2

R2
B

− 1

)
exp

(
−2

r2

R2
B

)
, (2.7)

−2ν
∂ωi

∂xj

∂ωi

∂xj
= −2ν

(
∂ωz(r)

∂r

)2

= −2αω2
0

(
r2

R2
B

)
exp

(
−2

r2

R2
B

)
, (2.8)

Dω2

Dt
= ur(r)

∂ω2
z (r)
∂r

= 2αω2
0

(
r2

R2
B

)
exp

(
−2

r2

R2
B

)
. (2.9)

(1)

3. Results

3.1. Statistics of the structures and the flow field
In this section, volume-averaged statistics and statistics conditioned on the inside of the
structures from both the experimental and DNS data sets are presented and discussed.
An example of the objectively identified three-dimensional intense vortical structures in
a measured volume of the flow is shown in figure 3(a). The black curved lines denote
the centre of the structures, the magenta surfaces the boundary of each structure and the
colour shading corresponds to the normalized enstrophy field, ω2/〈ω2〉s, where 〈∼ 〉s is
the volume average of the corresponding snapshot. In total, 12 466 structures were detected
over the 1003 snapshots of the experimental data set. A similar example is shown in
figure 3(b) obtained from a single volume of the DNS data set. Overall 9274 structures
were detected over the 50 snapshots of the DNS data set.

Figure 4 shows the p.d.f.s of the normalized radius of the structures for the experiment
and DNS defined as R∗ = R/η, where R is the distance between the centre of the structure
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Figure 2. The Burgers vortex model.
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Figure 3. Examples of the structures (magenta surfaces) in single volumes of the (a) experimental and (b) DNS
data sets with the corresponding enstrophy values. The enstrophy values are normalized by the corresponding
volume average of the snapshots, 〈ω2〉s. The spatial dimensions are normalized by the Kolmogorov length
scale, η.

and its boundary. As the cross-sections of the structures are contorted, the radii are
evaluated at various random points along the boundary of each structure with the average
radius of the structures found to be 〈R〉 = 5.1η which is in a good agreement with
previous studies (Jiménez et al. 1993; Ganapathisubramani et al. 2008; da Silva et al.
2011; Neamtu-Halic et al. 2021). The volume of the structures occupied 1.4 % of the
whole volume of the flow field which is also in a good agreement with the value of ≈1 %
reported by Jiménez et al. (1993). This confirms that both the identification method and the
experimental data set are sufficiently well resolved and consistent with DNS as expected
from previous work of Lawson & Dawson (2015).
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Figure 4. The p.d.f.s of normalized radius of the structures (R/η) of the (a) experimental and (b) DNS data
sets.

The objective detection method used herein initially follows similar steps to the
thresholding method used in Jiménez et al. (1993). However, the methods diverge once
the process of determining the centre lines of the vortex structures takes place. In Jiménez
et al. (1993) the enstrophy profile of the vortex is assumed to decay exponentially
to detect the boundary, whereas the objective detection method detects the outermost
almost convex iso-surface as the boundary. Thus, one might expect small variations in
the radii of the detected vortex structures to occur depending on the method. However,
figure 4, i.e. p.d.f.(R/η), is similar to the analogous figures in the works of Jiménez et al.
(1993), Jiménez & Wray (1998), da Silva et al. (2011) and Ghira et al. (2022) where the
thresholding detection method is used giving confidence that the two methods yield similar
results for resolved homogeneous and isotropic data sets.

