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Existence of Solutions for Abstract
Non-Autonomous Neutral
Differential Equations

Eduardo Hernández and Donal O’Regan

Abstract. In this paper we discuss the existence of mild and classical solutions for a class of abstract

non-autonomous neutral functional differential equations. An application to partial neutral differen-

tial equations is considered.

1 Introduction

In this paper we study the existence of mild and classical solutions for a neutral func-

tional differential equation of the form

d

dt
[x(t) + g(t, x(t − r1))] = A(t)x(t) + f (t, xt ), t ∈ [0, a],(1.1)

x0 = ϕ ∈ C = C([−r, 0]; X),(1.2)

where (X, ‖ · ‖) is an abstract Banach space, (A(t))t∈[0,a] is a family of sectorial oper-

ators defined on a common domain D which is dense in X, 0 < r1 ≤ min{r, a} and

g : [0, a] × X → X, f : [0, a] × C → X are continuous functions.

This paper is the continuation of our development in [20], where we discussed

the existence of solutions for (1.1)–(1.2) when A(t) = A for all t ∈ [0, a]. Sim-

ilar to [20], our purpose in this paper is to establish the existence of solutions for

neutral systems without many of the strong restrictions considered in the literature.

To clarify our remarks, we need to make some comments on several papers treating

the problem of the existence of solutions for abstract neutral functional differential

equations described in the form

d

dt

(
x(t) + g(t, xt )

)
= Ax(t) + f (t, xt ), t ∈ I = [0, a],(1.3)

x0 = ϕ,(1.4)

where A : D(A) ⊂ X → X is a closed linear operator.

In Datko [9] and Adimy and Ezzinbi [1] some linear neutral systems similar to

(1.3)–(1.4) were studied under the strong assumption that the range of g is con-

tained in D(A). If A is the generator of a C0-semigroup of bounded linear operators
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Non-Autonomous Neutral Differential Equations 737

(T(t))t≥0 (the case studied by Datko), this assumption arises from the treatment of

the associated integral equation

u(t) = T(t)[ϕ(0) + g(0, u(t − r1))] − g(t, u(t − r1))

−

∫ t

0

AT(t − s)g(s, u(s − r1)) ds +

∫ t

0

T(t − s) f (s, us) ds,

since, except in trivial cases, the operator function AT( · ) is not integrable in the

operator topology on [0, b], for b > 0. The same reason explains the use of a similar

assumption in Adimy and Ezzinbi [1], where the case in which A is a Hille–Yosida

type operator is studied.

In the papers [19, 22, 23], the system (1.3)–(1.4) was studied under the following

more general assumption on g.

(Hg) There exists a Banach space (Y, ‖ · ‖Y ), continuously included in X and H ∈
L1([0, a]) such that g ∈ C([0, a] × B,Y ) and ‖AT(t)‖L(Y,X) ≤ H(t) for every

t ∈ [0, a].

The condition (Hg) is verified in several situations, for example, in the case when

(T(t))t≥0 is an analytic semigroup and Y is an interpolation space between X and

D(A). However, it remains an important restriction on the system.

In [2–5,10] (among others) an alternative assumption has been used to treat neu-

tral systems. In these works, A is the generator of a compact C0-semigroup (T(t))t≥0

and the set {AT(t) : t ∈ (0, b]} is bounded in the operator topology. However,

as was pointed out in [23], these conditions are valid if and only if A is bounded

and dim X < ∞, which restricts the applications to ordinary differential equations.

Moreover, if the compactness assumption is removed, it follows that A is bounded

which remains a strong restriction.

Abstract non-autonomous neutral differential systems have been studied under

similar restrictions, and related to this matter we only cite [13, 18]

Our purpose in this paper is to establish the existence of mild and classical so-

lutions without the above cited restrictions. Briefly, we observe that our results are

proved assuming some “temporal” and “spatial” regularity type conditions on the

function t → g(t, ϕ(t − r1)). This simple method permits us to study some neutral

systems that have not been considered in the literature.

We now give motivations for the study of abstract neutral differential equations.

For related ordinary neutral differential equations we refer the reader to Hale and

Lunel [17] and the references therein. Partial neutral differential equations arise, for

instance, in the theory of heat conduction in fading memory material. In the classical

theory of heat conduction, it is assumed that the internal energy and the heat flux de-

pends linearly on the temperature u and on its gradient ∇u. Under these conditions,

the classical heat equation describes sufficiently well the evolution of the temperature

in different types of materials. However, this description is not satisfactory in materi-

als with fading memory. In the theory developed in [15, 28], the internal energy and

the heat flux are described as functionals of u and ux. The next system (see [6–8,26])
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has been frequently used to describe this phenomenon,

d

dt

[
u(t, x) +

∫ t

−∞

k1(t − s)u(s, x) ds
]
= c△u(t, x) +

∫ t

−∞

k2(t − s)△u(s, x) ds,

u(t, x) = 0, x ∈ ∂Ω.

In this system, Ω ⊂ R
n is open, bounded and has smooth boundary, (t, x) ∈ [0,∞)×

Ω, u(t, x) represents the temperature in x at the time t , c is a physical constant, and

ki : R → R, i = 1, 2, are the internal energy and the heat flux relaxation, respectively.

By assuming the solution u is known on (−∞, 0] and k2 ≡ 0, we can transform this

system into the abstract form (1.3)–(1.4).

We also find abstract neutral systems in the theory of population dynamics; see

[11,12,24,25] and their references. Looking at these papers, it is natural to think that

the abstract system (2.1)–(2.2) can be used to describe spatial diffusion phenomena,

which arise from the natural tendency of biological populations to migrate from high

population density regions to regions with lesser density.

