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Abstract

Measles is a target for elimination in all six WHO regions by 2020, and over the last decade,
there has been considerable progress towards this goal. Surveillance is recognised as a corner-
stone of elimination programmes, allowing early identification of outbreaks, thus enabling
control and preventing re-emergence. Fever–rash surveillance is increasingly available across
WHO regions, and this symptom-based reporting is broadly used for measles surveillance.
However, as measles control increases, symptom-based cases are increasingly likely to reflect
infection with other diseases with similar symptoms such as rubella, which affects the same
populations, and can have a similar seasonality. The WHO recommends that cases from sus-
pected measles outbreaks be laboratory-confirmed, to identify ‘true’ cases, corresponding to
measles IgM titres exceeding a threshold indicative of infection. Although serological testing
for IgM has been integrated into the fever–rash surveillance systems in many countries, the
logistics of sending in every suspected case are often beyond the health system’s capacity.
We show how age data from serologically confirmed cases can be leveraged to infer the status
of non-tested samples, thus strengthening the information we can extract from symptom-
based surveillance. Applying an age-specific confirmation model to data from three countries
with divergent epidemiology across Africa, we identify the proportion of cases that need to be
serologically tested to achieve target levels of accuracy in estimated infected numbers and dis-
cuss how this varies depending on the epidemiological context. Our analysis provides an
approach to refining estimates of incidence leveraging all available data, which has the poten-
tial to improve allocation of resources, and thus contribute to rapid and efficient control of
outbreaks.

Introduction

In sub-Saharan African countries, measles remains one of the leading causes of child morbid-
ity and mortality [1]. Fever–rash case-based surveillance for measles is active in 44 countries
out of the 47 WHO member states in the WHO African Region, and in each country, labora-
tory capacity adequate to run required serological tests also exists [2]. Fever–rash symptoms
are caused by a wide array of infections in infants and adolescents (e.g. rubella). Clinically
compatible measles cases, defined as cases presenting with fever and rash plus one of either
cough, coryza or conjunctivitis, are highly sensitive, and thus useful for detecting outbreaks
and triggering reactive interventions. However, in the absence of serological confirmation,
this definition may not reflect ‘true’ measles cases, and thus lead to spurious inference
about measles dynamics and the impact of control efforts. Moreover, expanding laboratory
confirmation through serology is often logistically challenging in resource-poor settings,
given the costs of transportation, laboratory equipment and personnel. Overall, surveillance
based on clinical fever–rash symptoms alone is fast and inexpensive but can lead to false
positives; surveillance based on laboratory confirmation is highly specific, but expensive and
logistically challenging. Here, we propose that an efficient pairing of clinical and laboratory-
confirmed surveillance may greatly strengthen inference of measles dynamics at the population
scale.

The age distribution of measles cases scales with its prevalence. When measles is common,
cases are concentrated in younger individuals. As measles becomes less common (e.g. due to
vaccination), the mean and variance of the age distribution of cases in endemic countries
increase [3, 4]. Many other causes of fever–rash symptoms in children also become less preva-
lent with age and vary in prevalence from place to place [5, 6]. One example is rubella, which is
also a likely cause of fever–rash in these countries. Together, these features mean that the like-
lihood that an individual presenting with fever–rash symptoms is infected with measles will
depend on age and the epidemiological context. The proportion of laboratory-tested cases
of fever–rash that are confirmed as measles-positive using measles-specific IgM titres can
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be used to infer both the overall likelihood that a suspected mea-
sles case is a true measles case and the age-specific variation in
this likelihood. As measles vaccination coverage increases, the
likelihood of fever–rash symptoms being caused by another dis-
ease, such as rubella, also increases. Here, we propose a novel
model for combining the age-specific serological confirmation
probability, with surveillance data based on clinical presentation
alone, in order to infer the distribution of confirmed measles
and rubella cases. The power and utility of our method is that
it allows serological confirmation applied to only a subset of clin-
ically compatible cases to be used to infer the distribution of an
infection (here we focused on measles and rubella, but the prin-
ciples should hold cross-infections) across a broader population,
by leveraging the patterns of age incidence. Moreover, in the data-
sets we analysed, individuals who tested negative for measles IgM
were also tested for rubella, which allows us to also estimate age
incidence of this infection. We further note that IgM testing has
the dual benefit of improving the specificity of measles surveil-
lance and providing insights into rubella dynamics, which has
suffered to date from insufficient confirmation.