To quantify the rotational energy and intermittency of the small-scale structures, p.d.f.s
of normalized enstrophy ω2/〈ω2〉 are plotted in figure 5(a) for the experiment (black
lines) and DNS (grey lines), where 〈ω2〉 is the enstrophy spatially averaged over the
whole measurement volume and all the snapshots. The dashed lines show the p.d.f.s
throughout the volume, whereas the solid lines show the p.d.f.s conditioned on the inside
of the structures. A logarithmic binning is used to calculate the p.d.f.s and are plotted
on log – log scale. Good agreement is found across the data sets. The p.d.f.s from the
experiment and DNS both intersect at around ω2/〈ω2〉 = 1. When ω2/〈ω2〉 < 1, the
p.d.f.s of the volumetric enstrophy are significantly higher and peak at ω2/〈ω2〉 ≈ 10−2

and also extend to much lower values ω2/〈ω2〉 ≈ 10−6 than the p.d.f.s conditioned on
the inside of the structures. When ω2/〈ω2〉 > 1, conditioned on the structures shows
slightly greater enstrophy values before falling off with similar values to the volumetric
average. The p.d.f.s show that increasingly high-enstrophy events are similarly rare in the
volume-averaged and conditional statistics, whereas low-enstrophy events are much less
prevalent for the conditioned statistics.

We can draw a similar comparison between the local and volumetric dissipation where
it is normalized as ε/〈ε〉. The dissipation, ε, is defined as ε = 2νsijsij, where ν is the
kinematic viscosity of the flow and sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the rate of strain tensor.
The ensemble average dissipation is denoted as 〈ε〉 and evaluated over the full data set.
Figure 5(b) shows the p.d.f.s of the normalized dissipation for the whole volume (dashed
lines) and conditioned on the inside of the structures (solid lines) for both the experiments
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Figure 5. The p.d.f.s of normalized (a) enstrophy and (b) dissipation of the structures (solid lines) and
volume (dashed lines). The black curves represent the experiment and the grey curves represent DNS.

and DNS. Again it is observed that the volumetric and conditioned p.d.f.s intersect when
ε/〈ε〉 = 1. When ε/〈ε〉 > 1 the p.d.f.s show that the structures contribute slightly higher
dissipation compared with the volume. On the other hand, the structures contribute less
than the total volume when ε/〈ε〉 < 1. Nevertheless, the small-scale vortices still produce
significant dissipation. Similar to the p.d.f.s of enstrophy, the probability that the vortex
structures contain higher dissipation events is greater when compared to the whole volume.
However, the difference for dissipation is not as large as for the case of enstrophy. This
means that the structures are an intense realization of enstrophy with some overlap with
regions of high dissipation/strain in the flow field (Davidson 2015).

To better understand the relationship between enstrophy and dissipation, spatial
correlations in the from of joint p.d.f.s (j.p.d.f.s) are plotted in figure 6. These show
that the volumetric j.p.d.f.s (dashed contours) for the experimental and DNS data sets
exhibit a similar distribution to that reported in Yeung, Donzis & Sreenivasan (2012).
When conditioned on the inside of the small-scale structures, shown by the solid contours,
the j.p.d.f.s are shifted upwards and to the right towards higher values of enstrophy and
dissipation. The j.p.d.f.s also show a preferred diagonal alignment (more symmetric with
respect to the diagonal) which is consistent with an increase in local Rλ as discussed
in the work of Yeung et al. (2012). This means that there is a preferential increase in
the joint probability of extreme events of enstrophy and dissipation inside the structures.
Furthermore, enstrophy and dissipation appear to scale similarly inside the structures
which suggests a physical dependence between vorticity and strain even though it is
not clear which one of them is the cause and which one is the effect (Jiménez et al.
1993).

The importance of the relationship between vorticity and the rate of strain dates back
to Taylor (1938) who postulated that the stretching of small-scale vortices caused them
to break up into yet smaller vortices and was therefore expected to be an important
mechanism in the turbulent cascade. However, it was not until the DNS work by Ashurst
et al. (1987) which permitted access to the full velocity gradient tensor which showed that
instantaneously, the vorticity vector is aligned with the intermediate eigenvector of the rate
of strain tensor, rather than the extensive eigenvector, and is predominantly positive. The
alignment of the vectors is observer-independent and is important to the phenomenon of
vortex stretching (2ωiωjsij) which produces enstrophy (Tsinober 2009).
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Figure 6. Joint p.d.f.s of normalized enstrophy and dissipation for the (a) experiment and (b) DNS. The solid

contours represent the structures and the dashed contours represent the volume.