There is an extensive literature on ordinary neutral differential equations in the

theory of population dynamics; see, for instance, [11, 12, 24, 25]. If in these works

we consider the spatial diffusion phenomena which arise in the natural tendency of

biological populations to migrate from a high population density region to a region

with lesser density, then it is possible to obtain partial neutral differential systems of

the form

d

dt
[u(t, ξ) + g(t, u(t − r1, ξ))] = △u(t, ξ) + f (t, u(t − r1, ξ)),

which can be described in the abstract form (1.1).

Partial differential neutral systems also appear in transmission line theory. Wu

and Xia showed that a ring array of identical resistively coupled lossless transmission

lines leads to a system of neutral functional differential equations with discrete diffu-

sive coupling which exhibit various types of discrete waves [29]. By taking a natural

limit, they obtained from this system of neutral equations a scalar partial neutral dif-

ferential equation defined on the unit circle. Hale [16] also investigated such a partial

neutral differential equation under the more general form

d

dt
Dut (x) =

∂2

∂x2
Dut (x) + f (ut )(x), t ≥ 0,

u0 = ϕ ∈ C([−r, 0]; C(S1; R)),

where

D(ψ)(s) := ψ(0)(s) −

∫ 0

−r

[dη(θ)]ψ(θ)(s)

for s ∈ S1, ψ ∈ C([−r, 0]; C(S1; R)), and η is a function of bounded variation.

We now consider some notations and technicalities used in the rest of this paper.

Let (W, ‖ · ‖W ), (Z, ‖ · ‖Z) be Banach spaces. In this paper, C is the space C([−r, 0]; X)
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with the sup-norm ‖ψ‖C = supθ∈[−r,0] ‖ψ(θ)‖, L(W,Z) represents the space of

bounded linear operators from W into Z endowed with the uniform operator norm

‖ · ‖L(W,Z), and we write simply L(W ) and ‖ · ‖L(W ) when Z = W . The notation

Z →֒ W is used to indicate that Z ⊂ W and that the inclusion from Z into W is

continuous. For a closed linear operator S : D(S) ⊂ Z → Z, we denote by [S] the

domain of S endowed with the graph norm ‖ · ‖[S] If S is injective, we use the norm

‖x‖[S] = ‖Sx‖.

As usual, C([0, b]; Z) is the space of continuous functions from [0, b] into Z with

the sup-norm denoted by ‖ · ‖C([0,b];Z) and Cγ([0, b]; Z), γ ∈ (0, 1), represents the

space formed for all the γ-Hölder Z-valued continuous functions from [0, b] into

Z with the norm ‖ξ‖Cγ ([0,b];Z) = ‖ξ‖C([0,b];Z) + [|ξ|]Cγ ([0,b];Z) where [|ξ|]Cγ ([0,b];Z) =

supt,s∈[0,b];t 6=s
‖ξ(s)−ξ(t)‖Z

(t−s)γ
. In addition, C1+γ([0, b]; Z) is the space formed for all the

C1 functions ξ ∈ Cγ([0, b]; Z) for which ξ ′ ∈ Cγ([0, b]; Z) endowed with the norm

‖ξ‖C1+γ ([0,b];Z) = ‖ξ‖Cγ ([0,b];Z) + ‖ξ ′‖Cγ ([0,b];Z).

2 Existence of Solutions

In this section we discuss the existence of solutions for the abstract system

d

dt
[x(t) + g(t, x(t − r1))] = A(t)x(t) + f (t, xt ), t ∈ [σ, σ + b],(2.1)

xσ = ϕ ∈ C = C([−r, 0]; X),(2.2)

where A(t) : D(A(t)) ⊂ X → X are closed linear operators and g : [0, a] × X → X,

f : [0, a] × C → X are continuous functions.

To establish our results, we always assume that the following conditions are veri-

fied.

(H1) There are C > 0, ϑ ∈ (π/2, π) and a neighborhood of zero Σ, such that

ρ(A(t)) ⊃ Λϑ = {λ ∈ C : | arg(λ)| < ϑ} ∪ Σ and ‖R(λ,A(t))‖ ≤ C|λ|−1

for all (λ, t) ∈ Λϑ × [0, a].

(H2) There exists a Banach space (D, ‖ · ‖D) and α ∈ (0, 1) such that D is dense in

X, D = D(A(t)) for all t ∈ [0, a] and A( · ) ∈ Cα([0, a];L(D,X)).

Under condition H1, each operator A(t) is the infinitesimal generator of an ana-

lytic semigroup on X. Moreover, from Lunardi [27, Chapter VI] we know that if H1

and H2 are verified, then there exists an evolution operator U ( · ) associated with the

non-autonomous abstract Cauchy problem

x ′(t) = A(t)x(t), t ≥ s, t, s ∈ [0, a],(2.3)

x(s) = x.(2.4)

Definition 2.1 A family of linear operators {U (t, s) : t, s ∈ [0, a], t ≥ s} ⊂ L(X)

is an evolution operator for (2.3)–(2.4) if U (s, s)x = x for all (s, x) ∈ [0, a] × X,

U (t, r)U (r, s) = U (t, s) f or a ≥ t ≥ r ≥ s ≥ 0, U ( · , s)x ∈ C1((s, a]; X)∩C((s, a];D)

and d
dt

U (t, s)x = A(t)U (t, s)x for all x ∈ X and every t > s.
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We now introduce the following concept of mild solution for the system (2.1)–

(2.2).

Definition 2.2 A function u ∈ C([−r +σ, σ + b]; X), b > 0, σ ∈ R, is called a mild

solution of (2.1)–(2.2) if uσ = ϕ and

u(t) = U (t, σ)[ϕ(0) + g(σ, ϕ(−r1))] − g(t, u(t − r1))

−

∫ t

σ

U (t, s)A(s)g(s, u(s − r1)) ds +

∫ t

σ

U (t, s) f (s, us) ds,

for every t ∈ [σ, σ + b].