To illustrate this, we analysed contemporary surveillance
datasets across a gradient of measles endemicity from three coun-
tries in sub-Saharan Africa: Ethiopia, Kenya and Zimbabwe.
WHO/UNICEF Estimates of National Immunization Coverage
(WUENIC) [7] indicate that the magnitude of routine measles
vaccination coverage varies considerably across these countries.
Although all three have experienced increases in vaccination
coverage over recent years, the data reflect a gradient of progress,
ranging from Ethiopia, with the lowest first dose coverage of 44%
in 2003, to Zimbabwe, with coverage of 92% in 2011. Thus, we
expect a concomitant gradient in dynamics, from regular endemic
transmission in Ethiopia, to episodic outbreaks in Zimbabwe,
with Kenya intermediate (Fig. 1). The proportion of suspected
measles cases that are sent in for serological confirmation in
these datasets varies, ranging from 55% (in Ethiopia) to 95%
(in Kenya).

Here, we explore the variability in the country-specific pattern
of age-dependent measles and rubella IgM confirmation. We then
evaluate how this result can be used to strengthen the inference
into temporal patterns of disease incidence by comparing analyses
using three different sources of data: (i) all reported measles cases
(i.e. all syndromic cases, regardless of whether they were sero-
logically tested or not; henceforth simply referred to as syndromic
or symptomatic cases), (ii) serologically confirmed cases only and
(iii) the sum of serologically confirmed cases and the fraction of
untested syndromic cases inferred to be positive by our model,
henceforth referred to as estimated cases.

Below, we first introduce the countries and data sources, then
describe our model framework, and characterise the steps taken to
estimate true measles/rubella incidence and reconstruct the time
series. Finally, we estimate the minimum number of cases that
we would need tested to accurately estimate the age distribution.

Materials and methods

Data sources

We analysed individual fever–rash case records from Ethiopia,
Kenya and Zimbabwe between 2002 and 2014 (see Table 1).
Data were provided by the Ministry of Health for Ethiopia; for
Zimbabwe it was sourced from Chimhuya et al. [8]; Kenya from
Wesolowski et al. [9]. Each record included the date of onset of

symptoms, the age of the individual and the result of a measles
and rubella IgM test, if conducted. IgM antibodies specific to
measles (or rubella, for rubella infection) reach high titres on
the day the rash appears and persist up to 3 months post-
infection, and thus provide a strong test of recent infection.
Untested individuals were listed as either ‘epidemiologically
linked’ or ‘suspected’ cases. The WHO definition of ‘epidemiolo-
gically linked’ is broad and includes fever–rash cases in direct
contact with a confirmed case or in the same/neighbouring dis-
trict of at least three confirmed cases (which is considered an out-
break under WHO definition [10]). We treated suspected cases
with serological results characterised as ‘unclear’ or otherwise
undescribed as being untested. We treat all epidemiologically
linked and suspected cases as ‘syndromic’ cases, i.e. that are con-
sistent with measles infection, but not confirmed. For each coun-
try, the number of individuals recorded in the dataset, the number
that are laboratory-confirmed and the range of the time series are
shown in Table 1.

Model description and validation

Age-specific confirmation rate
The probability that a syndromic case is due to measles infection
will vary as a function of age and the country context. Measles
(and rubella) are immunizing infections; therefore, population
susceptibility decreases with age (due to vaccination and natural
infection). Moreover, the severity of measles disease declines
with age [11], thus older individuals may be less likely to seek
care. However, other sources of fever–rash illness, such as rubella,
may also be immunizing or have age-dependent incidence, which
would increase the rates of fever–rash illness due to non-measles
causes in young children [4]. This means that the probability that
a syndromic case is due to measles (rather than rubella or other
infection) and declines with age cannot be assumed; a flexible
framework is thus needed that allows for both decreased and/or
increased serological confirmation with age.

