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The use of molecular genetic information in the evaluation of livestock has become more common. This study looks at the efficacy
of using such information to improve the genetic evaluation of a rare breed of dual-purpose cattle. Data were available in the
form of pedigree information on the Gloucester cattle breed in the United Kingdom and recorded milk and beef performance on
a small number of animals. In addition, molecular genetic information in the form of multi-marker, multiple regression results
converted to a 1 to 10 score (Igenity scores) and 123 single nucleotide polymorphism (SNP) genotypes for 199 non-recorded
animals were available. Appropriate mixed-animal models were explored for the recorded traits and these were used to calculate
estimated breeding values (EBV), and their accuracies, for 6527 animals in the breed’s pedigree file. Various ways to improve the
accuracy of these EBV were explored. This involved using multivariate BLUP analyses, genomic estimated breeding values (GEBV)
and combining Igenity scores with recorded traits in a series of bivariate genetic analyses. Using the milk recording traits as an
example, the accuracy of a number of traits could be improved using multivariate analyses by up to 14%, depending on the
combination of traits used. The level of increase in accuracy largely corresponded to the absolute difference between the genetic
and residual correlations between two traits, but this was not always symmetrical. The use of GEBV did not increase the accuracy
of milk trait EBV owing to the low proportion of variance explained by the 101 SNPs used. Using Igenity scores in bivariate
analyses with the recorded data was more successful in increasing EBV accuracy. The largest increases were found in genotyped
animals with no recorded performance (e.g. a 58% increase in fat weight in milk); however, the size of the increase depended on
the level of the genetic correlation between the recorded trait and the Igenity score for that trait. Lower levels of improvements in
accuracy were seen in animals that were recoded but not genotyped, and ancestors which were neither genotyped nor recorded.
This study demonstrated that it was possible to improve the accuracy of EBV estimation by including Igenity score information in
genetic analyses but it also concluded that increasing the level of performance recording in the breed would be beneficial.
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Implications

Rare breeds of livestock are an important source of bio-
diversity in the agricultural sector. Their survival depends
on finding a suitable economic role. Genetic improvement is
one way to make such breeds more relevant and the use of
molecular genetic information offers the possibility to speed
up their improvement. This paper demonstrates that it is
possible to achieve faster rates of improvement in some traits
by combining recorded information on productivity with
genetic scores derived from analysing large numbers of
animals for key traits. This approach needs to be combined
with recording a larger number of animals in the breed to
make good progress.

Introduction

Rare breeds, by their very nature, suffer from a number of
issues which may be a drawback when trying to implement
genetic improvement programmes. These include small
numbers of animals in the breed, limited numbers of sires,
possible reduced genetic variation, potentially high levels of
inbreeding and, in many cases, ownership by part-time
farmers in small herds in a breed of relatively low economic
value. The ‘genomic revolution’ is changing the way main-
stream breeds are selected, and it is of interest to investigate
how such methods might help owners of rare breeds to
improve their animals.
The situation of the Gloucester cattle breed (Gloucester

Cattle Society (GCS), 2013; Oklahoma State University, 2013;
RBST, 2013) in the United Kingdom was such that the† E-mail: gpollott@rvc.ac.uk
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pedigree information was quite extensive, performance data
for dairy, beef and fertility traits was limited, and genomic
information from a small number of animals with 123 single
nucleotide polymorphisms (SNP) genotypes was available.
The basic question addressed in this paper was how to
maximise the benefit of such information to Gloucester
breeders. In addition, it was interesting to investigate the
contribution of various sources of information to the genetic
evaluation of the animals, to see what might be done to
improve the breed and to consider what else could be done
to improve its genetic evaluation. This study investigated the
use of 123 SNPs from the panel used by Merial to derive
multi-marker, multiple regression results converted to a 1 to
10 score (Igenity scores) for a range of traits on cattle in the
United States (Merial, 2008 and 2009). These scores, along
with other more traditional genetic evaluation methods,
were evaluated as an aid to determining the genetic poten-
tial of a rare breed of cattle.

Material and methods

Several sources of information were available for this study.
The basic data comprised the identities of the animals
registered with the breed society and that of their ancestors
(pedigree data). Some breeders also recorded information
on different aspects of productivity (performance data). In
addition, several breeders had data on Igenity scores pro-
duced by Merial (now part of the Neogen Corporation) and
based on genotype information for 123 SNP (genotype data).

Breed society pedigree data
Gloucester cattle are an ancient UK breed, numerous in the
Severn Vale and throughout Gloucestershire, from as early
as the 13th century (GCS, 2013). They are considered dual-
purpose, being valued for their meat and milk (producing
cheese), and were also used as strong draught oxen in former
times. Achieving the peak of their popularity in about 1750,
Gloucester cattle were found from Devon (south-west Eng-
land) to Essex (eastern England) and to the Welsh coast.
Later they were depleted by disease in the 18th Century, the
development of other breeds, arable farming taking grazing
land and the continuing sales of established herds in the
early 20th Century, resulting in only one substantial herd
remaining by 1972. Originally formed in 1919, the GCS was
revived in 1973 initially to provide for the survival of the
breed. The Society has been very successful and breed numbers
have now grown to over 700 registered females. The pedigree
file used in these analyses consisted of 6527 animals, with an
average of 247 being registered annually from 1990 to the
present day. Pedigrees were checked for consistency using
Pedigree Viewer (Version 5.5; Kinghorn, 2012).

