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Quantum Field Theory and the Path Integral

5.1 Preliminaries

We will consider the case of a classical scalar field theory and its quantization.
Later in this book we will consider both vector and spinor fields. A classical
scalar field φ(xμ) is a real-valued function of the coordinates of space and time.
The meaning that it is a scalar field is that the value that the function takes is
invariant under Lorentz transformations. All inertial observers measure the same
value for the field at a given spacetime point.

φ(xμ) = φ′(x′μ) (5.1)

where

x′μ =Λμνx
ν (5.2)

with the standard notation x0 = t and xi, i=1,2, · · ·d are the spatial coordinates.
The transformation matrix Λμν satisfies

Λμνη
νσΛτσ = ημτ (5.3)

with diag [ηνσ] = (1,−1,−1, · · ·) the usual Minkowski space metric, which is the
defining condition for a Lorentz transformation. In general, an equation of motion
for a classical scalar field is a non-linear partial differential equation. We will
restrict ourselves to the case of second-order equations, then Lorentz invariance
dictates the form

∂ν∂
νφ(xμ)+V ′ (φ(xμ)) = 0. (5.4)

Written out, this equation is(
d2

dt2
−∇2

)
φ(xμ)+V ′ (φ(xμ)) = 0. (5.5)
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60 Quantum Field Theory and the Path Integral

Such an equation comes from the variation of an action, S [φ(xμ)], which is a
functional of the field φ(xμ), i.e.

δS [φ(xμ)] =
S [φ(xμ)+ εδφ(xμ)]−S [φ(xμ)]

ε

∣∣∣∣
ε=0

= 0

∀ δφ(xμ) ⇒ ∂ν∂
νφ(xμ)+V ′ (φ(xμ)) = 0. (5.6)

Then we find the action giving rise to equations of motion, Equation (5.4), is
given by

S [φ(xμ)] =

∫
ddx

(
1

2
∂νφ(x

μ)∂νφ(xμ)−V (φ(xμ))

)
≡

∫
ddxL (5.7)

where L is called the Lagrangian density. The kinetic energy is

T =

∫
dd−1x

(
1

2
∂tφ(x

μ)∂tφ(x
μ)

)
(5.8)

while the potential energy is

V =

∫
dd−1x

(
1

2
�∇φ(xμ) · �∇φ(xμ)+V (φ(xμ))

)
(5.9)

which define the Lagrangian as L= T −V and the action is simply

S [φ(xμ)] =

∫
dt(T −V ) . (5.10)

This defines a dynamical system which is an exact analogy to the particle
mechanical systems we have been considering in the previous chapters. There
are just a few simple conceptual changes. The dynamical variable is a function
of space, which evolves through time. For a mechanical system the variables were
the positions of particles in space and these positions were evolving through time.
Now the spatial coordinates xi are not the positions of any particle. They are
just parameters or labels, and they do not evolve in time. An important point
to observe is that a dynamical variable which is a function of space, rather than
a point in space, comprises an infinite number of degrees of freedom, in contra-
distinction to the case of particle mechanics where we typically consider only a
finite number of particles. This is easy to make explicit by expanding the scalar
field in terms of a fixed orthonormal basis of functions φn(xi), n= 0,1,2, · · · ,

φ(xi, t) =

∞∑
n=0

cn(t)φn(x
i). (5.11)

We can thus exchange the dynamical field φ(xi, t) for an infinite number of
dynamical variables {cn(t)}n=0,1,··· ,∞.

This difference is the cause of almost all the problems that arise in the
quantization of fields. We will proceed with the philosophy that these problems
correspond to the extreme ultraviolet or infrared degrees of freedom, this
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5.2 Canonical Quantization 61

philosophy perhaps to be justified only a posteriori. We plead ignorance as
to what dynamics actually exist at extremely high energies and simply reject
theories where the answers to questions involving processes at only low energies
depend on the dynamics at very high energies! Furthermore, we invoke the
principles of locality and causality, which stated simply means that configurations
at the other end of the universe cannot affect the local dynamics here. In this way
we consider only theories which are unaffected by cutting off the infrared degrees
of freedom. Thus, effectively, we are interested in theories with an enormous but
actually finite number of degrees of freedom, since we can cut the theory off in
both the infrared and the ultraviolet. However, this number of degrees of freedom
is assumed to be so huge that it is well-approximated by ∞, so long as that limit
is sensible.

