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Abstract An operator T on a Banach space X is said to be weakly supercyclic (respectively N -super-
cyclic) if there exists a one-dimensional (respectively N -dimensional) subspace of X whose orbit under T

is weakly dense (respectively norm dense) in X. We show that a weakly supercyclic hyponormal operator
is necessarily a multiple of a unitary operator, and we give an example of a weakly supercyclic unitary
operator. On the other hand, we show that hyponormal operators are never N -supercyclic. Finally, we
characterize N -supercyclic weighted shifts.
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1. Introduction

The dynamics of linear operators have been extensively studied in the last few years.
In this paper, we are mainly concerned with the notion of supercyclicity. Let X be a
separable, infinite-dimensional complex Banach space. If T is a continuous linear operator
on X, the orbit of a set E ⊂ X under T is defined by

OrbT (E) =
⋃
n∈N

Tn(E).

An operator is said to be supercyclic if there exists a vector x ∈ X whose scaled orbit,
namely C OrbT (x) = {λy; λ ∈ C, y ∈ OrbT (x)}, is norm dense in X. The study of such
operators was initiated by Hilden and Wallen [9], who showed that the adjoint of every
unilateral weighted shift is supercyclic.

Several generalizations of supercyclicity were proposed recently. One of them replaces
the single supercyclic vector x ∈ X with a finite set of vectors: T is said to be finitely
supercyclic if there is a finite F ⊂ X such that the set {λTnx; x ∈ F, λ ∈ C, n ∈ N} is
dense in X. It was recently shown, however, that all finitely supercyclic operators are in
fact supercyclic [13].
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2 F. Bayart and E. Matheron

A more successful generalization of supercyclicity is the notion of N -supercyclicity,
which was introduced in [6] and also studied in [3]. Observe that an operator T ∈ L(X)
is supercyclic if and only if there exists a one-dimensional subspace of X whose orbit
under T is dense in X. The operator T is said to be N -supercyclic (1 � N < ∞) if
X has an N -dimensional subspace with dense orbit. It is shown in [6] that, for every
N � 2, there exist natural examples of N -supercyclic Hilbert-space operators that are
not (N − 1)-supercyclic.

Another possible generalization consists in looking at the weak topology of the Banach
space X. The notion of supercyclicity makes sense in any topological vector space, in par-
ticular in the space (X, w), and this gives rise to the class of weakly supercyclic operators:
one just requires that the scaled orbit of some vector x ∈ X is weakly dense in X. It is
shown in [17] that weakly supercyclic operators may fail to be norm supercyclic.

The study of N -supercyclic or weakly supercyclic operators is very far from being
complete. At the end of [6], [3] and [17], several open questions are raised. We quote
three of them.

Question 1.1 (Sanders [17]). Does there exist a weakly supercyclic hyponormal
operator?

Question 1.2 (Feldman [6] and Bourdon et al . [3]). Can a pure hyponormal
operator be N -supercyclic?

Question 1.3 (Feldman [6]). For N � 2, is there a bilateral weighted shift which
is N -supercyclic but not (N − 1)-supercyclic? If so, can we characterize N -supercyclic
weighted shifts?

Questions 1.1 and 1.2 are reminiscent of two results of Kitai [11] (in the hypercyclic
case) and Bourdon [2]: no hyponormal operator can be supercyclic. Question 1.3 seems
interesting because N -supercyclic operators which appear in [6] or in [3] are constructed
as direct sums of supercyclic operators, and it would be nice to obtain some other, less
‘ad hoc’ examples. Moreover, hypercyclic and supercyclic weighted shifts have already
been characterized by Salas [15,16], so it is natural to consider N -supercyclic case.

We solve completely these three questions, and the answers are sometimes surprising.
We prove that a weakly supercyclic hyponormal operator has to be a multiple of a unitary
operator, but we exhibit a unitary operator which is weakly supercyclic. On the other
hand, hyponormal operators are never N -supercyclic, for any N � 1. Finally, we prove
that an N -supercyclic weighted shift is necessarily supercyclic.

The paper is organized as follows. In § 2, we prove a result relating the notions of
N -supercyclicity and N -multicyclicity (see the definition below). Combined with the
Berger–Shaw theorem (a basic fact in the theory of hyponormal operators), this result is
used in § 3, where Questions 1.1 and 1.2 are solved. Question 1.3 is solved in § 4, the main
tool here being the characterization of supercyclic weighted shifts given by Salas [16].

To conclude this introduction, we recall the following basic result of Ansari [1], which
will be used twice in this paper:

If T is a supercyclic operator, then all powers of T are supercyclic, with the
same supercyclic vectors.
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It is not known whether or not Ansari’s theorem is still valid in the N -supercyclic setting;
the problem is explicitly raised in [3]. The following lemma is a kind of substitute, which
may help to solve it.