Gloucester performance data
Initially, farms were selected for data collection based on
the first 166 DNA samples sent to Merial for genotyping.
Subsequently, farms were also selected on the basis that they
kept animals that were related to the genotyped animals.

This resulted in records from 21 farms being collected on
about 200 animals. The recorded traits are summarised in
Table 1 for both dairy and beef traits. Not all traits were
recorded on all animals.
The dairy data used in this study were collected from the

milk records kept on the farms and follow the trait descrip-
tors commonly used by organisations such as National Milk
Records Ltd (Harrogate, North Yorkshire, UK). Information on
herd, calving date and lactation number was also collected
for each lactation. Both somatic cell count and calving
interval (CI) data were log10 transformed to make them more
normally distributed for analysis.
Beef characteristics were collected for up to 214 animals

from slaughterhouse records, together with appropriate breed
society and farm data. Age at slaughter was calculated as the
difference between the date of birth and date of slaughter and
expressed in months. Carcase weight (CWT) was the cold CWT
from the abattoir records. Both the conformation and fat score
data were generated from the EUROP scheme classifications
(English Beef and Lamb Executive, 2012). The conformation
grades E, U, R, O and P, also assigned a − or + designation,
were scored in ascending order from the poorest to the best
conformation on a 1 to 10 scale; hence, P− = 1 up to
E+ = 10. In the same way, the fat scores were on a 1 to 7
scale with Fat Classes 4 and 5 being split into L (low) and H
(high). Clearly these new scores, like the original classes, were
split into arbitrary values; however, it was assumed in these
analyses that a unit increase in both the fat and conformation
scores was equal across the range used. Additional data
on herd, date of birth and sex were collected and used as
explanatory variables in the analyses.

Genotype data in the form of Igenity scores and SNP
information
Starting in 2009, the GCS obtained DNA from 199 animals:
37 male and 162 female. These samples were used to obtain
profiles for, each individual, of their predicted beef and dairy
characteristics based on an Igenity score (IG). This was a
system developed by Merial which produced scores for each
animal for 10 beef traits (e.g. tenderness, average daily live
weight gain) and 12 dairy traits (e.g. milk yield, somatic cell
count) based on 123 SNP genotypes. This scoring system was
produced using the evidence of associations between the DNA
profile (genotype) and the actual measured trait (phenotype)
from other breeds of cattle. Several beef breeds were used to
compile the beef index, whereas the dairy index was nearly all
derived from Holsteins. These were designed by Merial on the
basis of research carried out in the United States and Canada.
A comparison between a number of such scores for beef traits
has been reported by Van Eenennaam et al. (2007). A study
outlining one possible method for developing SNP-panel scores
has been described by Tang et al. (2011). The mean and
standard deviation of the Igenity scores used in this paper are
shown in Supplementary Table S1 for 19 traits covering beef,
dairy and functional characteristics. Each trait was scored on a
1 to 10 scale, with 1 being the lowest and 10 the highest
genetic merit for each trait separately.
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Genetic parameter and breeding value estimation
All mixed model testing and breeding value estimation (BLUP
analyses) were carried out using ASReml (Gilmour et al.,
2009) which utilises an average information-restricted maxi-
mum likelihood algorithm (REML). Each recorded trait was
tested using a step-down approach from fitting all available
fixed and random effects, and covariates in a mixed model:

Tijklmno ¼ μ +Hi +Yi + Sk + Ll +DIM + am +pen + eijklmno

(1)

The dairy traits were analysed using Equation (1) where
Tijklmno was one of milk yield, fat weight, protein weight,
fat %, protein % or log10 somatic cell count. The fixed
effects were the i th herd (Hi), the j

th year (Yj), the k
th season

of calving (Sk) and the l th lactation number (Ll). Interactions
between herd and year and herd by year by season were
tested for each trait. The length of the lactation (days in milk,
DIM) was fitted as a covariate. Random effects of the m th

animal in the pedigree file, estimating the additive genetic
variance, and the permanent environmental effect of the n th

cow were fitted with variance σa2 and σpe2 respectively. The
residual term was assumed to be normally distributed with a
mean of 0 and variance of σe2. Log10 CI was analysed with a
similar model but included a term for the month of calving
and omitted the covariate DIM.

Tijklmn ¼ μ +Hi +Yi +Mk + Sl +Age + CWT + am + eijklmn

(2)

The beef traits were analysed using equation (2) where Tijklmn
was one of growth rate, cold CWT, fat score or conformation
score. The fixed effects were the i th herd (Hi), the j

th year (Yj),
the k th month of birth (Mk) and the l th sex (Sl). Interactions
between herd and year and herd by year by season were
tested for each trait. The age at slaughter (Age) was fitted as
a covariate within sex using a second-order polynomial,
and CWT was fitted as a covariate to all traits except
CWT. These models were used following a model selection
procedure, which tested different orders of polynomial fitted
both overall and within sex. An upward selection procedure
using a log–likelihood test to indicate a significant difference
between a model and the previous reduced model was used.
Residuals were inspected for non-systematic patterns
indicating the use of a poor model. The random effect of the
m th animal in the pedigree file, estimating the additive
genetic variance, was fitted with variance σa2. The residual
term was assumed to be normally distributed with a mean of
0 and variance of σe2.
Effects were discarded in the step-down process on the

basis of their probability being >0.05 for an F-ratio, in order
of the size of the probability with the largest discarded first.
Estimated breeding values (EBV) and their standard errors
were recovered from the final run for any trait comprising the
significant effects and covariates decided by the step-down
approach. The phenotypic variance was calculated as the
sum of all the available random variance terms for a trait.
The heritability of each trait was calculated as the ratio of the

additive to phenotypic variance. The repeatability of a trait
was calculated as the sum of the additive and permanent
environmental variance divided by the phenotypic variance.
The standard errors of both heritability and repeatability
were calculated as described by Gilmour et al. (2009).
The Igenity scores were analysed with a random effects

model (Equation (3)).