We can now establish our first existence result.

Theorem 2.3 Assume the following conditions are satisfied.

(i) There are Banach spaces (Yi , ‖ · ‖Yi
), i = 0, . . . , 2n, n ≥ 2, such that Yi+1 →֒

Yi →֒ Y0 = X, g ∈ C([0, a]×Yi+1,Yi) for all i = 1, . . . , 2n−1, and A( · )g( · ) ∈
C([0, a] × Y j+1,Y j−1) for each j = 2, . . . , 2n − 1.

(ii) There are Banach spaces (Zi , ‖·‖Zi
)i∈N and natural numbers p1, . . . , p2n satisfying

pi+1 − pi ≥ 2 such that

Yi →֒ Zpi
→֒ · · · →֒ Zp(i−1)+1 →֒ Yi−1 →֒ · · · →֒ Y1 →֒ Zp1

· · · →֒ Z1 →֒ Z0 = X,

for all i = 1, . . . , 2n; U (t, · ) ∈ L1([0, t),L(Z j ,Z j+2)) ∩ L1([0, t),L(Zpi−2,Yi))

for all t ∈ [0, a], j ∈ {0, . . . , p2n − 2} and i = 1, . . . , 2n; and U (t, · ) ∈
C([0, t),L(Z j)) and U (t, · ) ∈ C([0, t),L(Yi)) for all j ≤ p2n and every i ≤ 2n.

(iii) f ∈ C([0, a] × C([−r, 0]; Zpi +1); Yi) ∩ C([−r, 0]; Yk),Zpk
) for all i = 1, . . . ,

2n − 1, and k = 1, . . . , 2n, f ∈ C([0, a] × C([−r, 0]; Z j+1); Z j) for all j, and
exits L f > 0 such that

‖ f (t, ψ1) − f (t, ψ2)‖ ≤ L f ‖ψ1 − ψ2‖C, t ∈ [0, a], ψi ∈ C.

If ϕ ∈ C([−r, 0]; Y2n), then there exists a unique mild solution of the neutral system
(1.1)–(1.2) on [−r, nr1 ∧ a].

Proof To simplify, we assume nr1 < a. The other case can be proved arguing as in

the rest of this proof. Let M > 0 such that ‖U (t, s)‖ ≤ M for all t > s, t, s ∈ [0, a].

Let Γ : C([−r, r1]; X) → C([−r, r1]; X) be the map given by (Γu)0 = ϕ and

(2.5) Γu(t) = U (t, 0)[ϕ(0) + g(0, ϕ(−r1))] − g(t, ϕ(t − r1))

−

∫ t

0

U (t, s)A(s)g(s, ϕ(s − r1)) ds +

∫ t

0

U (t, s) f (s, us) ds, t ∈ [0, r1].

From (i) it follows that the function s → A(s)g(s, ϕ(s − r1)) belongs to C([0, r1]; Y2)

which permits us to affirm that s → U (t, s)A(s)g(s, ϕ(s− r1))ds ∈ L1([0, t); X) for all

t ∈ [0, r1]. Now it is easy to show that Γu ∈ C([−r, r1]; X) for all u ∈ C([−r, r1]; X).
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On the other hand, from the inequality

sup
θ∈[0,t]

‖Γku(θ) − Γ
kv(θ)‖ ≤

(ML f )k

k!

∫ t

0

sup
θ∈[0,s]

‖u(θ) − v(θ)‖ ds, t ∈ [0, r1],

it follows that Γk( · ) is a contraction for k large enough and there exits a unique fixed

point u1( · ) of Γ. Obviously, u1( · ) is the unique mild solution of (1.1)–(1.2) on

[−r, r1].

Next, we show that u1 ∈ C([−r, r1]; Y2n−2). From the assumptions it is easy to see

that s → g(s, ϕ(s − r1)) and s → A(s)g(s, ϕ(s − r1)) are functions in C([0, r1]; Y1).

From this fact and the inequality

‖u1(t)‖Z2
≤ ‖U (t, 0)(ϕ(0) + g(0, ϕ(−r1))‖Z2

+ ‖g(t, ϕ(t − r1))‖Z2

+

∫ t

0

‖U (t, s)A(s)g(s, ϕ(s − r1))‖Z2
ds

+

∫ t

0

‖U (t, s)‖L(X,Z2)‖ f (s, u1
s )‖ ds,

we infer u1 ∈ C([−r, r1]; Z2) and s → f (s, u1
s ) ∈ C([0, r1]; Z1).

If p1 = 2, then

‖u1(t)‖Y1
≤ ‖U (t, 0)ϕ(0) + g(0, ϕ(−r1))‖Y1

+ ‖g(t, ϕ(t − r1))‖Y1

+

∫ t

0

‖U (t, s)A(s)g(s, ϕ(s − r1))‖Y1
ds

+

∫ t

0

‖U (t, s)‖L(Z1,Y1)‖ f (s, u1
s )‖Z1

ds,

and hence, u1 ∈ C([−r, r1]; Y1). On the other hand, if p1 > 2 we get

‖u1(t)‖Z3
≤ ‖U (t, 0)(ϕ(0) + g(0, ϕ(−r1)))‖Z3

+ ‖g(t, ϕ(t − r1))‖Z3

+

∫ t

0

‖U (t, s)A(s)g(s, ϕ(s − r1))‖Z3
ds

+

∫ t

0

‖U (t, s)‖L(Z3,Z1)‖ f (s, u1
s )‖Z1

ds,

which implies that u1 ∈ C([−r, r1]; Z3) and s → f (s, u1
s ) ∈ C([0, r1]; Z2). Continu-

ing as above, we infer that u1 ∈ C([−r, r1]; Y2n−2).