Lemma 1.4. Let q be a positive integer, and let E be a subset of X. For j = 1, . . . , q,
put Aj = {Tnx; x ∈ E, n = j (mod q)}. If OrbT (E) is dense in X, then each set Aj has
non-empty interior in X.

Proof. We will use the following elementary fact, first observed by Miller [12] in this
context: if A and B are two closed subsets of X such that B has empty interior and
A ∪ B = X, then A = X. If OrbT (E) is dense in X, we have X = A1 ∪ · · · ∪ Aq.
Therefore, we are able to extract a decomposition

X = Aj1 ∪ · · · ∪ Ajm
, 1 � j1 < j2 < · · · < jm � q,

which is minimal in the sense that there exists no decomposition of X with fewer than m

sets Aj . Since T k has a dense range, one has X = T k(X) = T k(Aj1) ∪ · · · ∪ T k(Ajm
) for

any k ∈ N. Moreover, it is straightforward to check that T k(Aj) ⊂ Aj+k, where j + k is
taken to be modulo q. Thus, we also have X = Aj1+k ∪ · · · ∪ Ajm+k for any k ∈ N. Now,
assume some Al has empty interior. If k is chosen in such a way that j1 + k = l (mod q),
then, using the elementary fact mentioned above, we get a decomposition X = Aj2+k ∪
· · · ∪ Ajm+k with less than m sets Aj ; this is a contradiction. �

2. N-supercyclicity and N-multicyclicity

In this section, we consider complex topological vector spaces X and Y , which may or may
not be normed spaces. All topological notions will be relative to the given topologies. In
particular, in the case of a Banach space equipped with the weak topology, ‘supercyclic’
means in this section the same as ‘weakly supercyclic’ in the rest of the paper.

Recall that an operator S ∈ L(Y ) is said to be cyclic if there exists some vector y ∈ Y

such that the linear span of OrbS(y) is dense in Y . The ‘N -dimensional’ analogue of
cyclicity is the notion of N -multicyclicity.

Definition 2.1. Let N be a positive integer. An operator S ∈ L(Y ) is said to be
N -multicyclic if there exist N vectors y1, . . . , yN in Y such that the linear span of
{P (S)ym; 1 � m � N, P ∈ C[z]} is dense in Y .

The following result provides a link between N -supercyclicity and N -multicyclicity; it
will be an essential tool in our study of the dynamics of hyponormal operators. Below,
by a rational number of T we mean a complex number ω of the form ω = e2iπr, where
r ∈ Q.

Proposition 2.2. Let T ∈ L(X), let p be a positive integer, and let ω1, . . . , ωp be
pairwise distinct rational numbers of T. Assume that T is N -supercyclic, for some positive
integer N . Then the operator S = ω1T ⊕ · · · ⊕ ωpT , acting on Y = Xp, is N -multicyclic.
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Proof. We first treat the case N = 1, since it may be easier to follow and already
contains the main ideas; moreover, this will be the only case needed in the proof of
Theorem 3.4 below. So assume that T is supercyclic, and let x ∈ X be a supercyclic
vector for T . We show that x̄ = (x, . . . , x) ∈ Xp is a cyclic vector for S. In other words,
given ū = (u1, . . . , up) ∈ Xp and neighbourhoods of 0, O1, . . . ,Op ⊂ X, we have to find
a polynomial P such that P (S)x̄ − ū ∈ O1 × · · · × Op.

Let (v1, . . . , vp) ∈ Xp and neighbourhoods of 0, O′
1, . . . ,O′

p ⊂ X to be chosen later.
Also let q be a positive integer such that ωq

i = 1 for i = 1, . . . , p. By Ansari’s Theorem [1],
all vectors T jx, j = 1, . . . , p, are supercyclic for the operator T q. Thus, one can find
positive integers n1, . . . , np with nj = j (mod q) and complex numbers λ1, . . . , λp such
that

λjT
nj x − vj ∈ O′

j

for all j ∈ {1; · · · ; p}. Now let P be the polynomial defined by

P (z) = λ1z
n1 + · · · + λpz

np .

Since ω
nj

i = ωj
i for i, j � p, we have

P (S) =
∑

j

λjω
j
1T

nj ⊕ · · · ⊕
∑

j

λjω
j
pT

nj .

Viewing line vectors as column vectors for typographical simplicity, it follows that the
vector P (S)x̄ is given by

P (S)x̄ = Mω · (λ1T
n1x, . . . , λpT

npx),

where Mω is the Vandermonde matrix

Mω =

⎛
⎜⎜⎜⎜⎝

ω1 ω2
1 · · · ωp

1

ω2 ω2
2 · · · ωp

2
...

...
...