Tmn ¼ μ + am +emn (3)

Tmn was one of the 19 Igenity scores and am was the random
term fitting the pedigree-based relationship matrix to esti-
mate the additive genetic variance (σa2). The heritabilities and
their standard errors were calculated as described above.
The EBV correlations and the correlations between

EBV and Igenity scores were calculated as Pearson product
moment correlation coefficients. Their standard errors were
calculated as (1− r 2)/(n− 1), where r was the correlation
and n the number of pairs of values on which the correlation
was based. The genetic and residual correlations were cal-
culated using a bivariate mixed model in ASReml comprising
the final model for each trait as used in the BLUP analyses.
Their standard errors were calculated as described by Gil-
mour et al. (2009).
The genetic correlations of the five milk trait Igenity scores

with the equivalent recorded trait were calculated using
ASReml and the appropriate final model for each of the two
traits. All aspects of these analyses were carried out using
ASReml (Gilmour et al., 2009) as described above.
For the purpose of comparing accuracy values under

different methods or using multivariate BLUP, the additive,
permanent environmental and residual variances were fixed
at their univariate values. Only the covariance parameters
were allowed to vary in the multi-trait analyses. The standard
error of each EBV was calculated as the square root of the
prediction error variance, derived from the reciprocal of the
diagonal element of the coefficient matrix after absorption of
all other effects (Mrode, 1996). All accuracy values were
derived from the standard errors (SE) of the EBV or genomic
estimated breeding values (GEBV) calculated by the respec-
tive programs as √(1− (SE2/(1+ f ) σa2)), where f was the
inbreeding coefficient of the animal, and σa2 the additive
genetic variance for the trait (Mrode, 1996; Gilmour et al.,
2009). Values were adjusted for repeated records as appro-
priate. Where mean accuracy values were compared, for
specific groups of animals, a two-tailed paired-comparison
t-test was used to signify the probability of a difference
between the two sets of results.

Genomic estimated breeding values
Genomic estimated breeding values and their standard errors
were calculated using the single-step genomic BLUP (GBLUP)
methodology of Misztal et al. (2009) which utilises an
expectation-maximisation algorithm. This approach combines
pedigree, genomic and performance details from animals with
differing amounts of information; animals may have any
combination of the types of data, pedigree, genomic and
performance. Genotype data for 123 SNPs from the 199
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animals analysed by Merial to derive the Igenity scores were
coded. The 22monomorphic SNPs were removed from the data
set. The remaining 101 SNPs were used in conjunction with the
full pedigree and performance data for all 11 recorded traits to
estimate the GEBV and their standard errors. Because this was
a small set of SNP, compared to those more commonly used in
GBLUP calculations, preliminary analyses were carried out to
determine the proportion of the genetic variance accounted for
by the set of SNP (α in the terminology of Misztal et al., 2009),
for each trait. Successive analyses were run for each trait until
the maximum log–likelihood value was found by varying α
between 0 and 1 (Christensen and Lund, 2010). All subsequent
analyses for a given trait were run at the appropriate α value.
All traits were analysed using the final models obtained from
the BLUP analyses described above.

Results and discussion

Gloucester performance
The Gloucester is a rare, dual-purpose breed of cattle hence
data were available for meat, milk and fertility traits. The
level of inbreeding found in these analyses was 0.12 ± 0.04
for the cows with dairy records and 0.14 ± 0.04 for the ani-
mals with Igenity scores. The data from the 176 lactations
recorded on 81 Gloucester cows are summarised in Table 1.
These animals had a mean lactation yield of 2707 kg from
lactations averaging 242 days in length with a mean fat and
protein % of 3.67 and 3.4, respectively. They had an average
lactation number of 2.21 and were 53.9 months of age
at calving. The data were derived from 9 herds, 26 years,
11 months and 37 herd/year/season groups. The carcase data
are also summarised in Table 1. There were 214 animals
slaughtered at an average age of 42 months and a CWT of
287 kg. The animals grew at an average of 8.84 kg/month
(291 g/days) and averaged between O− and O+ for con-
formation and 4L for fat on the EUROP classification scale.
These data included both younger animals raised for beef
production and older breeding animals culled from the herds.
The carcase data were derived from 8 herds, 14 years,
12 months and 3 sexes (entire male, castrates and female).
The mean of 501 CI from 141 cows kept in 19 herds was
416 days (±147.1). Igenity scores were provided by Merial
for 199 animals and these are summarised for 19 traits in
Supplementary Table S1.
Clearly, the Gloucester does not have as high a level of

performance as the major commercial beef or dairy breeds
but acts as a dual-purpose breed kept on small farms
producing milk suitable for cheese making. In comparison,
UK Holstein cows averaged 9091 kg/305 days lactation with
mean fat and protein % of 3.93 and 3.16, respectively, and
CI of 423 days (Holstein UK, 2013). Key beef breeds in
the United Kingdom grow from 750 g/days liveweight and
produce carcases of 275 kg at 450+ days of age (Kempster
and Southgate, 1984). The Gloucester will not achieve
these levels of performance but genetic improvement has
been shown to lead to steady, accumulative increases
in performance in several farmed species once recording

and genetic evaluation schemes have been implemented.
One important set of results in Table 1 and Supplementary
Table S1 is the number of animals recorded in this data set.
Genetic evaluations become more accurate and useful as more
animals are recorded. This should be a key objective of the
breed, to record as much information on as many animals as
possible.