5.2 Canonical Quantization

5.2.1 Canonical Quantization of Particle Mechanics

The canonical quantization of fields proceeds formally as for particle mechanics.
First we briefly review how it works for particle mechanics. We find the classical
canonical variables pi and qi, pi= ∂L

∂q̇i
and the Hamiltonian H =

∑
i piq̇i−L. The

equations of motion are:

q̇i = {qi,h(qj ,pk)}
ṗi = {pi,h(qj ,pk)} (5.12)

where {·, ·} is the Poisson bracket,

{A,B}=
∑
i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
. (5.13)

Quantization proceeds with the replacement

{A,B}→− i

�

[
Â, B̂

]
(5.14)

yielding, for example, the canonical commutation relations:

[q̂i, p̂j ] = i�δi,j . (5.15)

All dynamical variables become operators, O → Ô, which act on vectors in a
Hilbert space.

5.2.2 Canonical Quantization of Fields

Applying the above to the case of classical fields, we define the conjugate
momenta in an analogous way,

Π(xi, t) =
δL

δφ̇(xi, t)
. (5.16)
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62 Quantum Field Theory and the Path Integral

Then

H =

∫
dd−1x

(
Π(xi, t)φ̇(xi, t)−L

)
=

∫
dd−1x

(
1

2
Π2(xi, t)+

1

2
�∇φ(xi, t) · �∇φ(xi, t)+V (φ(xi, t))

)
. (5.17)

The Poisson bracket is now given by (for local functions of φ(xi),Π(xi), we can
dispense with the functional derivatives and just write partial derivatives, as
they give the same answer)

{A,B}=
∫
dd−1x

∂A

∂φ(xi, t)

∂B

∂Π(xi, t)
− ∂A

∂Π(xi, t)

∂B

∂φ(xi, t)
(5.18)

which includes the fundamental Poisson brackets

{φ(xi, t),Π(xj , t)}= δd−1(xi−xj). (5.19)

We impose the same quantization prescription as in the particle mechanics
case, given by Equation (5.14). This yields the celebrated equal time canonical
commutation relations[

φ̂(xi, t),Π̂(yi, t)
]
= i�δd−1(xi− yi). (5.20)

The (Heisenberg) equations of motion follow from the commutators:

i�
d

dt
φ̂(xi, t) =

[
φ̂(xi, t), Ĥ

]
(5.21)

i�
d

dt
Π̂(xi, t) =

[
Π̂(xi, t), Ĥ

]
(5.22)

There is a lot of mathematical subtlety in the definition of the product of
the quantum field operators of a one-spacetime point which is required in
the definition of the Lagrangian and Hamiltonian. Indeed, the quantum field
operators that satisfy Equation (5.20) cannot be simple operators but in fact
are operator-valued distributions. The operator products required to define
the Lagrangian and the Hamiltonian are not straightforwardly well-defined.
Canonical quantization can be made to work reasonably well for the case of
linear field theories, for example see [107].

So far we have been considering the quantization in the Heisenberg picture.
The variables are dynamical while the states are constant. We can equally well
consider the quantization in the Schrödinger picture, with the transformation

φ̂(xi, t)→ φ̂S(xi) = U(t)φ̂(xi, t)U †(t)
Π̂(xi, t)→ Π̂S(xi) = U(t)Π̂(xi, t)U †(t). (5.23)

Then we find,
∂φ̂S(xi)

∂t
=
∂Π̂S(xi)

∂t
= 0, (5.24)
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5.3 Quantization via the Path Integral 63

i.e. the fundamental quantum fields in the Schrödinger picture are time-
independent, if U(t) satisfies

i�
d

dt
U(t) = ĤU(t). (5.25)

The formal solution of this differential equation is U(t) = e−itĤ/�. Evidently
Ĥ commutes with U(t). The corresponding transformation of the Hamiltonian
yields

Ĥ→ ĤS = U(t)ĤU †(t) = Ĥ. (5.26)

This states that the Hamiltonian for time-independent problems does not depend
on the representation. If we have an eigenstate of Ĥ,

Ĥ |Ψ〉 = E |Ψ〉 (5.27)

then
ĤSU(t) |Ψ〉 = U(t)ĤU †(t)U(t) |Ψ〉 = EU(t) |Ψ〉 . (5.28)

Thus

i�
d

dt
(U(t) |Ψ〉 ) = U(t)Ĥ |Ψ〉 = ĤS (U(t) |Ψ〉 ) = E (U(t) |Ψ〉 ) (5.29)

which is just the Schrödinger equation.