The alignment between the vorticity vector ω = (ω1, ω2, ω3) and the eigenvectors
of the rate of strain tensor e = (e1, e2, e3), where ordering of the eigenvalues is σ1 ≥
σ2 ≥ σ3, can be investigated by plotting the cosine of the angles between these vectors:
cos θi = ei · ω/|ω|. From the continuity equation, it follows that the sum σ1 + σ2 + σ3 = 0
which means that σ1 is always positive and its corresponding eigenvector, e1, is the
extensive eigenvector. In contrast, σ3 is always negative and its corresponding eigenvector,
e3, is compressive. The value of σ2 is determined by the sum of σ1 and σ3 and can
be either negative or positive and is the intermediate eigenvalue with a corresponding
eigenvector, e2.

The p.d.f.s of the cosine of the angles between the vorticity vector and the eigenvectors
are plotted in figure 7(a,b) where the solid and dashed lines correspond to the alignments
conditioned on the inside of the structures and the volume, respectively. Overall, the
experimental data and DNS show excellent agreement. Considering the volume-based
statistics first, the vorticity vector and the intermediate eigenvector are well aligned with
each other as the peak values of the p.d.f.s occur at cos θ2 = ±1 and appears to be a
universal aspect of turbulent flow (Elsinga & Marusic 2010). The alignment between the
vorticity vector and the compressive eigenvector shows a peak at cos θ3 = 0 showing
that the two vectors are predominantly normal to each other, whereas the extensive
eigenvector indicates no preferential alignment. When conditioned on the structures,
the vorticity vector is also aligned with the intermediate eigenvector but it is normal
to both the extensive and compressive eigenvectors. A much higher peak at cos θ3 = 0
is observed when conditioned on the inside of the structures. These results indicate
that vorticity vectors inside the structures exhibit a strong preferred alignment with
the intermediate eigenvector but normal to the extensive and compressive eigenvectors
(Frisch 1995; Tsinober 2009; Buaria, Bodenschatz & Pumir 2020). Since the vorticity
vector is only aligned with the intermediate eigenvector, we consider the distribution
of the eigenvalues and, in particular, σ2. Figure 8(a,b) plots p.d.f.s of eigenvalues of
the rate of strain tensor for the same cases as considered in figure 7. As expected,
σ1 > 0 and σ3 < 0 for the volume and structures whereas the p.d.f. of σ2 contains
both negative and positive values but is positive on average, 〈σ2〉 > 0. An insight into
enstrophy production is gained by considering the average vortex stretching which can be
written as 〈2ωiωjsij〉 = 2ω2(〈σ1 cos2 θ1〉 + 〈σ2 cos2 θ2〉 + 〈σ3 cos2 θ3〉) (Tsinober 2009).
This relation is used to calculate the shares, relative to each alignment, in the total
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volume.
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Figure 8. The p.d.f.s of the normalized eigenvalues of the rate of strain tensor for the (a) experiment and
(b) DNS. The solid lines represent the structures and the dashed lines represent the volume.

production/destruction of enstrophy, i.e. 〈σj cos2 θj〉/
√∑〈σi cos2 θi〉2. This is shown in

table 1. Clearly the contributions of the extensive and compressive eigenvalues become
weaker in favour of the intermediate eigenvalue inside the structures as expected from
figure 7. However, the contribution from the extensive eigenvalue remains prominent and,
overall, the ratio of enstrophy production to destruction increases. This is consistent with
the picture that, on average, the production of enstrophy via vortex stretching inside the
structures is more significant compared with the flow field as a whole.