We model the probability that a syndromic case is confirmed
as IgM-positive for measles as Pmeasles

age , where the confirmation
probability in neighbouring age classes is modelled as an
autoregressive AR(1) process; i.e. logit(Pmeasles

age+1 ) � Normal
(logit(Pmeasles

age ),sm) (Supplementary material 1). This generates
correlation in the IgM confirmation rate, which can arise either
because of correlation in the age-specific likelihood of measles
infection, non-measles fever–rash symptoms or health-seeking
behaviour, or due to uncertainty in the recording of real age,
e.g. an individual who is 58 months of age may have been classi-
fied as under 5 or over 5 years. We binned the data into 2-year age
classes (total number of classes: n = 38). Individuals over 75 years
are collapsed to the same (the last) age bin. The bin size was cho-
sen to have multiple bins at low ages (eight bins up to 15 years of
age), which are the age groups where the majority of cases were
recorded, while at the same time allowing most of the age classes
for older individuals to be populated. The number of IgM-positive
cases out of all tested syndromic cases was then modelled as bino-
mial, with probability Pmeasles

age . We fit the analogous model, inde-
pendently, for rubella.

The model was fit in R [12] using the Gibbs sampler package
‘jags’ [13] and ‘runjags’ [14]. Two independent chains were run,
with 10 000 samples and a burn in period of 1000. Convergence
was verified using the Gelman and Rubin’s convergence diagnos-
tic [15] and by visual examination of the chains.
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Estimation for untested individuals
Some reported cases were not tested for virus-specific IgM, thus
we are uncertain whether they are true positives. We estimated
the distribution of likely disease positives by resampling from
the distribution of suspected cases according to the age-specific
probability (above) that a suspected case was IgM-positive. This
was done for both measles- and rubella-suspected cases. Given
the test is imperfect, we also resampled the IgM-positive/negative
cases based on the test’s sensitivity/specificity. Sensitivity for the
measles IgM test ranges from 87% to 96%; specificity is between
95% and 99%. The sensitivity of the rubella IgM test ranges from
74% to 77%; specificity ranges from 94% to 96%, depending on
the commercial assay used [16, 17]. We used the mean values
91% and 97% for the measles test sensitivity and specificity (75%
and 95% for rubella) in our model to correct for potential testing
errors. Thus, we model the true number of cases in age class a as:

Ma � Binomial(IgM+,PPV)+
(1− Binomial(IgM−,NPV)) + Binomial(NTa , P

measles
a ),

(1)

where Ma are the estimated true measles cases in age group a; a
similar equation can be applied for rubella cases. The first two
terms are the resampling based on the positive and negative pre-
dictive values, the last term is the sampling of untested individuals
in age group a, NTa . We generated 200 random draws for each age
class and present the mean, 2.5th and 97.5th quantiles of those ran-
dom draws as the point estimate and confidence intervals on the
true number of cases. We note that a small number of entries
did not have an age recorded. For these cases, we randomly
assigned an age based on the empirical age distribution of
individuals with known ages.

Reconstructing patterns of incidence
We reconstructed the time series for syndromic, serologically con-
firmed and estimated cases of measles/rubella by pooling the
dates of onset to a monthly number of cases. The spectral density
was estimated by fitting an AR model, with the order (complexity)
chosen by Akaike Information Criterion (AIC), which allows us
to recover the seasonality/recurrence of outbreaks if present in
the time series, i.e. the main peaks in spectral density; this was
done using the ‘spectrum’ function in R [12]. Using the time

Fig. 1. Schematic representation of a measles time series and age incidence from an endemic to erratic setting. In an endemic situation (left), the outbreaks occur
periodically and most cases are in young infants. In an erratic setting (right), outbreaks may occur at random; there is no periodicity and the mean age of infection
is higher (vertical dashed line).