We can now repeat the above process with (u1)r1
and Y2n−2 in place of ϕ and Y2n,

and prove the existence of a unique mild solution u2 ∈ C([r1 − r, 2r1]; Y2n−4) for the

neutral system

d

dt
[x(t) + g(t, x(t − r1))] = Ax(t) + f (t, xt ), t ∈ [r1, 2r1],

xr1
= (u1)r1

.
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From the above steps, for each i = 1, . . . , n there exists a unique mild solution

ui ∈ C([(i − 1)r1 − r, ir1]; Y2n−2i) of the neutral system

d

dt
[x(t) + g(t, x(t − r1))] = Ax(t) + f (t, xt ), t ∈ [(i − 1)r1, ir1],

x(i−1)r1
= (ui−1)(i−1)r1

.

Finally, by defining the function u : [−r, nr1] → X by u(t) = ϕ(t) for t ≤ 0 and

u(t) = ui(t) for t ∈ [(i − 1)r1, ir1], i = 1, 2, . . . , n, we obtain a mild solution of

(1.1)–(1.2) on [−r, nr1].

Assuming that U (t, s) is compact for t > s, we can also prove the existence of a

mild solutions for (1.1)–(1.2).

Theorem 2.4 Assume the conditions (i)–(ii) in Theorem 2.3 are satisfied, U (t, s) is
compact for every t > s and U (t, · ) ∈ C([0, t),L(X)) for all t ∈ [0, a]. Suppose
f ∈ C([0, a] × C([−r, 0]; Zpi +1); Yi) ∩ C([0, a] × C([−r, 0]; Z j+1); Z j) for all j ∈ N

and every i = 1, . . . , 2n−1, and there are m ∈ C([0, a]; [0,∞)) and a non-decreasing
function W : [0,∞) → (0,∞) such that ‖ f (t, ψ)‖ ≤ m(t)W (‖ψ‖C), for each (t, ψ) ∈
[0, a] × C. If ϕ ∈ C([−r, 0]; Y4) and

M

∫ r1

0

m(s) ds <

∫ ∞

C(ϕ)

ds

W (s)
,

where M = sup{‖U (t, s)‖; t > s, t, s ∈ [0, a]} and

C(ϕ) = M(‖ϕ(0) + g(0, ϕ(−r1))‖ + sup
θ∈[0,r1]

‖g(θ, ϕ(θ − r1))‖ + ‖ϕ‖C

+ Mr1 sup
θ∈[0,r1]

‖A(θ)g(θ, ϕ(θ − r))‖.

Then there exists a mild solution of (1.1)–(1.2) on [−r1, b] for some r1 < b ≤ a.

Proof Let Γ( · ) be the map defined by (2.5). From [21, Lemma 3.1] we infer that Γ is

completely continuous. In order to use the Leray–Schauder alternative theorem ([14,

Theorem 6.5.4]), we next establish a priori estimates for the solutions of z = λΓz,

λ ∈ (0, 1). Let λ ∈ (0, 1), zλ be a solution of z = λΓz and αλ : [0, r1] → R be

defined by αλ(t) = ‖ϕ‖C + supθ∈[0,t] ‖zλ(θ)‖. Then for t ∈ [0, r1] we get

‖zλ(t)‖ ≤ M‖ϕ(0) + g(0, ϕ(−r1))‖ + ‖g(t, ϕ(t − r1))‖

+ M

∫ t

0

‖A(θ)g(θ, ϕ(θ − r1))‖ dθ + M

∫ t

0

m(s)W (‖zλs ‖C) ds,

which implies that

(2.6) αλ(t) ≤ C(ϕ) + M

∫ t

0

m(s)W (αλ(s)) ds.
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If βλ(t) represents the right-hand side of (2.6), then β ′
λ(t) ≤ Mm(t)W (βλ(t)) and

∫ βλ(t)

C(ϕ)

ds

W (s)
≤ M

∫ r1

0

m(s) ds <

∫ ∞

C(ϕ)

ds

W (s)
ds,

which shows that {βλ( · ) : λ ∈ (0, 1)} is bounded in C([0, r1]), and as a conse-

quence, that {zλ( · ) : λ ∈ (0, 1)} is bounded in C([−r, r1]; X).

From [14, Theorem 6.5.4] there exists a fixed point u1( · ) of Γ( · ). Moreover, from

the proof of Theorem 2.3 it follows that u1 ∈ C([0, r1]; Y2), s → g(s, u1(s − r1)) ∈
C([r1, 2r1]; Y1), and s → A(s)g(s, u1(s − r1)) ∈ C([r1, 2r1]; X).

Let r1 < b ≤ 2r1 be such that

M

∫ b

r1

m(s) ds <

∫ ∞

C(u1)

ds

W (s)
,

where

C(u1) = M‖u1(r1) + g(r1, u
1(0))‖ + sup

θ∈[r1,2r1]

‖g(θ, u1(θ − r1))‖

+ ‖(u1)r1
‖C + Mb sup

θ∈[r1,2r1]

‖A(θ)g(θ, u1(θ − r))‖.

Arguing as in the first part of this proof, we infer the existence of a mild solution

u2 ∈ C([r1 − r, b]; X) of

d

dt
[x(t) + g(t, x(t − r1))] = Ax(t) + f (t, xt ), t ∈ [r1, b],

xr1
= (u1)r1

.

To finish, we note that the function obtained by pasting the functions u1( · ) and

u2( · ) is a mild solution (1.1)–(1.2) on [−r, b].