ωp ω2
p · · · ωp

p

⎞
⎟⎟⎟⎟⎠

Thus, setting v̄ = (v1, . . . , vp), we obtain

P (s)x̄ − Mω · v̄ ∈ Mω · (O′
1 × · · · × O′

p).

Since the Vandermonde matrix Mω is invertible, one can now choose v̄ = (v1, . . . , vp)
and O′

1, . . . ,O′
p in such a way that Mω · v̄ = ū and Mω · (O′

1 × · · · × O′
p) ⊂ O1 × · · · × Op.

This concludes the proof in the case N = 1.

We now treat the general case, following the same ideas. Assume that T is N -
supercyclic, and let E ⊂ X be an N -dimensional subspace such that OrbT (E) is dense
in X. Let (x1, . . . , xN ) be a basis of E, and for m ∈ {1; · · · ; N}, put x̄m = (xm, . . . , xm) ∈
Xp. We show that the linear span of {P (S)x̄m; 1 � m � N, P ∈ C[z]} is dense in Xp.
Denoting this linear span by F , it is sufficient to show that F has non-empty interior
in Xp.
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Let q � p be a positive integer such that ωq
i = 1 for all i ∈ {1; · · · ; p}, and let A1, . . . , Aq

be the sets defined in Lemma 1.4. If Mω is the Vandermonde matrix introduced in the
first part of the proof, then the set

W = {ū ∈ Xp; ∃v̄ ∈ A1 × · · · × Ap Mω · v̄ = ū}

has a non-empty interior in Xp, because Mω is invertible and each Aj has a non-empty
interior in X. Therefore, it is sufficient to show that W ⊂ F ; in other words, given
v̄ = (v1, . . . , vp) ∈ A1 × · · · × Ap, one can approximate Mω · v̄ by vectors of the form

P1(S)x̄1 + · · · + PN (S)x̄N ,

where P1, . . . , PN are polynomials. This is done exactly as in part 1 of the proof: each vj

is approximated by vectors of the form λ1jT
nj x1+· · ·+λNjT

nj xN , where nj = j (mod q),
and the polynomials Pm(z) =

∑
j λmjz

nj do the job. �

Remarks.

(1) If the rational numbers ω1, . . . , ωp are not supposed to be pairwise distinct, then
our proof does not work any more. In particular, we have not proved that if T

is N -supercyclic, then T ⊕ T is N -multicyclic. In the hypercyclicity setting, this
problem is studied in [7], where it is proved that if T is a hypercyclic operator,
then T ⊕ T is cyclic if and only if T satisfies the so-called hypercyclicity criterion
(we refer the reader to [7] for the relevant definitions).

(2) It is also clear that our proof uses in an essential way the fact that the ωi are
rational numbers. It would be interesting to know what happens when the ωi are
not assumed to be rational.

3. Dynamics of hyponormal operators

In this section, all operators act on an infinite-dimensional Hilbert space.

3.1. The Berger–Shaw theorem

We recall that a bounded operator T on a Hilbert space H is said to be hyponormal if
‖Th‖ � ‖T ∗h‖ for all h ∈ H, which means that its self-commutator [T ∗, T ] = T ∗T −TT ∗

is a positive operator. Our reference on hyponormal operators is [4]. Bourdon’s proof
that a hyponormal operator is never supercyclic uses in a clever way some elementary
estimations of the norms ‖Tnh‖, h ∈ H. This method seems to be inefficient in the
weakly supercyclic case. We replace it by a powerful result on N -multicyclic hyponormal
operators: the so-called Berger–Shaw theorem.

Theorem 3.1. Let S be a hyponormal operator. If S is N -multicyclic for some positive
integer N , then [S∗, S] is a trace class operator, and

Tr([S∗, S]) � N

π
area(σ(S)).
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The exact value of the right-hand side is unimportant for the use we shall make of
the Berger–Shaw theorem: we just need to know that Tr([S∗, S]) is bounded by some
constant C(N, ‖S‖) depending only on N and ‖S‖.

3.2. Hyponormal operators and N-supercyclicity

Let N be a positive integer. It was proved by Feldman [6, Theorem 4.9] that a nor-
mal operator is never N -supercyclic. We extend this result to the case of hyponormal
operators.

Theorem 3.2. Hyponormal operators are never N -supercyclic.