3.2. Kinematics/dynamics of the structures

3.2.1. Entrainment
To further elucidate the local flow field in a frame of reference relative to
the high-enstrophy small-scale structures, we consider them as being embedded
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Experiment DNS

Contribution Structures Volume Structures Volume

〈σ1 cos2 θ1〉√∑〈σi cos2 θi〉2
0.700 0.823 0.639 0.818

〈σ2 cos2 θ2〉√∑〈σi cos2 θi〉2
0.677 0.355 0.732 0.352

〈σ3 cos2 θ3〉√∑〈σi cos2 θi〉2
−0.226 −0.443 −0.235 −0.455

Table 1. Enstrophy production (vortex stretching) contribution shares due to alignment between the vorticity
vector and the rate of strain eigenvectors and the corresponding eigenvalues for the experiment and DNS.

in a predominantly quiescent flow and their detected boundaries are treated
with the methodological approach applied at the TNTI. We then calculate the
entrainment/detrainment velocity and the rate of enstrophy production, diffusion and
dissipation across the boundaries using (2.3) and (2.2). Analysing the interaction of
structures in this way will reveal how they interact with the flow in terms of mass and
momentum exchange and permit direct comparison with the Burgers vortex model.

Figure 9 shows the p.d.f.s of the entrainment velocity, vn, vortex stretching, enstrophy
diffusion and dissipation terms from (2.3) for the experiment (solid lines) and DNS
(dashed lines). The values are normalized by the corresponding Kolmogorov velocity
scale, uη = (ν〈ε〉)1/4. With the exception of enstrophy dissipation, the peaks in the p.d.f. of
the various terms are all slightly negative and exhibit non-Gaussian distributions. Overall
good agreement between the DNS and the experiments is observed. The p.d.f. of the
entrainment velocity vn is similar to those observed in other flows at the TNTI (Holzner &
Lüthi 2011; Wolf et al. 2012; Mistry et al. 2019) which shows a fine balance in favour of
entrainment over detrainment noting that the tail on the left-hand side, which corresponds
to entrainment, has higher values compared with the right-hand side which corresponds
to detrainment. This demonstrates that, on average, the structures are radially entraining
fluid from the quiescent surroundings as 〈vn〉 < 0. The contribution of vortex stretching
to the entrainment velocity, −2ωiωjsij/|∇ω2|, is shown by the red line and exhibits
higher probabilities than the entrainment velocity which is balanced by the contribution
of viscous diffusion of enstrophy. Viscous diffusion peaks slightly on the negative side
but shows higher probabilities in the tails when vn/uη > 0. On the right-hand side, the
tails of the viscous effects of enstrophy dissipation and diffusion have higher p.d.f. values
compared with vortex stretching. This provides direct evidence that vortex stretching is
a dominant mechanism that drives entrainment (vn < 0) whereas the viscous effects of
enstrophy diffusion and dissipation contribute predominantly to detrainment (vn > 0).
This is in contrast with the behaviour of viscous and inviscid budgets across the TNTI
of free shear flow where the viscous effect is always dominant in both entrainment and
detrainment regions and is an indication of viscous/laminar superlayer at the turbulence
boundary (Holzner & Lüthi 2011). However, the behaviour of the vortex boundary is
similar to that of the turbulent–turbulent interface where vortex stretching is dominant
and viscous superlayer is not present (Kankanwadi & Buxton 2022).

The picture that emerges is that the overall behaviour of the small-scale structures
appears similar to that of stable Burgers vortices where the radial entrainment of
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Figure 9. The p.d.f.s of normalized entrainment velocity, vn/uη, at the boundary of the structures and
its components (budgets: vortex stretching, −2ωiωjsij/(|∇ω2|uη); diffusion, −ν(∂2ω2/∂xj∂xj)/(|∇ω2|uη);
dissipation, 2ν(∂ωi/∂xj)(∂ωi/∂xj)/(|∇ω2|uη)) for the experiment (solid lines) and DNS (dashed lines).

surrounding low-enstrophy fluid into the vortex is the result of a competition between
vortex stretching, enstrophy diffusion and enstrophy dissipation. In a stable Burgers vortex
the radial entrainment velocity is ur = −(α/2)r, where α is a positive constant (the strain
rate) and hence ur < 0 (Davidson 2015) and is consistent with the average picture of the
detected vortex structures observed in the experimental and DNS data sets even though
the local statistics are not in full agreement with the Burgers vortex model.