5.3 Quantization via the Path Integral

Now the path integral for a quantum particle mechanics amplitude in Minkowski
time, as given by Equation (2.42), yields

〈y|e−
iT ĥ(X.P )

� |x〉 =N
∫ y

x

Dz(t)ei
S[z(t)]

� . (5.30)

This formula was proven assuming nothing of the nature of the space in which x
and y took their values. Typically they were coordinates in IRn, but they could
have been in any configuration space of unconstrained variables (with constraints
additional terms can appear [76]). Actually we have

〈qf |e−
iT Ĥ(q̂.p̂)

� |qi〉 =N
∫ qf

qi

Dq(t)ei
S[q(t)]

� , (5.31)

where q(t) could be any generalized coordinate, for example, an angular variable
of a rotator or the radius of a bubble which changes its size.

Then, for quantum field theory, we simply let q take values in the space of
configurations of a classical field. This gives

〈φf |e−
iT Ĥ(φ̂,Π̂)

� |φi〉 =N
∫ φf

φi

Dφ(xμ)e−i
S[φ(xμ)]

� . (5.32)
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64 Quantum Field Theory and the Path Integral

The states |φi〉 and |φf 〉 correspond to a quantum field localized on the
configurations φi(x

μ) and φf (x
μ), respectively. The states |φ〉 are directly

analogous to the states |�x〉 that we considered earlier in particle quantum

mechanics. These were eigenstates of the (Schrödinger) position operator �̂X

�̂X |�x〉 = �x |�x〉 . (5.33)

In that respect, the states |φ〉 are taken to be eigenstates of the field operator

φ̂S(xi) |φ〉 = φ(xi) |φ〉 . (5.34)

The states |φ〉 are also improper vectors, as the states |�x〉 were, and true states
are obtained by smearing with some profile function

|F 〉 =
∫
DφF (φ) |φ〉 (5.35)

where F (φ) is a functionally square integrable functional. The inner product is
defined by

〈F |G〉=
∫
DφF ∗(φ)G(φ). (5.36)

We call the Feynman path integral in this case the functional integral. It is a
rather formal object in Minkowski space, but it can be used to generate the
usual perturbative expansion of matrix elements, in a rather efficient manner.
(Its analogue in Euclidean space, which we will use, can be rigorously defined in
some cases.)

5.3.1 The Gaussian Functional Integral

We can essentially perform only one functional integral and that, too, not
necessarily in closed form. This is the Gaussian functional integral. However,
if we can do the Gaussian functional integral it is sufficient to generate the
perturbative expansion. Consider the functional W [J ] of some external source
field J(xμ) defined by

W [J ] =N
∫
Dφe

i
�

∫
ddx

(
1
2
∂μφ(x

i,t)∂μφ(xi,t)− 1
2
m2φ2(xi,t)−V (φ(xi,t))+J(xi,t)φ(xi,t)

)

≡
∞∑
N=0

iN

�NN !

∫
ddx1 · · ·ddxNJ(x1) · · ·J(xN )GN (x1, · · · ,xN ), (5.37)

where the integrations are done over all of spacetime and we impose the boundary
conditions on the field the φ(xμ)→ 0 as |xμ| →∞. Then the so-called N point
Green functions of the theory are obtained via functional differentiation

GN (x1, · · · ,xN ) =

(
�

i

)N (
δ

δJ(x1)
· · · δ

δJ(xN )

)
W [J ]

∣∣∣∣∣
J=0

. (5.38)
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5.3 Quantization via the Path Integral 65

Correspondingly, W [J ] is called the generating functional since it can be used
to generate all the Green functions of the theory. We will show that the
GN (x1, · · · ,xN ) corresponds in principle to the matrix elements

〈0|T
(
φ̂H(x1) · · · φ̂H(xN )

)
|0〉 (5.39)

where the state |0〉 is the eigenstate of the Schrödinger field operator with
eigenvalue φ(xi) = 0, i.e. φ̂S(xi)|0〉= 0.