Proof. By Feldman’s result mentioned above, it is sufficient to show that if T ∈ L(H)
is hyponormal and N -supercyclic, then T is normal. Let p be any positive integer, and let
ω1, . . . , ωp be the pth roots of 1. By Proposition 2.2, the operator S = ω1T ⊕· · ·⊕ωpT is
N -multicyclic. Moreover, S is hyponormal because T is hyponormal. By the Berger–Shaw
theorem, it follows that [S∗, S] is a trace-class operator, and Tr([S∗, S]) � C(N, ‖S‖).
Since ‖S‖ = ‖T‖ and Tr([S∗, S]) = p Tr([T ∗, T ]), we get

0 � Tr([T ∗, T ]) � C(N, ‖T‖)
p

for all p � 1,

so Tr([T ∗, T ]) = 0, and hence [T ∗, T ] = 0 because [T ∗, T ] is a positive operator. Thus, T

is indeed a normal operator, and the proof is complete. �

3.3. Weakly supercyclic hyponormal operators

In this subsection, we partly extend Bourdon’s result that hyponormal operators can-
not be supercyclic to the case of weakly supercyclic operators. Before stating our result,
we prove the following lemma.

Lemma 3.3. Let X be a Banach space, X = X1 ⊕ X2, and S = S1 ⊕ S2 with Si ∈
L(Xi), i = 1, 2. Assume that there exists some positive number r such that σ(S1) ⊂ Dr

and σ(S2) ⊂ C \ D̄r, where Dr is the disc {|z| < r}. Then S is not weakly supercyclic.

Proof. Since any non-zero multiple of a weakly supercyclic operator is weakly super-
cyclic, we may assume that r = 1; thus, we have σ(S1) ⊂ D and σ(S2) ⊂ C \ D̄. Sup-
pose that S is weakly supercyclic, and let (f1, f2) be a weakly supercyclic vector. Since
σ(S2) ⊂ C \ D̄, the operator S2 is invertible and σ(S−1

2 ) ⊂ D. By the spectral radius
formula, it follows that ‖Sn

2 f2‖ � βCn, n ∈ N, for some constants β > 0 and C > 1.
By a result of Dilworth and Troitsky [5], this implies that the weak closure of the set
{Sn

2 f2; n ∈ N} ⊂ X2 does not contain 0; in other words, there exist continuous linear
forms Φ1, . . . , Φp on X2 such that

∀n � 1, max
1�j�p

|Φj(Sn
2 f2)| � 1.
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Let us fix a non-zero linear functional e∗ ∈ X∗
1 . Let (Uk) be the following sequence of

weak open subsets of X:

Uk =
{

(x1, x2); |e∗(x1) − 1| < 1/k and max
1�j�p

|Φj(x2)| < 1/k
}

.

One can find an increasing sequence (nk) of integers and a sequence (λk) of scalar numbers
satisfying λkSnk(f1, f2) ∈ Uk. This implies

|λk| max
1�j�p

|Φj(Snk
2 f2)| � 1/k,

hence λk tends to 0. Now, since σ(S1) ⊂ D, the operator S1 is power bounded. Therefore,
|e∗(λkTnk

1 f1)| tends to 0, which is a contradiction. �

Now we can prove the following partial extension of Bourdon’s result.

Theorem 3.4. Every weakly supercyclic hyponormal operator is a multiple of a uni-
tary operator.

Proof. The proof will be carried out in two steps. In the first step, we reduce the
problem to the case of weakly supercyclic normal operators. In the second step, we use
Lemma 3.3 to show that such operators are necessarily multiples of unitary operators.

Step 1. A weakly supercyclic hyponormal operator is necessarily normal.
This is proved exactly as in Theorem 3.2, using Proposition 2.2 (with N = 1) and

the Berger–Shaw theorem. The only difference is that, in the present case, we apply
Proposition 2.2 with X = (H, w), the Hilbert space H endowed with its weak topology,
so we have to note that weak cyclicity (for the operators S associated with T ) is equivalent
to norm cyclicity.

Step 2. A weakly supercyclic normal operator is a multiple of a unitary operator.
Let T be a weakly supercyclic normal operator on the Hilbert space H. By the spectral

theorem, we may assume that T is a multiplication operator; this means that T acts
on L2(Ω, µ), for some finite measure space (Ω, µ), and is defined by Tf = φf , where
φ ∈ L∞(µ), φ 	= 0. We have to show that |φ| is constant µ-almost everywhere. By
contradiction, assume that this is not the case. Then one can find r > 0 and ε > 0 such
that A = {z; |φ(z)| < r − ε} and B = {z; |φ(z)| > r + ε} have µ-positive measure. Put
C = Ω \(A∪B), and dµA = 1Adµ, dµB = 1Bdµ, dµC = 1Cdµ. We can decompose L2(µ)
and T as

L2(µ) = L2(µA) ⊕ L2(µB) ⊕ L2(µC) and T = Mφ|A ⊕ Mφ|B ⊕ Mφ|C .

The operator S = Mφ|A ⊕Mφ|B is weakly supercyclic because T is, and this is impossible
by Lemma 3.3. �

To conclude this section, we now use Lemma 3.3 to prove the existence of a ‘weak
supercyclicity circle’. In the case of norm supercyclicity, the existence of such a circle
was proved by Herrero [8].
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Proposition 3.5. Let X be a Banach space. If T ∈ L(X) is weakly supercyclic, then
there exists a circle rT such that every component of the spectrum of T intersects rT.