We examine the local dependence of the entrainment velocity on the radius (size) of
the structures by plotting the j.p.d.f.s of the normalized entrainment velocity, vn/uη, and
the normalized radius, R/η, in figure 10. The experimental data are presented with solid
lines and DNS with dashed lines as previously. The drop-shaped j.p.d.f.s are very slightly
skewed towards the region of negative entrainment velocity which means that over all
the sizes of R/η plotted, the structures are on average radially entraining fluid from their
surroundings. The peak of the correlation between the magnitude of entrainment velocity
and radius occurs when 2 � R/η � 6. This shows that the entrainment/detrainment of the
structures is most active when the local radius is between approximately 2η and 6η.

Next, we investigate how entrainment varies both radially and along the axial direction
of the structures. In figure 11(a), we plot the average entrainment velocity conditioned on
the radial and axial directions of the vortices, (vn/uη)(r/R, l/η). Since the detected vortex
structures are nested families of IVD iso-surfaces, the iso surfaces of IVD correspond to
iso-surfaces of enstrophy as discussed in § 2.3. Thus, the entrainment velocity and the
budgets in (2.3) can be calculated anywhere inside and in the vicinity of structures. The
result can be interpreted as the radial velocity relative to the local iso-enstrophy surface
when away from the boundary of the vortex, or alternatively, the entrainment velocity
that holds for varying choice of enstrophy iso-surface boundaries. Since the length of the
vortices is cropped by the finite size of the observation volume in the experiment, we
here focus on DNS data only. The maximum entrainment velocity is on average located
in the central region of the vortices extending ≈ ±5η along the vortex axis (r/R = 0)
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Figure 10. Joint p.d.f.s of normalized entrainment velocity, vn/uη, and normalized radius of the structures,
R/η, for the experiment (solid contours) and DNS (dashed contours).

and radially outwards to about half the radius. Moving along the axis of the vortex along
r/R = 0 the vn/uη decays towards both ends of the vortices to near zero values. Since the
vortices occupy a finite volume of the domain, statistical stationarity would require that
on average there is no gain or loss of mass for the average structure. Given the net radial
entrainment observed here, one would expect a net detrainment across the boundary at the
tips of the structure. The axial decrease of vn is consistent with that argument even though
we do not observe a change of sign over the considered length, presumably because our
detection method crops the structure before the tip which is a singular point where the
cross sectional area approaches zero.

To investigate the spatial pattern of the different contributions to entrainment, we
consider the terms (budgets) on the right-hand side of (2.3) conditioned on the radial
and axial directions plotted in figure 11(b–d) for the DNS data set. Contour of vortex
stretching shows a strong contribution in favour of entrainment with maximum negative
values concentrated along the vortex axis decaying to very low levels near the vortex
boundary. The data show a slight peak centred at l/η = 0 extending ≈ ±5l/η before
decaying along the vortex length. The effects of enstrophy diffusion, shown in figure 11(c),
exhibit similar behaviour but in favour of detrainment. Figure 11(d) shows comparatively
low, but slightly positive uniform values of enstrophy dissipation inside the vortices in
favour of detrainment. Greater values of dissipation are found outside the vortices. The
contribution of dissipation to the overall balance of the entrainment/detrainment velocity
is small.