Remark 2.5 It is relevant to observe that the assumptions in the above results are

not restrictive. Assume, for instance, A(t) = A for all t ∈ [0, a]. In this case, A is

the generator of a analytic semigroup (T(t))t≥0 on X, U (t, s) = T(t − s) for t ≥ s
and we can consider, among several alternatives, the spaces Yi = [D(Ai)], i ∈ N,

and Z j = [D((−A) j+β j )], β j ∈ (0, 1), j ∈ N, where (−A)β denotes a fractional

power of A. We note that Yi →֒ Z j if i > j, U (t, · ) ∈ L1([0, t];L(Z j1
,Z j2

)) when

| j1 + β1 − j2 − β2| < 1, and U ( · ) is a strongly continuous operator family on

each one of these spaces. The assumptions on f and g, are verified, for instance, by

functions which are continuously invariant on these spaces; consider, for example,

g ∈ C([0, a] ×C([−r, 0]; Yi); Yi) and f ∈ C([0, a] ×C([−r, 0]; Z j); Z j) for all i, j.
In the non-autonomous case, we can think in the interpolation spaces (X,D)α, p,

α ∈ (0, 1) and p > 1, defined as in Lunardi [27]. We remark that (X,D)β,p →֒
(X,D)θ,p for β > θ,

U (t, · ) ∈ L1([0, t];L((X,D)θ, p,D)) and U (t, · ) ∈ L1([0, t];L(X, (X,D)θ, p))
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for θ ∈ (0, 1), and U (t, · ) ∈ L1([0, t];L((X,D)θ, p, (X,D)β, p)) when 0 < θ <
β < 1. The assumptions on g, f , are satisfied by functions continuously invariant on

these spaces.

2.1 Existence of Classical Solutions.

We complete this section by studying the existence of classical solutions in

Cα([0, b];D) for the neutral system

d

dt
[x(t) + g(t, x(t − r1))] = A(t)x(t) + f (t)xt , t ∈ [0, a],(2.7)

x0 = ϕ ∈ CD = C([−r, 0];D),(2.8)

where f ∈ Cα([0, a];L(CD,X)).

For simplicity, in the rest of this paper we assume A = A(0), D is the space [D(A)]

with the norm ‖x‖D = ‖Ax‖, and CD is the space C([−r, 0];D) with the norm

‖ψ‖CD
= supθ∈[−r,0] ‖Aψ(θ)‖. In addition, (T(t))t≥0 represents the semigroup gen-

erated by A and Ci , i ∈ N, are positive constants such that ‖AiT(t)‖ ≤ Cit
−i for

every t > 0. To obtain our results, we need consider some interpolation spaces. The

notation (X,D)η,∞, η ∈ (0, 1) stands for the space

(X,D)η,∞ = {x ∈ X : [x]η,∞ = sup
t∈(0,1)

‖t1−ηAT(t)x‖ <∞},

endowed with the norm ‖x‖η,∞ = [x]η,∞ + ‖x‖. Next, we assume that the numbers

Ck = sups∈(0,a] ‖skAkT(s)‖ and Ck
η,∞ = sups∈(0,a] s1−η‖AkT(s)‖L((X,D)η,∞,X) are finite

for all k ∈ N ∪ {0}; see [27] for additional details.

We introduce now the following concept of a classical solution.

Definition 2.6 A function u ∈ C([−r, b]; X), 0 < b ≤ a, is called a classical

solution of (2.7)–(2.8) in Cα([0, b];D) if u|[0,b] ∈ Cα([0, b];D) and u verifies (2.7)–

(2.8) on [0, b].

To prove the main result of this section, we need some preliminary lemmas. The

proof of Lemma 2.7 follows from the steps in the proof of [27, Theorem 4.3.1]. We

omit the proof.

Lemma 2.7 Let ξ ∈ Cα([0, b]; X), x ∈ D and u : [0, b] → X be the function given
by

u(t) = T(t)x +

∫ t

0

T(t − s)ξ(s) ds.

If Ax+ξ(0) ∈ (X,D)α,∞, then u ∈ Cα([0, b];D)∩C1+α([0, b]; X), u ′(t) ∈ (X,D)α,∞
for all t ∈ [0, b], u ′(t) = Au(t) + ξ(t) for every t ∈ [0, b] and

[|u|]Cα([0,b];D) ≤ Λ1[|ξ|]Cα([0,b];X) +
C1
α,∞

α
‖Ax + ξ(0)‖α,∞,

‖u‖C([0,b];D) ≤ C0‖Ax‖ +
C1bα

α
[|ξ|]Cα([0,b];X) + 2C0‖ξ‖C([0,b];X),
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where Λ1 =
2C1

α + 3C0 + 1 + C2

α(1−α)
.

Lemma 2.8 Let the assumptions in Lemma 2.7 hold and assume ξ(0) ∈ (X,D)α,∞.
Then

‖u‖C([0,b];D) ≤ C0‖Ax‖ + Λ2[|ξ|]Cα([0,b];X)b
α +

C1
α,∞

α
‖ξ(0)‖α,∞bα,

where Λ2 = (C0 + C1

α + 1).

Proof By re-writing the function u in the form

u(t) = T(t)x +

∫ t

0

T(t − s)(ξ(s) − ξ(t)) ds +

∫ t

0

T(t − s)ξ(t) ds,

we obtain

Au(t) = AT(t)x +

∫ t

0

AT(t − s)(ξ(s) − ξ(t)) ds + T(t)ξ(t) − ξ(t).

Consequently,

‖Au(t)‖ ≤ C0‖Ax‖ +

∫ t

0

C1[|ξ|]

t − s
(t − s)αds + ‖ξ(0) − ξ(t)‖

+
∥∥∥
∫ t

0

AT(s)ξ(0)d s
∥∥∥ + ‖T(t)(ξ(t) − ξ(0))‖

≤ C0‖Ax‖ +
C1

α
[|ξ|]Cα([0,b];X)b

α + [|ξ|]Cα([0,b];X)b
α

+

∫ t

0

C1
α,∞‖ξ(0)‖α,∞

(t − s)1−α
ds + C0[|ξ|]Cα([0,b];X)b

α,

which permits us to finish the proof.