For a Hamiltonian that depends on time, ĤS(t), which is the case here with
an arbitrary external source J(xμ),

ĤS(t) = Ĥ0+ Ĥint. (5.40)

with

Ĥ0 =

∫
dd−1x

(
1

2
Π̂(xi)Π̂(xi)+

1

2
�∇φ̂S(xi) · �∇φ̂S(xi)+V

(
φ̂S(xi)

))
(5.41)

and

Ĥint.(t) =

∫
dd−1x

(
J(xi, t)φ̂S(xi)

)
, (5.42)

one can easily prove that the path integral gives rise to

N
∫
Dz(t)e i

�
S[z(t)] = lim

T→∞
〈y|T

(
e
− i

�

∫ T/2
−T/2

dtĤS(t)
)
|x〉 (5.43)

where T(A(t1)B(t2)) = θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1), the usual
time-ordered product. The time-ordered product here yields the limiting value
of the (infinite) ordered product of infinitesimal unitary time translations over
each of N infinitesimal time elements, ε= T/N between −T/2 and T/2, ordered
so that the latest time occurs to the left

T

⎛
⎝e− i

�

∫ T
2

−T
2

dtĤS(t)

⎞
⎠

= lim
N→∞

e−
i
�
εĤS(T2 )e−

i
�
εĤS(T2 −ε) · · ·e− i

�
εĤS(−T

2 +2ε)e−
i
�
εĤS(−T

2 +ε). (5.44)

The Hamiltonian being time-dependent because of the, in principle, time-
dependent external source J(xi, t). The derivation of the path integral goes
through as before by inserting a complete set of states between the infinitesimal
unitary transformations. (There is a completely analogous expression for the case
of the Euclidean path integral, where the time-ordering is replaced by Euclidean
time-ordering, which is sometimes called path-ordering.) Thus we find with

W [J ] = lim
T→∞

〈0|T
(
e
− i

�

∫ T/2
−T/2

dtĤS(t)
)
|0〉 (5.45)

https://doi.org/10.1017/9781009291248.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.006


66 Quantum Field Theory and the Path Integral

then

−i�δ
δJ(x1)

· · · −i�δ
δJ(xN )

W [J ]

∣∣∣∣
J=0

=

=
−i�δ
δJ(x1)

· · · −i�δ
δJ(xN )

〈0|T
(
e
− i

�

∫∞
t1
dtĤS(t)

)
×T

(
e
− i

�

∫ t1
t2
dtĤS(t)

)
· · ·T

(
e−

i
�

∫ tN−∞ dtĤS(t)

)
|0〉

∣∣∣
J=0

for t1 > t2 > · · ·> tN

= 〈0|T
(
e
− i

�

∫∞
t1
dtĤS(t)

)
φ̂S(xi1)T

(
e
− i

�

∫ t1
t2
dtĤS(t)

)
φ̂S(xi2) · · · φ̂S(xiN )

× T

(
e−

i
�

∫ tN−∞ dtĤS(t)

)
|0〉

∣∣∣∣
J=0

= 〈0|T
(
e−

i
�

∫∞
−∞ dtĤS(t)

)
T

(
e

i
�

∫ t1−∞ dtĤS(t)

)
φ̂S(xi1)T

(
e−

i
�

∫ t1−∞ dtĤS(t)

)
×T

(
e

i
�

∫ t2−∞ dtĤS(t)

)
φ̂S(xi2) · · · φ̂S(xiN )T

(
e−

i
�

∫ tN−∞ dtĤS(t)

)
|0〉

∣∣∣
J=0

= 〈0|T
(
e−

i
�

∫∞
−∞ dtĤS(t)

)
φ̂H(xμ1 )φ̂

H(xμ2 ) · · · φ̂H(xμN ) |0〉
∣∣∣
J=0

→ 〈E = 0|T
(
φ̂H(xμ1 )φ̂

H(xμ2 ) · · · φ̂H(xμN )
)
|E = 0〉

∣∣∣
J=0

, (5.46)

where we have explicitly written the Heisenberg fields as φ̂H(xμ) =

T
(
e

i
�

∫ t
−∞ dt′ĤS(t′)

)
φ̂S(xi)T

(
e−

i
�

∫ t
−∞ dt′ĤS(t′)

)
while the Schrödinger operators

are defined with respect to t=−∞. Here |0〉 still corresponds to the state with
φ(x) = 0 while the state |E = 0〉 corresponds to the true zero-energy vacuum
state. However, the last identification in Equation (5.46) requires explanation
as it is not exactly the same as Equation (5.39). As we will see, once we define
the functional integral more carefully, instead of computing the matrix element
in Equation (5.39), the functional integral projects uniformly onto that which
corresponds to the matrix element in the state of zero energy, the vacuum state.
At the present juncture the definition of the functional integration is extremely
formal, and neither the operator-valued matrix element in Equation (5.39) nor
its functional integral representation exist.