Mixed model analysis of recorded data
The 11 recorded traits were analysed by mixed-animal
models to derive genetic parameters. A summary of the
significant (P< 0.05) fixed effects and covariates is shown in
Supplementary Table S2. The genetic analyses of each trait
were carried out using the fixed effects and covariates shown
as significant effects in Supplementary Table S2 in the mixed
model. These analyses highlight the key factors that need to
be recorded to use an appropriate model in genetic analyses.
All the final models used in these analyses had residuals
evenly distributed about the mean over the range of values
analysed. One additional point is that, in these analyses, the
carcase traits were derived from all animals from the breed
sent for slaughter. If it is important for the breed to consider
young beef animals as a different product from older culled
animals, then different models for these two types of beef
animal may be necessary.
The variance components and genetic parameters, with

their standard errors, derived from 11 univariate analyses
are summarised in Table 2. The heritability values shown
in Table 2 indicate that there was a good level of genetic
variation in most traits except somatic cell count, CI and
conformation score, which showed very little genetic variation.

Table 1 The mean and standard deviation of the milk, beef and fertility
traits recorded on Gloucester cattle used in this study

Mean s.d.

Milk traits1

Lactation number 2.21 1.56
Age (months) 53.9 23.9
Lactation length (days) 242 77
Total milk yield (kg) 2707 1354
Fat weight (kg) 99.9 51.7
Protein weight (kg) 91.8 44.6
Fat % 3.67 0.54
Protein % 3.40 0.26
Somatic cell count (‘000) 127 270

Beef traits2

Age at slaughter (months) 42.0 30.1
Carcase growth rate (kg/month) 8.84 3.51
Cold carcase weight (kg) 287 68
Fat score 3.96 1.35
Conformation score 3.50 1.12

Fertility trait3

Calving interval (days) 416 147

1Milk production records from 176 lactations by 81 Gloucester cows in 9 herds
and 38 herd/year/season groups. Data from 156 somatic cell count records.
2Beef data from 214 animals in 8 herds and 42 herd/year groups.
3Fertility data from 501 calving intervals by 141 cows in 19 herds.
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Although the precision of these estimates was somewhat
low, the heritability of the milk and component weight traits
was higher than found in Holstein studies. For example,
Banos et al. (2012) quote heritabilities of milk traits as 0.22
(milk yield), 0.20 (fat weight), 0.16 (protein weight), 0.68 (fat
percentage) and 0.55 (protein percentage ). Similarly, the
carcase traits were found to have similar or slightly higher
heritabilities than the average number of estimates found
from a range of commercial breeds, with the exception of
conformation score (Rios-Utrera, 2004).
Two types of genetic correlation were estimated in this

study. Correlations between each pair of derived BLUP EBV
(EBV correlations) for the 11 recorded traits using 6423
animals in the pedigree file are shown in the bottom segment
of Table 3. Actual genetic correlations for the five milk traits,
derived from bivariate mixed-animal model analyses are

shown in the top segment of Table 3. The level of con-
cordance between the two sets of results for the milk traits
gives confidence in the remainder of the correlations as
shown in Table 3. The high correlations between the milk
weight traits were found in other studies and there was
a moderate correlation between milk yield and somatic
cell count (see e.g. Kadarmideen et al., 2000), a common
feature of intensive dairy breeds. Interestingly, there was no
relationship between milk yield and CI in this breed. Not
surprisingly, growth rate was positively correlated with both
CWT and conformation, and CWT was correlated with both
fat and conformation score. Dual-purpose breeds allow the
relationships between milk and meat traits to be evaluated.
In this case, there was very little relationship between the
two, except for the fact that carcase conformation was
moderately negatively correlated with milk production.

Table 2 The variance estimates and genetic parameters of the 11 recorded Gloucester traits derived from fitting a mixed animal model to each trait

Trait Animal Permanent environmental Residual Heritability s.e. Repeatability s.e.

Milk yield (kg) 200 113 28 073 190 892 0.48 0.20 0.54 0.10
Fat weight (kg) 182.4 17.1 470.4 0.27 0.20 0.30 0.11
Protein weight (kg) 129.1 54.1 239.2 0.31 0.21 0.43 0.11
Fat % 0.1552 0.0032 0.1407 0.51 0.29 0.52 0.12
Protein % 0.0297 0.0000 0.0251 0.54 0.09 0.54 0.09
Log. SCC (‘000) 0.0029 0.0203 0.2261 0.01 0.23 0.09 0.14
Log. CI (days) 0.0000 0.0018 0.0097 0.00 0.10 0.16 0.06
Growth rate (kg/month) 1.12 1.89 0.37 0.22
Carcase weight (kg) 682 545 0.55 0.23
Fat score 0.644 0.524 0.55 0.33
Conformation score 0.0206 0.9290 0.02 0.23

SCC = somatic cell count; CI = calving interval.