Remark 2.9 In what follows, for u ∈ C([−r, b];D) we denote by Fu and Pu the

functions Fu : [0, b] → X and Pu : [0, b] → CD defined by Fu(t) = (A(t) − A)u(t) +

f (t)ut and Pu(t) = ut . The notation Cα
D

(b), 0 < b ≤ a, is used for the space

C
α
D(b) = {u ∈ Cα([−r, b];D) : Pu ∈ Cα([0, b];CD)}

with the norm ‖u‖Cα
D

(b) = ‖Pu‖Cα([0,b];CD). In addition, y : [−r, a] → X is the

function defined by y0 = ϕ and y(t) = T(t)ϕ(0) for t ∈ [0, a], Λ1,Λ2 are the

constants introduced in Lemmas 2.7 and 2.8, respectively, and g1 : [0, r1] → X is the

function defined by g1(t) = g(t, ϕ(t − r1)).

Lemma 2.10 Let u, v ∈ Cα
D

(b) with u0 = v0. Then Fu ∈ Cα([0, b]; X) and

‖Fu‖Cα(X) ≤ ([|A|]Cα(L(D,X))(2bα + 1) + ‖ f ‖Cα(L(CD,X)))‖u‖Cα
D

(b),

‖F(u−v)‖Cα(X) ≤ (2[|A|]Cα(L(D,X))b
α + ‖ f ‖Cα(L(CD,X))(2bα + 1))‖u − v‖Cα

D
(b),

where ‖ · ‖Cα(Z) = ‖ · ‖Cα([0,b];Z) for Z = X,L(D,X) and Z = L(CD,X).
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Proof We only prove the second inequality. Let w = u − v. Using that w =

(u − v)|[0,b] ∈ Cα([0, b]; D) and w0 = 0, for t, s ∈ [0, b] we find that

‖Fw(t) − Fw(s)‖

≤ ‖(A(t) − A(s))‖L(D,X)‖w(t)‖D + ‖A(s) − A)‖L(D,X)‖w(t) − w(s)‖D

+ ‖ f (t) − f (s)‖L(CD,X)‖wt‖CD
+ ‖ f (s)‖L(CD,X)‖wt − ws‖CD

≤
(

[|A|]Cα(L(D,X))[|w|]Cα(D)t
α + [|A|]Cα(L(D,X))s

α[|w|]Cα(D)

)
(t − s)α

+
(

[| f |]Cα(L(CD,X))[|Pw|]Cα(CD)
bα + ‖ f ‖C(L(CD,X))[|Pw|]Cα(CD)

)
(t − s)α,

so that

[|Fw|]Cα(X) ≤ (2[|A|]Cα(L(D,X))b
α + ‖ f ‖Cα(L(CD,X))(bα + 1))[|Pw|]Cα(CD).

A similar procedure permits us to prove that

‖Fw‖C(X) ≤ [|A|]Cα(L(D,X))b
α‖Pw‖CD

+ ‖ f ‖C(L(CD,X))b
α[|Pw|]Cα(CD).

From these estimates we obtain

‖Fw‖Cα(X) ≤
(

2[|A|]Cα(L(D,X))b
α + ‖ f ‖Cα(L(CD,X))(2bα + 1)

)
‖w‖Cα

D
(b).

In the next result, D1g(t, ψ) denotes the derivative of g(t, ψ) with respect to t and

D2g(t, ψ) denotes the Fréchet derivative of g(t, ψ) with respect to ψ. We can now

prove the main result of this section.

Theorem 2.11 Assume y ∈ Cα
D

(a), Aϕ(0) ∈ (X,D)α,∞ and the following conditions
hold.

(i) g ∈ C1([0, a]×X,X), g is differentiable from [0, a]× (X,D)α,∞ into (X,D)α,∞
and there are positive constants Li

g , i = 1, 2, such that

‖Dig(t, x) − Dig(s, y)‖L(X) ≤ Li
g(|t − s|α + ‖x − y‖), s, t ∈ [0, a], x, y ∈ X.

(ii) f ∈ C([0, a]×CD; (X,D)α,∞)), g1 ∈ C1+α([0, r1]; X)∩C1([0, r1]; (X,D)α,∞),
f (0)ϕ− d

dt
g1(t)|t=0 ∈ (X,D)α,∞ and there is r1 < δ ≤ a such that

Λ3(δ)[Λ1 + Λ2] max{rα1 , 1} < 1,

where Λ3(δ) =
(

2[|A|]Cα([0,δ];L(D,X))δ
α + ‖ f ‖Cα([0,δ];L(CD,X))(2δα + 1)

)
.

Then there exists a classical solution of (2.7)–2.8 in Cα([0, b];D) for some r1 < b ≤ a.

Proof On the space Cα
D

(ϕ, r1) = {u ∈ Cα
D

(r1) : u0 = ϕ} endowed with the metric

d(u, v) = ‖u − v‖Cα
D

(r1) we define the map Γ : Cα
D

(ϕ, r1) → Cα
D

(ϕ, r1) by (Γu)0 = ϕ
and

Γu(t) = T(t)ϕ(0) +

∫ t

0

T(t − s)
[
−

d

ds
g1(s) + Fu(s)

]
ds, t ∈ [0, r1].
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From Lemmas 2.7 and 2.10 we have that Γu ∈ Cα([0, r1];D). In order to prove that

Γ is a contraction in Cα
D

(ϕ, r1), we introduce the decomposition Γu = Γ1u + y. For

t ∈ [0, r1) and h > 0 such that t + h ∈ [0, r1], we get

‖PΓu(t + h) − PΓu(t)‖CD
= ‖(Γu)(t+h) − (Γu)t‖CD

≤ ‖(Γu)h − ϕ‖CD
+ sup

s∈[0,r1]

‖Γu(s + h) − Γu(s)‖D

≤ ‖yh − ϕ‖CD
+ ‖(Γ1u)h‖CD

+ [|Γu|]Cα([0,r1];D)h
α

≤ [|Py |]Cα([0,r1];CD)h
α + ‖(Γ1u)h‖CD

+ [|Γu|]Cα([0,r1];D)h
α.