Table 1. Summary of datasets used

Country
Population size

(millions)
MCV 2014 coverage

(%)
n

entries
n tested measles IgM

(%)
n tested rubella IgM

(%)
Range
(years)

Ethiopia Under 100 70 52 282 56 34 2003–2014

Kenya ∼45 79 17 625 95 76 2002–2011

Zimbabwe ∼14.5 92 3428 87 67 2007–2011
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series based on the estimated number of cases (Equation 1), we
calculated the probability of being a measles/rubella case, given
that fever–rash symptoms are present, for each month of the
time period studied in each country. We can then calculate the
average monthly confirmation rate and the variation across the
time frame studied for each country.

For each country, we summarise measures of the age distribu-
tion (mean, quantiles) and the time series (estimation of the spec-
tral density and average monthly confirmation rate, see below) for
(i) all syndromic cases (assumption of no serology being done);
for (ii) only those individuals that were IgM-positive; and for
(iii) our estimated number of cases (Equation 1), for both measles
and rubella. Mean age of infection was defined as A = �

xs(x)dx,
with x being age and σ(x) the proportion susceptible at age x [18],
taking 1–(the cumulative proportion of case numbers over age) as
a proxy for the proportion susceptible.

Model cross-validation
To assess the performance of the model, we evaluated the predic-
tions made for untested individuals using a repeated random sub-
sampling validation design. We split the subset of tested indivi-
duals, N, randomly into two equally sized groups; T, tested indi-
viduals and U, ‘assumed untested’ (so that N = T +U). We initially
chose the two groups to be of equal size for the validation, as it is
consistent with our Ethiopia dataset, where approximately half of
suspected cases were tested. We fitted the random walk model
described above to data from individuals in group T, and with
this, then inferred the test results for the individuals of group
U. We then evaluated the age distribution of cases obtained
from the combined test (real positive test results from group T
plus estimated positive test results from group U) to the real
case distribution obtained from the test for group N using equiva-
lence testing [19]. We use a two-one-sided test (TOST) approach,
with the goal of assessing that the two distributions are equivalent
(i.e. ‘similar enough’). This methodology assumes that the distri-
butions are different, and thus rejecting the null hypothesis means
that the two distributions are equivalent; it has been used in the
past in pharmacokinetics to compare different treatments [20,
21]. However, it requires that we specify an equivalence criterion;
here we define equivalence as the error in the estimation of cases
across all age classes below 5% of the total number of cases, here-
after D1 equivalence as we will consider an alternative criterion
later on (D2):

∑
|Ca − Cest

a | , 0.05N, (2)

where Ca is the real number of cases at age a among all tested
individuals N and Cest

a is the estimated number of cases at age
a. The random sub-sampling was performed 100 times.

Minimum estimated number of serological tests
Cross-validation approaches such as the one described above pro-
vide an approach to estimating average error [22]. Thus, if we vary
the proportion of individuals tested (Ptested = T/N), we can use the
same cross-validation technique to estimate the minimum pro-
portion of individuals that need to be tested to correctly infer
the age distribution, i.e. reject the null hypothesis that the two dis-
tributions are different. In the previous section, we used D1
equivalence, error across all age bins below 5%, we now consider
a more operational definition, hereafter D2: two age distributions
were defined as equivalent if the cumulative number of cases up to

the age bin where 80% of all cases are present have a discrepancy
below 10%. First, we need to find the age bin where 80% of cases
among tested individuals N are, au, such that:

∑au

a0

Ca = 0.8
∑n

a0

Ca (3)

where a0 is the first age bin, N is the last age bin and au is the age
bin up to which 80% of all cases are contained. We can then for-
mulate a discrepancy below 10% in cumulative number of cases
between our estimate and the data as:

∑au

a0

Ca −
∑au

a0

Cest
a

∣∣∣∣∣

∣∣∣∣∣ , 0.1
∑au

a0

Ca, (4)

where Ca and Cest
a are as above, but the sums are only between the

first age bin and au. We chose this definition since from a program-
matic point of view, identifying ages where most cases occur is
important for choosing an appropriate intervention age range.