Proof. Assume that the conclusion is not true. For each r ∈ I = [0;∞[, let Dr be the
disc {|z| < r}. We first show that there exist some r ∈ I and two components of σ(T ),
say K1, K2, such that K1 ⊂ Dr and K2 ∩ D̄r = ∅. Indeed, otherwise for each r ∈ I, either
all components of σ(T ) meet C \ Dr, or all components of σ(T ) meet D̄r, and the two
cases are exclusive because we assume that no circle rT meets each component of σ(T ).
Let us denote by A the set of all r ∈ I satisfying the first property, and B the set of all
r satisfying the second property. By compactness, A and B are closed subsets (in fact,
subintervals) of I, they are non-empty (A contains r = 0 and B contains r = ‖T‖), and
they form a partition of I: this contradicts the connectedness of I. So we have proved
the existence of r, K1, K2 satisfying K1 ⊂ Dr and K2 ∩ D̄r = ∅. Notice that r is positive
because D0 = ∅. We put K3 = σ(T ) \ (K1 ∪ K2). Then the compact sets K1, K2 and K3

satisfy the following properties:

(i) σ(T ) = K1 ∪ K2 ∪ K3;

(ii) K1, K2 are non-empty;

(iii) K1 ⊂ Dr, K2 ⊂ C \ D̄r;

(iv) K1, K2 and K3 are pairwise disjoint.

By the Riesz decomposition theorem, we may write X = X1 ⊕ X2 ⊕ X3, and T =
T1 ⊕ T2 ⊕ T3, with σ(Ti) = Ki, i = 1, 2, 3. We conclude as previously by applying
Lemma 3.3 to S = T1 ⊕ T2. �

3.4. Unitary operators

In view of Theorem 3.4, it seems to be very interesting to characterize those unitary
operators which are weakly supercyclic (if there is any); or equivalently, to determine
for which Borel measures µ on T the multiplication operator Mz defined on L2(µ) by
Mzf = zf is weakly supercyclic. Using some results on thin sets from harmonic analysis,
we give a surprising example of a weakly supercyclic unitary operator. Then, for a large
class of measures, including all measures which are not singular with respect to Lebesgue
measure on T, we show that Mz is not weakly supercyclic.

Example 3.6. There exists a unitary operator which is weakly supercyclic.

The proof relies on the following lemma. Recall that a finite (positive) measure space
(Ω, µ) is said to be non-atomic if every measurable set A ⊂ Ω with positive measure has
a measurable subset B such that 0 < µ(B) < µ(A). By the Lyapunov convexity theorem
(see [14]), it follows that, for any measurable set A ⊂ Ω, the range of µ|A is the whole
interval [0;µ(A)].

Lemma 3.7. Let (Ω, µ) be a finite, non-atomic measure space, and let F be the set
of all measurable functions f : Ω → C with constant modulus. Then F is weakly dense
in L2(µ).
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We postpone the proof of the lemma, and now give the promised example. Recall that
a compact set E ⊂ T is said to be a Kronecker set if the characters of T are uniformly
dense in C(E, T), the set of all continuous functions on E with constant modulus 1. For
further details on Kronecker sets and other thin sets from harmonic analysis, we refer
the reader to [10]. It is well known, and easy to prove by Baire category arguments, that
there exist perfect Kronecker sets. Let E be such a set, and let µ be any continuous Borel
probability measure with support E. Finally, let T = Mz be the multiplication operator
acting on L2(µ). We show that the set D = {λzn; λ ∈ C, n ∈ N} is weakly dense in
L2(µ), which means that the constant function 1 is a weak supercyclic vector for T . Since
E is a Kronecker set, it is also a Dirichlet set, which means that the constant function
1 a uniform limit (on E) of a sequence zpk , with pk ∈ N and pk → ∞. Indeed, since
C(E, T) has no isolated point, 1 is the uniform limit of a sequence (zqk), where qk ∈ Z

and |qk| tends to ∞. Since 1 is real valued, we have ‖1 − zqk‖∞ = ‖1 − z−qk‖∞, so we
may assume that some subsequence (pk) of (qk) tends to ∞. Now, let f : E → T be
any continuous function. Writing f = f1, using the fact that E is a Kronecker set and
choosing a sequence (pk) tending fast enough to ∞, we see that f is the uniform limit of
a sequence (znk), where the (nk) are non-negative integers. Therefore, the norm-closure
of D in L2(µ) contains all continuous functions f : E → C with constant modulus. Now,
since E is a Kronecker set, it is totally disconnected; hence, any Borel subset of E can
be approximated in µ-measure by a relatively clopen set. On the other hand, every Borel
function f : E → C with constant modulus can be approximated in the L2(µ)-norm by
a finite sum

∑p
i=1 ci1Ai, where the Ai are Borel sets and the ci have the same modulus.