Table 3 The correlations between the estimated breeding values of the 11 recorded Gloucester traits from 6423 animals in the pedigree file (lower
triangle) and genetic correlations and their s.e. (below the correlation) between five milk traits derived from the animal-model bivariate analyses
(upper triangle)

Milk yield Fat weight Protein weight Fat % Protein % Log. SCC Log. CI Growth rate Carcase weight Fat score

Milk yield 0.96 0.98 − 0.64 − 0.66
0.066 0.134 0.201 0.180

Fat weight 0.961 0.99 − 0.22 − 0.24
0.135 0.313 0.314

Protein weight 0.94 0.90 − 0.71 − 0.37
0.270 0.285

Fat % − 0.25 − 0.05 − 0.34 0.65
0.152

Protein % − 0.29 − 0.11 − 0.32 0.64
Log. SCC 0.31 0.34 0.39 − 0.11 0.14
Log. CI − 0.08 − 0.13 − 0.08 − 0.24 − 0.21 − 0.45
Growth rate − 0.23 − 0.22 − 0.19 − 0.02 − 0.06 − 0.34 0.04
Carcase weight 0.06 0.04 0.10 − 0.20 − 0.18 − 0.26 0.25 0.68
Fat score 0.18 0.14 0.24 − 0.19 − 0.04 0.15 0.15 0.04 0.31
Conformation score − 0.37 − 0.37 − 0.40 − 0.04 − 0.08 − 0.24 0.02 0.49 0.40 − 0.20

SCC = somatic cell count; CI = calving interval.
The standard errors of the correlations in the lower triangle range from 0.00237 (correlation ± 0.9) to 0.0123 (correlation ± 0.1).
1Correlations >0.3 or <− 0.3 shown in bold.
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Igenity score analyses
As Igenity scores were derived from the SNP genotypes carried
by the sampled animals, they are effectively a direct genetic
measure of each animal, according to Merial’s protocols. The
scores for the 19 traits from 199 animals were used to derive
bivariate correlations between each pair of traits; these are
shown in Supplementary Table S1 and may be considered as a
type of genetic correlation. A further set of correlations were
derived by analysing the 19 Igenity scores with the 11 recorded-
trait EBV for all 199 animals, which were genotyped. The results
of these 209 correlations are shown in Table 4; these too
could be considered to be a type of genetic correlation. Milk
production Igenity scores were also analysed by animal model
to estimate their heritabilities. They were also analysed in a
series of bivariate analyses with the equivalent recorded trait.
The results of both sets of analyses are shown in Table 5.

The correlations between the Igenity scores and EBV for
the 199 genotyped animals ranged from − 0.38 (CWT EBV
with fertility) to 0.36 (milk fat weight EBV and IG score; milk
fat % EBV and protein %). Thus, the range in correlations
was lower than that found between EBV (Table 3) and
also between Igenity scores (Supplementary Table S3). As a
number of traits were found in both the data sets, it is
noteworthy that the correlation between the same traits
measured in different ways was low. However, the EBV were
derived largely from the relatives of the genotyped animals,
and therefore would have had a lower accuracy than if they
had been measured directly on the animals, and the SNP
used to calculate the Igenity scores only accounted for ∼3%
of the trait variation. The low or negative relationships
between the carcase traits in both the data sets were also
worth noting.

Table 4 The correlations between the Igenity scores and recorded trait estimated breeding values (EBV) for the 199 Gloucester animals with both sets
of data1

EBV from records

Igenity Scored traits
Milk
yield

Fat
weight

Prot
weight Fat % Protein %

Log.
SCC Log. CI

Growth
rate

Carcase
weight Fat score

Conformation
score

Tenderness 0.08 0.09 0.04 0.21 0.15 0.17 − 0.15 − 0.24 − 0.28 − 0.03 − 0.19
Marbling score 0.13 0.12 0.10 0.02 0.04 − 0.13 0.04 0.02 0.15 0.16 − 0.06
Average daily gain 0.04 0.05 0.08 0.05 0.13 0.22 − 0.16 − 0.20# − 0.24 − 0.06 − 0.04
Red meat yield − 0.19 − 0.20 − 0.28 0.05 − 0.06 − 0.09 0.03 − 0.01 − 0.07 − 0.11 0.04
Carcase fat 0.11 0.10 0.11 0.03 0.08 − 0.09 − 0.07 − 0.06 − 0.04 0.11# 0.01
Ribeye area 0.10 0.07 0.02 0.04 − 0.06 0.14 − 0.16 − 0.11 − 0.12 − 0.16 − 0.05
Heifer pregnancy rate 0.08 0.11 0.04 0.11 − 0.15 0.04 0.03 0.03 0.01 0.06 0.01
Longevity 0.14 0.20 0.17 0.22 0.17 0.27 − 0.22 − 0.20 − 0.18 0.16 − 0.24
Maternal calving ease 0.14 0.14 0.17 − 0.03 − 0.08 0.07 0.03 0.12 0.05 0.04 0.07
Docility − 0.08 − 0.09 − 0.11 − 0.09 − 0.27 0.03 − 0.05 0.10 0.23 0.00 0.15
Productive life 0.15 0.19 0.13 0.30 0.23 0.11 − 0.21 − 0.12 − 0.26 0.04 − 0.08
Fertility 0.10 0.14 0.08 0.27 0.18 0.11 − 0.18# − 0.25 − 0.38 − 0.18 − 0.12
SCC 0.08 0.03 0.10 − 0.10 0.06 0.05# 0.15 − 0.15 − 0.02 0.10 − 0.25
Dairy form 0.16 0.16 0.15 0.02 − 0.02 − 0.03 0.01 − 0.02 0.14 0.27 − 0.07
Milk yield 0.23# 0.20 0.22 − 0.08 − 0.18 0.10 − 0.07 − 0.16 0.07 − 0.05 − 0.07
Fat weight 0.34 0.36# 0.26 0.31 0.26 0.16 − 0.24 − 0.20 − 0.18 0.27 − 0.19
Fat % 0.12 0.16 0.07 0.33# 0.36 0.08 − 0.16 − 0.07 − 0.20 0.30 − 0.13
Protein weight 0.21 0.18 0.28# − 0.13 − 0.08 0.18 − 0.05 − 0.08 0.10 0.06 − 0.16
Protein % 0.11 0.11 0.18 0.07 0.27# 0.11 0.08 − 0.13 − 0.21 0.15 − 0.35