The Burgers vortex is a one-dimensional model and cannot capture any heterogeneity
along the vortex axis by definition. However, it can still be a good model for the
radial dynamics. To investigate the similarities and differences of the vortex filaments
with Burgers vortices in more detail, we now compare statistical quantities from the
experimental and DNS data with the quantities predicted by the Burgers vortex model
(Jiménez et al. 1993; Jiménez & Wray 1998; da Silva et al. 2011; Watanabe et al. 2017;
Ghira et al. 2022). Beginning with the radii of the filaments, p.d.f.s of the ratio of measured
radius of the structures from the experiments and DNS to the equivalent Burgers radius,
R/RB, are plotted in figure 12. Here RB was calculated for the structures based on the
stretching values along the centre lines, α0 = ωiωjsij/ω

2
0 at r = 0, using the formula
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Figure 11. Filled contours of average normalized entrainment velocity and its budgets (terms in (2.3)) in radial
(r/R) and axial (l/η) directions of the structures for the DNS data set: (a) entrainment velocity, (b) vortex
stretching, (c) diffusion and (d) dissipation.

RB = √
4ν/α0 in (2.5). The overall trends of the p.d.f.s from the experiment and DNS

are in reasonably good agreement. The main differences are that the experimental data are
more skewed on the left-hand side of R/RB = 1 with a slightly different slope for vortices
with larger radii. The maximum probabilities occur between R/RB ≈ 0.65 and 0.75 for
both the experiments and DNS as well as small differences in the mean 〈R/RB〉 = 0.95
and 1.1. These data show that, on average, the radius of the structures and the equivalent
Burgers vortex radius obtained from the experimental data are in good agreement with
numerical studies, such as the DNS of Jiménez & Wray (1998) and da Silva et al. (2011),
but there are some variations in the local statistics. In the DNS studies of Jiménez et al.
(1993), Jiménez & Wray (1998), da Silva et al. (2011) and Ghira et al. (2022), the peak
value of p.d.f.(R/RB) occurs at R/RB = 1, slightly different from figure 12 in the present
study. We believe this slight difference is due to the vortex detection method being used. In
the above-mentioned studies, a thresholding detection method based on exponential decay
of enstrophy in the radial direction (following the Burgers vortex model) was used. Here,
no assumption is made about the form of the enstrophy decay.

Another feature of the Burgers vortex model is that the radial enstrophy distribution in
the vortex follows an exponential profile from the centre line. To test the robustness of this
assumption, enstrophy profiles as well as profiles of the mean deviation of the structures
for the experimental and the DNS data sets are plotted for comparison. The mean radial
profiles of the normalized enstrophy of the vortices and the equivalent Burgers vortex
model are plotted in figure 13(a) for the experiments and DNS with black lines as well as
the model values for the equivalent Burgers vortices in grey line. Good agreement between
the model, experiments and DNS is found near the vortex core, r/R = 0. Moving away
from the vortex core, both the experiments and DNS depart from the Burgers model which
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Figure 12. The p.d.f.s of the ratio between radius of the structures and the equivalent Burgers vortex radius
for the experiment (solid line) and DNS (dashed line).

predicts a faster decay with r. Although the trends for the experiments and DNS are similar,
it is difficult to untangle whether the Burgers model overestimates the decay of enstrophy
towards the boundary of the structures or whether the resolution of the experiments
and DNS underestimates the decay in enstrophy. Figure 13(b) plots the deviation of the
experiments and DNS from the Burgers model by calculating

δ
( r

R

)
=
〈ω2

( r
R

)
− ω2

B

(
r

RB

)
ω2

0

〉
× 100 (%) (3.1)

for the experimental and DNS data sets within the range of 0 ≤ r/R ≤ 2. The curves show
the mean radial profile of δ. As can be seen from this figure, the local agreement is poor
away from the vortex core in both cases which is postulated to be at least partly related to
a lack of spatial resolution.