Approximating each Ai by a clopen set and observing that the characteristic function of a
clopen set is continuous, one obtains an approximation of f by a continuous function with
constant modulus. Thus, the norm closure of D in L2(µ) contains all Borel functions on
E with constant modulus. Since µ is a continuous measure with support E, the measure
space (E, µ) is non-atomic, so one can apply the lemma to conclude the proof.

Proof of Lemma 3.7. It is sufficient to prove the following claim.

Claim 3.8. Let ϕ ∈ L∞(µ). If (A1, . . . , An) is a measurable partition of Ω, then one
can find f ∈ F such that ‖f‖2 � 2‖ϕ‖∞ and

∫
Ai

f dµ =
∫

Ai
ϕ dµ for all i.

Indeed, once this is done, it follows that given any function ϕ ∈ L∞(µ) and any finite
family of step functions (h1, . . . , hk), one can find f ∈ F with ‖f‖2 � 2‖ϕ‖∞ such that∫

fhj dµ =
∫

ϕhj dµ for all j: one just needs to choose a partition (A1, . . . , An) which is
compatible with all functions hj . Since one has a uniform estimate on ‖f‖2, this implies
easily that each function ϕ ∈ L∞(µ) is in the weak closure of F , and the lemma is proved.
To prove the claim, we may obviously assume that µ is a probability measure, ϕ 	= 0 and
all sets Ai have positive measure. Set αi =

∫
Ai

ϕ dµ, and K = 2‖ϕ‖∞. Then

max
{

|αi|
µ(Ai)

; 1 � i � n

}
� ‖ϕ‖∞ < K,

so one can find positive numbers δ1, . . . , δn and complex numbers K1, . . . , Kn such that
|Ki| = K, δi < µ(Ai) and Kiδi = αi for all i.
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Let i ∈ {1; · · · ; n}. Since the measure space (Ω, µ) is non-atomic and δi < µ(Ai), one
can use the Lyapunov convexity theorem to find a measurable partition (B+

i , Ãi, B
−
i )

of Ai such that µ(Ãi) = δi and µ(B+
i ) = µ(B−

i ): one first chooses Ãi ⊂ Ai such that
µ(Ãi) = δi, and next B+

i ⊂ Ai \ Ãi such that µ(B+
i ) = 1

2 (µ(Ai) − δi).
Now, let f : Ω → C be defined on each set Ai by f(x) = Ki if x ∈ Ãi and f(x) = ±K

if x ∈ B±
i . Then f ∈ F , ‖f‖2 = K = 2‖ϕ‖∞ and

∫
Ai

f dµ = Kiδi =
∫

Ai
ϕ dµ for all i.

This concludes the proof. �

We have in fact proved the following result:

if µ is a continuous probability measure on T supported on a Kronecker set,
then the multiplication operator Mz acting on L2(µ) is weakly supercyclic.

With a little extra work, one can exhibit a larger class of thin sets giving rise to weakly
hypercyclic multiplication operators. Recall that a compact set E ⊂ T is said to be
a Helson set if every continuous function on E is the restriction of a function with
absolutely convergent Fourier series. By standard duality arguments, E is Helson if and
only if there exists some finite constant α such that

‖ν‖ � α sup
n

|ν̂(n)|

for all complex measures ν supported on E. The smallest such α is called the Helson con-
stant of E; it is obviously not smaller than 1. Kronecker sets are Helson with constant 1,
but the family of Helson-1 sets is much larger than the family of Kronecker sets.

Example 3.9. Let µ be a continuous probability measure on T, and let T = Mz be
the multiplication operator acting on L2(µ). Assume that the support of µ is Helson with
constant 1. Then T is weakly supercyclic.

Proof. Let E be the support of µ. As before, it is sufficient to show that the weak
(actually the norm) closure in L2(µ) of the set

D = {λzn; λ ∈ C, n � 1}

contains all continuous functions on E with constant modulus 1. Let f be such a function,
and let ν = f̄µ. Since E is Helson-1, one can find a sequence of integers (mk) such that
|ν̂(mk)| tends to ‖ν‖ = 1 as k → ∞. Thus, one can find complex numbers αk such that
|αk| = 1 and

lim
k→∞

∫
(αkzmk f̄ − 1) dµ = 0.

Since gk = αkzmk f̄ has constant modulus 1, it follows that gk tends to 1 in the L2(µ)-
norm, as can be seen by expanding |gk − 1|2. And, since |gk − 1| = |αkzmk − f |, we
conclude that αkzmk tends to f in norm. So we are almost done, except that the integers
mk need not be positive.