SCC = somatic cell count; CI = calving interval.
The standard errors of the correlations in the lower triangle range from 0.00237 (correlation ± 0.9) to 0.0123 (correlation ± 0.1).
1Figures followed by # are correlations of the same traits measured as both Igenity scores and EBV. Figures in bold are > 0.2 or <− 0.2.

Table 5 Genetic parameters of the Igenity scores for five milk traits and their genetic correlation with the equivalent recorded trait obtained from
bivariate animal model genetic analyses

Trait Animal variance Residual variance Heritability s.e. Genetic correlation s.e.

Milk yield 1.591 0.091 0.95 0.066 0.66 0.295
Fat weight 2.238 0.560 0.80 0.061 0.99 0.205
Protein weight 3.144 0.208 0.94 0.066 0.84 0.334
Fat % 1.883 0.217 0.90 0.084 0.61 0.274
Protein % 0.984 0.121 0.89 0.072 0.12 0.378
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The results of analysing the Igenity scores (Table 5)
resulted in very high heritability values (0.80 for fat weight
to 0.95 for milk yield). Although much higher than those
derived from phenotypic performance, these high heritability
values are understandable as related animals will have
similar SNP genotypes at the 123 SNPs used to derive the
Igenity scores, and therefore relatives will have very similar
genotypes. MacNeil et al. (2010) found similar high herit-
ability values for Igenity scores of carcase traits, as did Tang
et al. (2011) for a range of beef and milk traits. The genetic
correlations between Igenity score and the same dairy trait
recorded on the Gloucester cattle ranged from 0.12 (protein
%) to 0.99 (fat weight). Tang et al. (2011) also reported the
genetic correlation between milk production score and
deregressed EBV of 0.14. In Table 5 this was 0.66.

Accuracy of EBV using multi-trait BLUP
One issue with rare breeds is the level of accuracy to which
EBV are estimated owing to the small numbers of animals in
the data set, in particular the small half-sib groups from sires.
The use of bivariate and trivariate BLUP was investigated
with the milk traits to see the effect on accuracy of including
other traits in a multi-trait analysis. These results are sum-
marised in Supplementary Table S4 for two groups of ani-
mals, recorded cows and the ancestors of recorded cows
back three generations. Table 6 summarises the difference
between the univariate and bivariate accuracies for recorded
cows, along with the genetic and residual correlations
between the five milk traits and their absolute difference.
The main objective of this paper was to see how genetic

evaluations of a rare breed might be improved and the
chosen method to evaluate this was the accuracy of the EBV
estimates. Accuracy of an EBV is the correlation between
the true breeding value (an unknown quantity) and the EBV
(Henderson, 1975). It is defined as√(1− C22α) where C22 is
the diagonal element of the inverse of the coefficient matrix
used in the EBV mixed-model equations for any given animal
and α is σ 2

e /σ 2
a, the ratio of the residual variance to

additive genetic variance (Mrode, 1996; this is a different use
of α from that quoted earlier by Misztal et al., 2009). If the
variance ratio is fixed for all analyses of a given trait, then the
change in accuracy is due to the change in the inverse of
the coefficient matrix. Mrode (1996) suggests that multi-
variate BLUP analyses can lead to improvements in accuracy
for any given trait provided that the absolute difference
between the genetic and residual correlations of two traits is
large. Table 6 indicates that both fat and protein % might
contribute to the improvement in the accuracy of milk yield
(absolute differences of 1.03 and 0.59, respectively), fat %
might contribute to higher accuracy of fat weight (0.80
difference), fat % and protein % might improve the accuracy
of protein weight (1.16 and 0.55 differences) and milk yield,
and fat weight and protein weight (1.03, 0.80 and 1.16
differences) might improve the accuracy of fat %.
Taking milk yield as an example, Supplementary Table S4