We next compare the ratio of the measured entrainment velocity with the entrainment
velocity predicted from the Burgers vortex model. The equivalent entrainment velocity is
calculated using the radial velocity formula at the boundary, vn,B = ur=RB = −(α0/2)RB
(Davidson 2015). Figure 14 plots the p.d.f.s of the entrainment velocity ratio for the
experiment (solid line) and DNS (dashed line). For the experiment, the peak of the p.d.f.
occurs at vn/vn,B ≈ 0.8 and the mean value is 〈vn/vn,B〉 = 0.79, whereas for DNS the
peak is at vn/vn,B ≈ 0.9 and the mean value is 〈vn/vn,B〉 = 1.1. Overall, the fact that
〈vn/vn,B〉 ≈ 1 shows that the Burgers model reasonably captures the entrainment velocity.
Similar to the case of the p.d.f.s of radii (figure 12), the distributions are non-Gaussian
with the positive tails having larger values away from vn/vn,B = 1.

3.2.2. Enstrophy balance
The different terms (budgets) of the enstrophy transport equation (2.2) are now investigated
along the radial and axial directions of the structures in a similar manner to that in § 3.2.1.
To construct a picture of how enstrophy is distributed in a vortex, figure 15 plots filled
contours of the average enstrophy profile conditioned on the radial and axial directions
for the DNS data only and not the experiment as the length of the vortices is cropped
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Figure 13. Enstrophy profiles. (a) The mean radial profile of the normalized enstrophy of the vortices and the
equivalent Burgers vortex model for the experiments and DNS and (b) the deviation of the experiments and
DNS from the Burgers model.
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Figure 14. The p.d.f.s of the ratio between the entrainment velocity of the structures and the equivalent
entrainment velocity from the Burgers vortex model for the experiment (solid line) and DNS (dashed line).

by the finite size of the observation volume in the experiment. On average, the peak of
enstrophy occurs at the centre of the vortex, i.e. (r/R, l/η) = (0, 0), which decays in the
radial direction towards the vortex boundary and along the vortex axis but to a lesser
extent.

The normalized conditional averaged radial profiles of the different terms in the
enstrophy transport equation are shown in figure 16 for the experiments (solid lines), DNS
(dashed lines) and the equivalent Burgers vortices (with dot markers). All cases considered
show reasonably similar trends indicative of having similar governing physics. On average,
at the centre of the structures, the viscous terms of diffusion with a near-negligible
contribution from dissipation are balanced by inviscid vortex stretching as exhibited by
the material derivative of enstrophy tending close to zero. Marching towards the boundary
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Figure 15. Filled contours of average normalized enstrophy (ω2/〈ω2〉) in radial (r/R) and axial (l/η)

directions of the structures for the DNS data set.

from the vortex core, the absolute values of both vortex stretching and diffusion decrease
whilst the dissipation increases. The rate of decrease is greater for the diffusion term.
Together this results in the total derivative of enstrophy increasing to a peak at r/R ≈ 0.7
followed by a gentle decay towards zero. In the region r/RB > 1 of the Burgers vortex
model, the viscous diffusion term dominates over the inviscid vortex stretching term.
This behaviour is qualitatively similar to that of viscous superlayer at TNTI. However,
in contrast with the Burgers vortex model and TNTI, the inviscid vortex stretching term is
still dominant over the viscous diffusion term in the r/RB > 1 region of the detected vortex
structures. Comparing the radial distribution of diffusion and dissipation shows that in the
regions near the core, diffusion is the major contribution to the viscous effects, whereas
near the vortex boundary dissipation becomes the dominant contributor.

Similar to § 3.2.1, plotting the enstrophy transport equation terms (2.2) conditionally
averaged on the radial and axial directions of the structures can provide a more complete
picture of the active physical phenomena inside the structures. Here we only consider the
vortices from the DNS data set and not the equivalent Burgers vortices. The reason is that
the Burgers vortex model by definition is infinitely long and the quantities of interest, i.e.
enstrophy and the terms in the enstrophy transport equation (equations (2.5)–(2.9)), are
independent of the axial distance. Figure 17 plots the terms (budgets) of the enstrophy
transport equation (2.2). In the radial direction, figure 17 confirms figure 16, and in the
axial direction they show the decay of all the quantities considered which is in contrast
with the Burgers vortex model.