To overcome this slight complication, we observe that there exist a sequence of pos-
itive integers (pk) tending to ∞ and a sequence (βk) ⊂ T such that βkzpk → 1 in the
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L2(µ)-norm. Indeed, since E is not reduced to a single point (because µ is continuous),
one can find a continuous function h on E with constant modulus 1 which is not a
multiple of (the restriction of) a character. As above, such a function is the norm limit
of a sequence (α′

kzm′
k), where |α′

k| ≡ 1 and m′
k ∈ Z. The sequence (m′

k) is unbounded
because h is not a multiple of a character. Then, by setting βk = α′

k+1/α′
k, we see that

the sequence βkzm′
k+1−m′

k tends to 1 in norm, and by conjugating and passing to a sub-
sequence if necessary, we may also assume that pk = m′

k+1 − m′
k tends to ∞. Of course,

(pk) tends to ∞ as fast as we want; in particular, we may assume that nk = pk +mk � 0
for each k. Since the functions αkzmk are uniformly bounded, αkβkznk − αkzmk tends
to 0, so we finally find that αkβkznk tends to f . This concludes the proof. �

Our last example exhibits a family of measures for which the multiplication operator
Mz is not weakly supercyclic. Recall that a rational number of T is a complex number
ω of the form ω = e2iπr, r ∈ Q.

Example 3.10. Let µ be a Borel probability measure on T, and let T = Mz be the
usual multiplication operator acting on L2(µ). Assume that the following condition is
fulfilled: for each measurable set A ⊂ T such that µ(A) = 1, there exists a rational
number ω ∈ T, ω 	= 1, such that A ∩ ωA 	= ∅. Then the operator T is not weakly
supercyclic. This happens in particular if µ is not singular with respect to Lebesgue
measure on T.

Proof. Assume that T is weakly supercyclic, and let f ∈ L2(µ) be a weak supercyclic
vector for T . By Ansari’s theorem [1], f is a weak supercyclic vector for all operators
T q, q � 1; in particular, f is a (norm) cyclic vector for all T q. This implies that, for each
q � 1, one can find a sequence of polynomials (Rnq)n∈N such that Rnq(zq)f(z) converges
µ-almost everywhere to zf(z) as n → ∞. Since there are only countably many q and
f(z) 	= 0 for µ-almost every z ∈ T (otherwise f would not be cyclic for T ), it follows that
there exists a measurable set A ⊂ T with µ(A) = 1, such that Rnq(zq) → z pointwise on
A for all q � 1. By assumption, one can find a rational number ω ∈ T \ {1} such that
A ∩ ωA 	= ∅; let a ∈ A ∩ ωA, and put b = ω−1a ∈ A. Since ω is a rational number, one
can choose an integer q � 1 such that aq = bq, and by definition of the set A, we get

a = lim
n→∞

Rnq(aq) = lim
n→∞

Rnq(bq) = b,

which is a contradiction. Therefore, T is not weakly supercyclic.
Finally, if µ is not singular with respect to Lebesgue measure, then the above condition

is fulfilled. Indeed, if A ⊂ T is a measurable set such that µ(A) = 1, then A has positive
Lebesgue measure. All rational translates of A have the same Lebesgue measure, so they
cannot be pairwise disjoint. Thus, there exist rational numbers ω1 	= ω2 ∈ T such that
ω1A ∩ ω2A 	= ∅, and it is sufficient to put ω = ω−1

1 ω2. �

A characterization of weakly supercyclic unitary operators seems difficult to obtain. A
first step could be to solve the following problem.
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Question 3.11. Let µ be a probability measure on T such that µ̂(n) → 0 as |n| → ∞.
Can Mz be weakly supercyclic on L2(µ)?

Observe that a negative answer to this question cannot be obtained by the type of
arguments used in Example 3.10. Indeed, it was proved by Rudin that there exist compact
sets K ⊂ T which are independent (in the sense that if ωn1

1 × · · · × ω
np
p = 1 with ωi ∈ K

pairwise distinct and ni ∈ Z, then ni = 0 for all i) but do carry probability measures
whose Fourier coefficients vanish at ±∞. On the other hand, Körner and Kaufman have
shown that there exist Helson-1 sets supporting distributions whose Fourier coefficients
vanish at infinity; but it is well known that these distributions cannot be measures. All
these facts are highly non-trivial (see [10]).

Measures µ such that µ̂(n) → 0 as |n| → ∞ are called Rajchman measures. It is well
known that all complex measures absolutely continuous with respect to a given Rajchman
measure are again Rajchman. It follows that if µ is a Rajchman measure and f ∈ L2(µ),
then znf → 0 weakly in L2(µ), and this implies in particular that no scaled orbit of Mz

can be weakly sequentially dense in L2(µ). On the other hand, all weakly supercyclic
operators known to us do have the stronger property that some scaled orbit is weakly
sequentially dense. So we are naturally led to the following question.