To estimate ‖(Γ1u)h‖CD
we use Lemma 2.8 with x = 0. For θ ∈ [−h, 0] we see that

‖Γ1u(θ + h)‖D ≤ Λ2

(∥∥∥ d

dt
g1

∥∥∥
Cα([0,r1];X)

+ ‖Fu‖Cα([0,r1];X)

)
hα

+
C1
α,∞

α
‖ f (0)ϕ−

d

dt
g1(t)|t=0‖α,∞hα,

from which we infer that

[|PΓu|]Cα([0,r1]; CD) ≤ [|Py |]Cα([0,r1];CD)

+ Λ2

(∥∥∥ d

dt
g1

∥∥∥
Cα([0,r1];X)

+ ‖Fu‖Cα([0,r1];X)

)

+
C1
α,∞

α

∥∥∥ f (0)ϕ +
d

dt
g1(t)|t=0

∥∥∥
α,∞

+ [|Γu|]Cα([0,r1];D),

and Γu ∈ Cα
D

(ϕ, r1). Moreover, from this estimate and Lemmas 2.7 and 2.10, for

u, v ∈ Cα
D

(ϕ, r1) we find that

[|PΓu − PΓv|]Cα([0,r1],CD) ≤ Λ2‖Fu−v‖Cα([0,r1];X) + [|Γ(u − v)|]Cα([0,r1];D)

≤ Λ2Λ3(δ)‖u − v‖Cα
D

(r1) + Λ1[|Fu−v|]Cα([0,r1];X)

≤ Λ2Λ3(δ)‖u − v‖Cα
D

(r1) + Λ1Λ3(δ)‖u − v‖Cα
D

(r1),

and hence,

[|PΓu − PΓv|]Cα([0,r1];CD) ≤ Λ3(δ) [Λ2 + Λ1] ‖u − v‖Cα
D

(r1),

‖PΓu − PΓv‖C([0,r1];CD) ≤ Λ3(δ) [Λ2 + Λ1] rα1 [|Pu − Pv|]Cα([0,r1];CD),

since PΓu(0) = PΓv(0). From these estimates it follows that

d(Γu,Γv) ≤ Λ3(δ) [Λ1 + Λ2] max{rα1 , 1}d(u, v),

and Γ has a unique fixed point u1 ∈ Cα
D

(ϕ, r1).

https://doi.org/10.4153/CMB-2011-111-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-111-1


748 E. Hernández and D. O’Regan

To continue, we remark on some properties of u1( · ). From Lemma 2.7, u1( · ) is a

classical solution of (2.7)–(2.8) in Cα([0, r1];D), u1 ∈ C1+α([0, r1]; X) and d
dt

u1(t) =

A(t)u1(t) − d
dt

g1(t) + f (t)ut ∈ (X,D)α,∞ for all t ∈ [0, r1]. This implies A(t)u1(t) ∈

(X,D)α,∞ for all t ∈ [0, r1], since − d
dt

g1(t) + f (t)ut ∈ (X,D)α,∞ for each t ∈ [0, r1].

Moreover, if g2 : [r1, 2r1] → X is the function given by g2(t) = g(t, u1(t − r1)), then

f (r1)(u1)r1
− d

dt
g2(t)|t=r1

∈ (X,D)α,∞ and d
dt

g2 ∈ Cα([r1, 2r1]; X). In addition,

if y1 : [r1 − r, a] → X is the function defined by (y1)r1
= (u1)r1

and y1(t) =

T(t − r1)u1(r1) for t ∈ [r1, a], a straightforward estimation permits us to show

that t → (y1)t ∈ Cα([r1, a];CD).

Let r1 < b ≤ δ be such that Λ̃3 [Λ1 + Λ2] max{(b − r1)α, 1} < 1, where

Λ̃3 = 2[|A|]Cα([r1,b];L(D,X))(b − r1)α + ‖ f ‖Cα([r1,b];L(CD,X))(2(b − r1)α + 1).

Considering the above remarks and proceeding as in the first part of this proof, we

see that there exists a unique solution u2 ∈ Cα([r1 − r, b];D) of the delayed integral

equation

x(t) = T(t − r1)u1(0) +

∫ t

r1

T(t − s)
[
−

d

ds
g2(s) + Fx(s)

]
ds, t ∈ [r1, b],

xr1
= u1

r1
,

which from Lemma 2.7, is a classical solution in Cα([r1, b];D) of the neutral system

d

dt
[x(t) + g(t, x(t − r1))] = A(t)x(t) + f (t)xt , t ∈ [r1, b],

xr1
= u1

r1
.

Finally, by defining u : [−r, b] → X by u(t) = u1(t) for t ∈ [−r, r1] and u(t) =

u2(t) for t ∈ [r1, b], we obtain a classical solution of (2.7)–(2.8) in Cα([0, b];D).