4. Conclusion

In this paper we investigated how small-scale vortex structures interact locally with the
surrounding quiescent flow using a temporally and spatially resolved experimental data
set of homogeneous turbulence of a von Kármán mixing flow and a DNS data set of
forced isotropic turbulence. To detect the boundary of the small-scale vortex structures
about which the local entrainment can be evaluated, an objective definition to identify
the vortical structures introduced by Haller et al. (2016) was implemented on both data
sets and was the first successful implementation in experimentally resolved measurements
of small-scale turbulence at high Reynolds number. The average radius of the vortex
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lines with dot markers), DNS (dashed lines) and equivalent Burgers vortex of the DNS (dashed lines with dot
markers).
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structures was found to be 5.1η and that they occupied about 1.4 % of the measured
flow volume on average in agreement with the reported values in the literature (≈ 5η

and ≈ 1 %). Comparing p.d.f.s of volume-averaged enstrophy and dissipation with those
conditioned on the inside of the structures revealed that the latter contained higher peak
values of enstrophy and dissipation but a decreased probability of low-enstrophy and
low-dissipation events. These differences between the volume- and structure-averaged
p.d.f.s were more pronounced for enstrophy and the enstrophy production to destruction
ratio was found to be significantly higher inside the vortex structures. Volume-averaged
and structure-averaged j.p.d.f.s of enstrophy and dissipation were found to scale similarly
inside the vortex structures. The alignments between the vorticity vector and the rate
of strain eigenvectors showed that inside the vortex structures the vorticity vectors were
aligned with the intermediate eigenvector and normal to the compressive and extensional
eigenvectors.

By considering the vortex structures as being embedded in a predominantly quiescent
flow and conditioning on their boundary, the entrainment velocity and enstrophy budgets
were determined. The p.d.f. of entrainment velocity exhibits a non-Gaussian distribution
of entrainment and detrainment skewed slightly in favour of entrainment. The p.d.f. and the
fine balance in favour of entrainment over detrainment is remarkably similar to the p.d.f.s
of entrainment velocity observed across the TNTI reported in boundary layers and jets.
The entrainment velocity was found to reach a peak near the vortex core decaying radially
outwards towards the vortex boundary and along its axis. The decrease in the magnitude
of the entrainment velocity was consistent with the flow being statistically stationary
(the vortices cannot grow on average) and the net radial entrainment is expected to be
balanced by the net detrainment at the ends of the vortices. A strong correlation between
entrainment and vortex stretching was observed (inviscid effect) whereas detrainment was
found to be correlated with enstrophy diffusion and dissipation events (viscous effects).
This is in contrast with what is observed at the TNTI in free shear flow where the viscous
effect is dominant due to the presence of the viscous/laminar superlayer. However, the
behaviour of vortex boundary is similar to that of turbulent–turbulent interface where
vortex stretching (inviscid effect) is dominant and viscous superlayer is no longer present.
The j.p.d.f. of radius and entrainment velocity showed that entrainment/detrainment was
most active when the local radii of the vortices were between 2η and 6η. A direct
comparison with Burgers vortices was performed with both the experimental and the DNS
data sets. The p.d.f.s of the local radius were non-Gaussian but good agreement between
the experimental data, DNS and the equivalent Burgers vortex was found. Compared
with the DNS and experimental data, the Burgers vortex model overestimates the rate
of decay in the enstrophy profile of the vortices. Conditional budgets of the enstrophy
transport equation were examined and compared with the Burgers model confirming that
the competition between vortex stretching and diffusion was the dominant mechanism.
It was found that marching towards the boundary both vortex stretching and diffusion
gradually weakened as dissipation strengthened with all terms approaching zero just
outside the vortex boundary.
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