Question 3.12. Does there exist a weakly hypercyclic operator on some Banach space
X such that no scaled orbit of T is weakly sequentially dense in X?

4. N-supercyclic weighted shifts

In this section, we consider bilateral bounded weighted shifts acting on X = �p(Z),
1 � p < ∞, or c0(Z); that is, operators T defined by Ten = wnen−1, where (wn) is a
bounded sequence of positive numbers. Needless to say, (en) is the canonical basis of X.

Theorem 4.1. In the class of bilateral weighted shifts, N -supercyclicity is equivalent
to supercyclicity.

Proof. Let T be a bilateral weighted shift, with associated weight sequence (wn). By
contradiction, assume that T is not supercyclic, yet N -supercyclic for some N � 2. For
all pairs (i, n) ∈ Z × N, set

γin = wi+1 × · · · × wi+n.

In other words, γin is defined by the identities

〈e∗
i , T

nx〉 = γinxi+n,

where e∗
i is the ith coordinate functional. By a result of Salas [16], the fact that T is not

supercyclic can be expressed as follows: there exist q ∈ N and α > 0 such that, for any
n ∈ N,

max
{

γj−nn

γhn
; |j|, |h| � q

}
� α. (4.1)
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Since T is N -supercyclic, there exist N vectors a(1), . . . , a(N) in X such that, if E =
span(a(1), . . . , a(N)), then OrbT (E) = X. In particular, one can approximate the vector

f = e−q + · · · + e0 + · · · + eq,

so one may find an increasing sequence of integers (pk)k�1 and N sequences of complex
numbers (upk

(m)), 1 � m � N , such that

‖upk
(1)T pka(1) + · · · + upk

(N)T pka(N) − f‖ → 0

as k → ∞. From now on, we set I = {pk; k � 1}.
By (4.1), we may assume, passing to a subsequence if necessary, that there exist two

integers j, h with |j|, |h| � q, such that

γj−nn

γhn
� α for all n ∈ I. (4.2)

For each n ∈ I, let
xn = un(1)Tna(1) + · · · + un(N)Tna(N).

For m ∈ Z, let also
am = (am(1), . . . , am(N)) ∈ CN .

By the definition of γin, the ith coordinate of xn is given by

〈e∗
i , x

n〉 = γin(un(1)ai+n(1) + · · · + un(N)ai+n(N))

= γinΘ̃n(ai+n),

where Θ̃n is a linear form on CN depending only on n. The key point in the proof is the
following claim.

Claim 4.2. Set Θn = γhnΘ̃n, n ∈ I. Then Θn(ah+n) → 1 as n → ∞, while Θn(am) →
0 for each fixed m > j. Finally, Θn(am) → 0 as m → ∞, for each fixed n ∈ I.

Proof of Claim 4.2. Evaluating xn − f on e∗
h, we get |Θn(ah+n) − 1| � ‖xn − f‖ by

definition of Θn. This proves the first part of the claim.
Before proving the second part, we observe that the following property holds true: for

each integer m > j, there exists a constant C(m) such that

γhn

γm−nn
� C(m) for all n ∈ I. (4.3)

Indeed, one can write

γhn

γm−nn
=

γhn

γj−nn
× wj+1−n · · ·wm−n

wj+1 · · ·wm
.

By (4.2), the first quotient is bounded by 1/α, while the second is bounded by
‖w‖m−j

∞ /(wj+1 . . . wm). This proves (4.3).
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We now prove the second part of the claim, so let us fix m > j. If n > q + m, then,
evaluating xn − f on e∗

m−n, we get |γm−nnΘ̃n(am)| � ‖xn − f‖. Using (4.3), it follows
that

|γhnΘ̃n(am)| � C(m)‖xn − f‖,

which proves the second part of the claim.
The third part is obvious because a(1), . . . , a(N) belong to c0(Z). �

To conclude the proof of the theorem, let us now fix a positive number δ < 1/(N + 1).
Using Claim 4.2, one can construct by induction an increasing sequence (nk) ⊂ I such
that, on setting bk = ah+nk

and Φk = Θnk
, the vectors bk ∈ CN and the linear forms

Φk ∈ (CN )∗ satisfy the following properties:

|Φi(bk)| < δ if i 	= k,

|Φk(bk)| > 1 − δ.

}

Observe that, since

|Φk(bk)| > 1 − δ > Nδ >

N+1∑
i=1
i �=k

|Φi(bk)|

for all k ∈ {1; · · · ; N +1}, the matrix (Φi(bk))N+1
i,k=1 is diagonally dominant, hence invert-

ible. It follows that the vectors b1, . . . , bN+1 are linearly independent in CN , which is
impossible. �
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