If we nevertheless continue formally, we find

W [J ] =N
∫
Dφe

−i
�

∫
ddxV

(
−i� δ

δJ(x)

)
×

×e
i
�

∫
ddx

(
1
2
∂μφ(x

i,t)∂μφ(xi,t)− 1
2
m2φ2(xi,t)+J(xi,t)φ(xi,t)

)

= e
−i
�

∫
ddxV

(
−i� δ

δJ(x)

)
W 0[J ]. (5.47)

W 0[J ] is a Gaussian functional integral, which we can explicitly perform. We use
the formula, which as written is only formal but becomes valid if defined via an
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appropriate analytic continuation∫ ∞

−∞

dx√
2π
e
i 1
2
(ax2+2bx) =

∫ ∞

−∞

dx√
2π
e
ia
2
(x− b

a )
2

e
−i 1

2
b( 1

a )b

=
1√
−ia

e
−i 1

2
b( 1

a )b (5.48)

which generalizes to∫
dnx

(2π)
n
2

e
i 1
2
((�x,A·�x)+2(�b,�x)) = (det(−iA))−

1
2 e

−i 1
2
((�b,A−1·�b) (5.49)

for finite dimensional matrices. Boldly generalizing to the infinite dimensional
case, for W 0[J ] we find, with A→−

(
∂μ∂

μ+m2
)

and b→ J (and absorbing an
infinite product of i’s into the normalization constant),

W 0[J ] =
N√

det(∂μ∂μ+m2)
e
− i

2

∫
ddxddy(J(x) 〈x| 1

−(∂μ∂μ+m2)
|y〉J(y))

(5.50)

5.3.2 The Propagator

It only remains to calculate

〈x| 1

−(∂μ∂μ+m2)
|y〉 =

∫
ddk

(2π)d
e−ikμ(x−y)

μ 1

kμkμ−m2
. (5.51)

We seem to be on the right path to defining the functional integral; however,
we come up against another problem: this Green function is ambiguous. This
problem is only solved via analytic continuation. In the Fourier representation,

for example, there are poles in the k0 integration at k0 = ±
√
|�k|2+m2. We

cannot integrate through the poles, we must provide a prescription for integrating
around them. Such a prescription translates directly into fixing the asymptotic
boundary condition on the solutions of the problem, for φ(

∂μ∂
μ+m2

)
φ= J. (5.52)

Clearly any solution for φ is ambiguous up to a solution of the homogeneous
equation (

∂μ∂
μ+m2

)
φ0 = 0. (5.53)

Correspondingly, the Green function to Equation (5.52) is also ambiguous by the
addition of an arbitrary solution of the homogeneous equation. The asymptotic
boundary conditions on φ fix the Green function. These boundary conditions are
equivalent to giving the pole prescription.
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5.3.3 Analytic Continuation to Euclidean Time

The existence of homogeneous solutions corresponds to zero modes in the
operator A = −

(
∂μ∂

μ+m2
)
; hence, the original integral was ill-defined. The

problem can be traced back to the matrix element

W [J ] = lim
T→∞

〈0|T
(
e
− i

�

∫ T/2
−T/2

dtĤS(t)
)
|0〉 . (5.54)

The operator in the matrix element can be written, for an arbitrary future time t,

T
(
e
− i

�

∫ t
−T/2 dt

′ĤS(t′)
)
= e

− i
�

∫ t
−T/2 dt

′Ĥ0

e
i
�

∫ t
−T/2 dt

′Ĥ0

T
(
e
− i

�

∫ t
−T/2 dt

′ĤS(t′)
)

≡ e
− i

�

∫ t
−T/2 dt

′Ĥ0

U(t,−T/2). (5.55)

Then U(t,−T/2) satisfies the differential equation

i�
∂U(t,−T/2)

∂t
= e

− i
�

∫ t
−T/2 dt

′Ĥ0

Ĥint.(t)e
i
�

∫ t
−T/2 dt

′Ĥ0

U(t,−T/2)
≡ ĤI(t)U(t,−T/2) (5.56)

where

ĤI(t) =

∫
dd−1xJ(xi, t)e

− i
�

∫ t
−T/2 dt

′Ĥ0

φ̂S(xi)e
i
�

∫ t
−T/2 dt

′Ĥ0

≡
∫
dd−1xJ(xi, t)φ̂I(xi, t) (5.57)

defines the interaction representation Hamiltonian and the interaction represen-
tation field φ̂I(xi, t). The solution of the differential Equation (5.56) is unique
with boundary condition U(−T/2,−T/2) = 1 and given by