shows that the mean accuracy of the recorded cows was
0.573 from a univariate BLUP analysis, but this changed to
0.636 when milk yield was analysed in a bivariate BLUP run
with fat %. This is an increase of 0.07 (Table 6). The only
other trait expected to increase the accuracy of milk yield
was protein %, which had a mean accuracy for recorded
cows of 0.609. Combining both fat and protein % with milk
yield in a trivariate BLUP run further increased the accuracy
of milk yield to 0.645. Thus, it was possible to increase the
accuracy of milk yield EBV by including other traits in the
analysis and this led to an increase in accuracy of 0.0720 or
12.5% of the univariate accuracy value. The mean accuracy
of milk yield EBV for three generations of ancestors was 0.300
(Supplementary Table S4) and increased in a similar manner to
that of the recorded cows when additional traits were added
to the model. The accuracy of ancestors was lower than
recorded cows because of the large effect of the animal’s own
record on accuracy (Falconer and Mackay, 1996) and older
animals mostly did not have their own record.
Analyses of all five milk traits in the same manner are

summarised in Table 6 for all bivariate combinations of

Table 6 The percentage change in accuracy from univariate to bivariate BLUP for 5 milk traits using the 81 recorded cows

Percentage change in accuracy

Correlated traits
Genetic

correlation
Residual
correlation

Abs.
difference

Milk
yield1 Fat % Protein %

Fat
weight

Protein
weight

Milk yield Fat weight 0.96 0.81 0.15 0 0.07
Milk yield Protein weight 0.98 0.92 0.06 0 0.09
Milk yield Fat % − 0.64 0.40 1.03 0.07 0.04
Milk yield Protein % − 0.66 − 0.07 0.59 0.04 0.01
Fat weight Protein weight 0.99 0.84 0.15 0.02 0.01
Fat weight Fat % − 0.22 0.58 0.80 0 0.03
Fat weight Protein % − 0.24 0.11 0.35 0.03 0
Protein weight Protein % − 0.37 0.18 0.55 0.01 0.03
Protein weight Fat % − 0.71 0.55 1.26 0 0.14
Fat % Protein % 0.65 0.45 0.20 0 0.01

1All percentage change in accuracy values > 0 shown in this table were significantly different when tested using a two-tailed paired-comparison t-test (P< 0.05).
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the traits. Mrode (1996) suggests that the improvement in
accuracy between a univariate and bivariate analysis of a
given trait depends on the absolute difference between the
genetic and residual correlations between the two traits and
their heritability, with the trait with a lower heritability
benefitting more than the other trait. In this data set, fat and
protein weight had lower heritabilities than milk yield, fat
and protein % (Table 2). The results in Table 6 support
Mrode’s (1996) assertion to some extent but not completely.
Two bivariate analyses had an absolute difference of more
than 1: milk yield with fat %, and protein weight with fat %.
Despite milk yield and fat % having similar heritabilities, milk
yield accuracy improved by 7%, but fat yield only increased
by 4% when analysed together. Protein weight accuracy
improved by 14%, but fat % accuracy was unchanged when
analysing these two traits together. Curiously, protein %
accuracy increased by 9% when analysed with milk yield,
despite the absolute difference between genetic and residual
correlation being only 0.06.

Accuracy of EBV using GBLUP
A similar approach was used to investigate the use of single-
step GBLUP to improve accuracy. These results are sum-
marised in Supplementary Table S5 for recorded cows and for
genotyped animals. There was very little difference between
the mean accuracies of BLUP and GBLUP EBV for any trait
or either group of animals shown. At first sight, this is a
disappointing result, but the 101 SNP used to genotype the
199 animals only accounted for between 3% and 3.5% of the
variation of any of the 11 recorded traits (see Supplementary
Table S6). Thus, the SNP could not add very much informa-
tion compared with the other sources.

Accuracy of EBV using bivariate analyses with Igenity score
A third method for improving accuracy was investigated that
used Igenity scores and the recorded data in a series of

bivariate analyses. These results are shown in Supplementary
Table S7 and summarised in Figure 1 for recorded cows,
ancestors of recorded cows and genotyped animals. In this
data set, the recorded cows were rarely genotyped and the
genotyped animals rarely recorded; thus, for discussion
purposes, they could be considered as two different groups
of animals. The improvement in accuracy for the recorded
cows when Igenity scores were included in a bivariate
analysis was in relation to the correlation between the two
traits, as shown in Table 5. Thus, the order of improvement
was fat weight> protein weight>milk yield> fat %>
protein %. The improvement in accuracy for recorded cows
ranged from 12.6% to 0%. For the parents of recorded cows
this ranged from 9.9% to 0.2% and for genotyped animals
from 58% to 1.4%. Clearly, the use of Igenity scores
improved the accuracy of genotyped animals much more
than for recorded cows or the ancestors of recorded cows.
However, for no trait did the level of accuracy of genotyped
animals become greater than that of recorded cows. Inci-
dentally, a small number of animals were both recorded and
genotyped. Their accuracies increased when using the Igenity
scores were also in line with the correlation shown in Table 5.