3 Applications

In this section we study the existence of solutions for a concrete partial differential

equation. Consider the neutral differential system

∂

∂t
( u(t, ξ) + β1(t)u(t − r1, ξ) ) = γ(t)

∂2

∂ξ2
u(t, ξ) +

m∑

i=2

βi(t)u(t − ri , ξ)(3.1)

+ α(t)

∫ t

t−r

η(s − t)u(s, ξ) ds,

u(t, 0) = u(t, π) = 0, t ∈ [0, a],(3.2)

u(s, ξ) = ϕ(s, ξ), s ∈ [−r, 0], ξ ∈ [0, π],(3.3)

for (t, ξ) ∈ [0, a] × [0, π]. For simplicity, we assume α, βi ∈ C([0, a]; R), η ∈
L2([0, a]; R), γ ∈ Cα([0, a]; (0,∞)), and 0 < ri ≤ r ≤ a for all i = 1, . . . ,m.
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To treat this system we consider the space X = L2([0, π]) and the linear operators

A,A(s) : D ⊂ X → X defined by Ax = x ′ ′ and A(s)x = γ(s)Ax on the domain D =

{x ∈ X : x ′ ′ ∈ X, x(0) = x(π) = 0}. The operator A is the infinitesimal generator of

an analytic semigroup (T(t))t≥0 on X, and A has a discrete spectrum with eigenvalues

of the form −n2, n ∈ N with corresponding normalized eigenfunctions given by

zn(ξ) :=
(

2
π

) 1/2
sin(nξ). The set of functions {zn : n ∈ N} is an orthonormal

basis for X, T(t)x =
∑∞

n=1 e−n2t〈x, zn〉zn for x ∈ X and Ax = −
∑∞

n=1 n2〈x, zn〉zn

for x ∈ D(A). Moreover, it us possible to define fractional powers of A; see [27,

Chapter 2]. In particular, for x ∈ X and α > 0, (−A)−αx =
∑∞

n=1 n−2α〈x, zn〉zn and

(−A)α : D((−A)α) ⊆ X → X is given by (−A)αx =
∑∞

n=1 n2α〈x, zn〉zn, for

x ∈ D((−A)α) =
{

x ∈ X :

∞∑

n=1

n2α〈x, zn〉zn ∈ X
}
.

To represent the system (3.1)–(3.3) in the abstract form (2.7)–(2.8), we introduce

the functions g : [0, a] × X → X and f : [0, a] → L(C,X) defined by g(t, x)(ξ) =

β1(t)x(ξ) and

[ f (t)ψ](ξ) =

m∑

i=2

βi(t)ψ(−ri, ξ) + α(t)

∫ 0

−r

η(s)ψ(s, ξ) ds.

It is easy to see that f ∈ C([0, a];L(CD,X)), g ∈ C([0, b] × X,X), g(t, · ) is a

bounded linear operator for all t ∈ [0, a], ‖g‖C([0,b]×X,X) ≤ ‖β1‖C([0,a]),R), and

‖ f ‖C([0,b];L(CD,X)) ≤
m∑

i=2

‖βi‖C([0,b];R) + ‖α‖
1/2
C([0,b];R)r

1/2‖η‖L2([0,b];R),

for all 0 < b ≤ a. Moreover, A( · ) ∈ Cα([0, a];L(D,X)) and [|A|]Cα([0,b];L(D,X)) ≤
‖γ‖Cα([0,b];R) for all 0 < b ≤ a.

In what follows, we say that a function u ∈ C([−r, b]; X), b > 0, is a mild solution

(resp. a classical solution in Cα([0, b]; X)) of (3.1)–(3.3) if u is a mild solution (resp.

a classical solution in Cα([0, b]; X)) of the associated abstract neutral system (1.1)–

(1.2).

Proposition 3.1 Assume ϕ ∈ C([−r, 0]; [D(A2n)]) for some n ∈ N. Then there exists
a mild solution of (3.1)–(3.3) in C([−r, nr1 ∧ a]; X).

Proof The assertion follows directly from Theorem 2.3 and Remark 2.5 by consider-

ing the spaces Yi = [D(Ai)] and Z j = [D(−A) j+γ j ] for i = 1, . . . , 2n and j ∈ N and

γ j ∈ (0, 1). We omit the additional details.

To finish our paper we consider the problem of the existence of classical solutions.

In the next result, y, g1( · ), Λ1, and Λ2 are as in Remark 2.9. In addition to the

above assumptions, we will assume that β1 ∈ C1+α([0, a]; R), α, βi ∈ Cα([0, a]; R),

i = 2, . . . ,m. If [D(A)] →֒ Z →֒ X and the above conditions are verified, it is easy to

see that f ∈ Cα([0, a];L(CD,Z)), g ∈ C1([0, a] × Z,Z),

‖Dg(t, x) − Dg(s, y)‖L(X) ≤ ‖β ′
1‖Cα([0,b];R)(|t − s|α + ‖x − y‖D),
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for all s, t ∈ [0, b], 0 < b ≤ a, and every x, y ∈ D, and

‖ f ‖Cα([0,b];L(CD,Z))

≤ Θ(b) =

m∑

i=1

‖βi‖Cα([0,b];R) +
[
‖α‖

1/2
C([0,b];R) + ‖α‖

1
2

Cα([0,b];R)

]
r1/2‖η‖L2([0,b];R)

for all 0 < b ≤ a.

The next result follows directly from Theorem 2.11.

Proposition 3.2 Assume ϕ ∈ C1+α([−r, 0]; (X,D)α,∞), Aϕ(0) ∈ (X,D)α,∞, β1 ∈
C1+α([0, a]; R), α, βi ∈ Cα([0, a]; R), i = 2, . . . ,m, y ∈ Cα

D
(a) and there exists

δ > r1 such that

[2‖γ‖Cα([0,δ])δ
α + Θ(δ)(2δα + 1)][Λ1 + Λ2]{rα1 , 1} < 1.

Then there exists a classical solution u of (3.1)–(3.3) in Cα([0, b];D) for some r1 < b ≤
a. Equivalently, there exits u ∈ Cα([0, b]; W 2([0, π]) ∩ W 1

0 ([0, π])) ∩ C([−r, b]; X),
such that u verifies (3.1)–(3.2) a.e. for (t, ξ) ∈ [0, b] × [0, π] and u satisfies (3.3) a.e.
for (s, ξ) ∈ [−r, 0] × [0, π].
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