U(t,−T/2) =T
(
e
− i

�

∫ t
−T/2 dt

′ĤI (t′)
)
. (5.58)

Thus

W [J ] = lim
T→∞

〈0|e−
i
�

∫ T/2
−T/2

dt′Ĥ0

T

(
e
− i

�

∫ T/2
−T/2

dt′ĤI (t′)
)
|0 〉. (5.59)

The state |0〉 corresponds to an eigenstate of the Schrödinger field operator with
the eigenvalue zero, and is not an energy eigenstate of the Hamiltonian, hence

|0〉 =
∑
E

CE |E〉 (5.60)

where
Ĥ0|E〉=E |E〉 . (5.61)

Then the matrix element in Equation (5.59) is given by

W [J ] = lim
T→∞

∑
E,E′

e−
i
�
TE′

C∗
E′CE〈E′|T

(
e
− i

�

∫ T/2
−T/2

dt′ĤI (t′)
)
|E〉 (5.62)
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5.3 Quantization via the Path Integral 69

This expression is generally not well-defined. The infinite phases give an ever-
oscillatory contribution which does not exist in the limit T →∞. We are in fact
interested in the matrix element and its various moments which give rise to the
Green functions, as J→ 0. Even in this limit, we get that W [J =0] is ill-defined;
if any of the CE �= 0 for any E �= 0, then

W [J = 0]→
∑
E

e−
i
�
(∞)E |CE |2. (5.63)

Thus, somehow we must project onto the ground state, defined to have E = 0.
This would happen if we can add a negative imaginary part to E. Equivalently,
if we rotate

t→ τ =−it ddx→−iddx (5.64)

the action goes to

S→ iSE = i

∫
ddx

(
1

2

(
∂μφ∂μφ+m

2
)
+V (φ)−Jφ

)
, (5.65)

and the matrix element is

〈0|T
(
e−

1
�

∫∞
−∞ dtĤ(t)

)
|0〉 ∼ 〈E = 0|T

(
e−

1
�

∫∞
−∞ dtĤ(t)

)
|E = 0〉 . (5.66)

|E = 0〉 is the zero-energy vacuum state of the theory with J = 0. Then the
functional integral gives

N ′
∫
Dφe−SE

� = 〈E = 0|T
(
e−

1
�

∫∞
−∞ dtĤ(t)

)
|E = 0〉 (5.67)

and the Minkowski space functional integral is defined by the analytic
continuation of this object to real times.

The rotation t→−iτ yields the Euclidean operator
(
−∂μ∂μ+m2

)
φ which has

no zero modes, (
−∂μ∂μ+m2

)
φ= 0⇒ φ= 0. (5.68)

Thus

N ′
∫
Dφe−SE

�

=
N ′√

det(−∂μ∂μ+m2)
e
−∫ ddxV (� δ

δJ(x)

)
e
−∫ ddxddy

(
J(x) 〈x| 1

(−∂μ∂μ+m2)
|y〉J(y)

)
,

(5.69)

where

〈x| 1

(−∂μ∂μ+m2)
|y〉 =

∫
ddk

(2π)d
eikμ(x−y)μ

1

(kμkμ+m2)
(5.70)

which is now well-defined.
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70 Quantum Field Theory and the Path Integral

The analytic continuation back to Minkowski space (x0−y0)→ i(x0−y0) gives
the Minkowski Green function with the “correct” Feynman prescription at the
poles

〈x| 1

−(∂μ∂μ+m2)
|y〉 =

∫
ddk

(2π)d
e−ikμ(x−y)

μ 1

(kμkμ−m2+ iε)
. (5.71)

Thus once the Minkowski space functional integral is defined via the analytic
continuation back from Euclidean space, it clearly gives the vacuum expectation
value

W [J ] = 〈E = 0|T
(
e−

i
�

∫∞
−∞ dtĤS(t)

)
|E = 0〉

= e
−i
�

∫
ddxV

(
−i� δ

δJ(x)

)
e
− i

2

∫
ddk

J̃(k)J̃(−k)

(kμkμ−m2+iε) . (5.72)

For example, the Feynman propagator is obtained from

ΔF (x1,x2) = 〈E = 0|T(φ(x1)φ(x2)) |E = 0〉 =
∫

ddk

(2π)d
e−ikμ(x−y)

μ

kμkμ−m2+ iε
. (5.73)
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