Genetic evaluation of rare breeds and EBV accuracy
There has been a growing recognition over the last 25 years
that rare breeds of livestock are an important component of
global biodiversity and play a critical role in sustainable
development in all types of economies worldwide (Scherf,
2000). By their very nature rare breeds have certain critical
characteristics that make the improvement of animals
within these breeds more challenging than may be the case
in ‘mainstream’ breeds. These include small numbers of
animals, lower levels of investment, less precise estimates of
genetic merit, small contemporary groups and, often, the
small scale of the farming operation involved. Nevertheless,
the owners of rare-breed animals have a legitimate need to

Figure 1 The mean accuracy of estimated breeding values (EBV) for recorded cows, ancestors and genotyped animals of milk traits estimated by BLUP
and bivariate BLUP including the Igenity score for that trait. All comparisons of mean EBV accuracies with and without Igenity scores, within a trait and
animal group, were significantly different when tested with a paired-comparison t-test (P< 0.05).
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improve their animals for a number of reasons: economic,
cultural, survival, moral and historical. This paper attempts to
investigate how recent developments in molecular genetic
methodology may be able to improve one aspect of rare-
breed management, genetic evaluation of the animals,
by using an example of a rare breed kept, recorded and
managed in the United Kingdom.
The basic approach in this study has been to use data

recorded on the farms maintaining animals from the Gloucester
cattle breed in a series of analyses both with and without
the use of molecular genetic information and seeing what
differences the use of modern technology might make. To aid
the comparison of results from different BLUP analyses, the
variance used in multi-trait BLUP runs have been fixed at those
found for each trait in the univariate analyses.
The first aspect of the accuracy calculations carried out

here worth noting is that the conclusions drawn depend
on the characteristics of the population and data used.
Combinations of traits used in these calculations affected the
changes in accuracy, in particular the genetic parameters
of the population. For example, the effect of a second trait
used in a multi-trait BLUP run depended on the genetic and
residual correlations between the traits. Fat % had a large
effect on the accuracy of milk yield, when used together, but
protein % did not. The heritability of a trait in a population is
another specific characteristic affecting the outcomes. Three
traits had low to zero heritability and were therefore difficult
or impossible to use in some of these analyses. Clearly, a trait
with no genetic variation cannot be improved by selection,
no matter how accurate the EBV.
The accuracy calculations carried out in this study

confirmed many of the widely known relationships in genetic
evaluations. First, an animal’s own record is a valuable
contributor to the accuracy of its EBV; any comparison
between the mean accuracy of the recorded animals and that
of their ancestors will confirm this. In addition, the absolute
difference between the residual and genetic correlations
between two traits largely indicates when improvements in
accuracy will occur by using a bivariate BLUP run. Interest-
ingly, this relationship does not work both ways. For exam-
ple, milk yield and fat % had an absolute difference between
the genetic and residual correlations of 1.03, but milk yield
accuracy increased by 7% and fat % by only 4% when used
together, compared with their univariate recorded-animal
accuracies. Even more surprising was the combination of
milk yield and protein weight; their correlation difference
was only 0.06, yet protein weight accuracy improved by
9%, whereas milk yield was unchanged.
The use of the molecular genetic information provided

some rather unexpected results. First, the use of GBLUP with
this limited set of SNP did not improve the accuracy of
any trait. However, the effect of the Igenity scores was
marked with improvements in accuracy reaching 12.6% for
fat weight in recorded cows and 58.2% for genotyped
animals. For the 12 cows that were both recorded and
genotyped, their mean accuracy for fat weight went from
0.44 to 0.80 (univariate BLUP v. bivariate BLUP with Igenity

score; data not shown). The response in other traits was
dependent on the genetic correlation between the Igenity
scores and the recorded traits; protein % showed no or very
little change in accuracy, depending on the group of animals
considered, because their genetic correlation was only
0.12. This contrasts with the value of 0.99 for the genetic
correlation between the two measurements of fat weight
genetic merit.
The reason for this contrast in the outcome of using Igenity

scores and GBLUP to improve accuracy is worth considering.
The SNP set used here only accounted for 3.5%, or less, of
the genetic variation found in these traits. Its small effect in
GBLUP is therefore not surprising. The effect of the SNP
genotypes could have been artificially bolstered by setting
the ‘Misztal α’ to a higher value, say 40%. This would have
given a different balance to the information coming from the
SNP set and the pedigree. The use of the Igenity scores
in bivariate analyses may have effectively done this, as
the scores, on a 1 to 10 basis, were the only measure of the
trait used and may well have amplified the importance of the
SNP genotypes used in each Igenity score’s calculation.
Another aspect may be that the small set of animals geno-
typed may not have estimated the effect of the individual
SNP genotypes very well in GBLUP, whereas the effect
of the same genotypes when used in the Igenity score may
have been calculated by Merial from a much larger set of
data. A larger Gloucester data set and more genotyped SNPs
(say using the Illumina 50K Beadchip) may help improve
this situation.

Conclusions and recommendations for a rare breed

These analyses have used the milk traits as a model for
investigating a range of methods for increasing the accuracy
of EBV calculated on a subset of animals in a rare breed. The
first recommendation is that more animals should be recor-
ded. This should improve the genetic evaluation of the breed
in two ways; first, the genetic links created by an excellent
pedigree structure and recording within the breed would be
better utilised. Second, the best way to increase the accuracy
of an animal’s EBV is to record it for that trait.
The 11 traits used in this study are all valuable to the breed

and should be recorded on as many animals as possible.
Future analyses might consider growth and carcase char-
acteristics of the young animal separately from that of the
older animals. However, as this is a rare breed, the production
of beef from young animals may be a luxury that cannot yet be
implemented.
The decision about whether to carry on genotyping

animals may revolve around the cost of genotyping. The
analyses carried out here have shown that genotyping
unrecorded animals has had a marked affect on the accuracy
of some traits more than others. This approach could be
extended to the carcase traits recorded here, but not ana-
lysed, once more data have been collected. The outcome
would depend on the genetic correlation between the
recorded trait and the equivalent Igenity score.
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