To iterate between different values of Ptested, we adopted a sim-
ple bisection algorithm, which converges to the minimum num-
ber of tests needed relatively fast (more details are available in
Supplementary material 1). For tractability, the IgM test is
assumed to be perfect (100% sensitivity and specificity) in this
section, as we are using the test results as the ‘gold standard’ to
evaluate the cross-validation.

To asses the usefulness of our approach, we also estimated the
minimum number of serological tests (Ptested) needed for equiva-
lence in a static confirmation rate model when a single
age-independent confirmation rate is used to infer untested indi-
viduals, i.e. all untested individuals in all age bins have the same
(the average) confirmation rate. We compared the minimum
Ptested values to achieve equivalence in the age-specific model
and the static confirmation rate model.

Results

Reconstructing inferred patterns

In all three countries studied, the proportion of serological tests
that confirmed measles infection in children decreases from the
lowest age group (up to 2 years) to around age 15 (Fig. 2 top –
green). This decrease is particularly strong in Zimbabwe, where
the percentage of tested individuals that were confirmed as mea-
sles IgM-positive decreases from around 50% to 15%. In the two
countries with higher measles vaccine coverage (Zimbabwe and
Kenya), the percentage of measles laboratory confirmation for
children below 15 years with fever–rash symptoms is well under
20% except in the first age class. The peak in serological confirm-
ation is in individuals over 25 years of age (Fig. 2 top), while in
older age classes, above 30–40 years, the predictions are uncertain
because of low sample sizes. Notably, rubella serological confirm-
ation shows a contrasting pattern of age incidence with measles,
with the highest confirmation proportion in children between 5
and 15 years of age and dropping thereafter (Fig. 2 top – blue).

In all three countries, fever–rash cases occur mostly in the
youngest ages (Fig. 2 bottom – green), due in part to most esti-
mated measles and rubella cases being concentrated in children
below 15 years. Indeed, this is not necessarily due to measles
alone, as there are some disparities in the lower age groups
between fever–rash cases and estimated measles cases – this is
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particularly apparent in Zimbabwe where many of the suspected
measles cases, once corrected for by the age-specific confirmation
rate, are re-classified as non-measles cases.

Mean age of suspected (symptomatic) cases does not change
significantly over the three-country gradient of endemicity
(Fig. 3). But the mean age of laboratory-confirmed, and estimated,
cases changes in the directions that we would expect – mean age of
measles cases increases as endemicity decreases (or coverage
increases). Interestingly, mean age of rubella cases, both sero-
confirmed and estimated, decreases as measles endemicity
decreases, which could reflect on their relative contribution to the
symptomatic cases. Syndromic cases are therefore not reflective of
the gradient across countries because, within a country, suspected
cases are less representative of measles as coverage increases.

Ethiopia exhibits recurrent, approximately yearly fever–rash
(mainly due to measles) outbreaks (Fig. 4 – top left). However,
when examining the frequencies, the measles- and rubella-
confirmed cases fail to show the regular annual signature in
Ethiopia (Fig. 4 – bottom left), where we know there really is a
strong annual signature. This is not surprising given that labora-
tory sample collection is generally opportunistic and it is often
biased to places that are higher performing and less likely to
have a regular annual signature. On the other hand, the fever–
rash and the age-corrected estimated time series do show the
regular annual signature. This suggests that there is a benefit in
using syndromic surveillance as laboratory-confirmed cases
alone (in the absence of a formalised sampling strategy) would
mask this pattern.

Fig. 2. Seropositivity over age and age distribution of cases in the three countries studied. Top row shows the serological confirmation rate estimated from all
tested individuals in each country for measles (green) and rubella (blue). Bottom row show the age distribution of all fever–rash cases (black) and the estimated
(tested positive and estimated as positive) cases for measles (green) and rubella (blue).

Fig. 3. Mean age of infection in all three countries.
Average age of infection for symptomatic (all fever–
rash) cases in black; tested positive only are the hollow
points in green for measles and blue for rubella; aver-
age age of infection for estimated cases are full points
in green for measles and blue for rubella.
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Kenya and Zimbabwe had a higher measles vaccination cover-
age, and only two and one outbreak, respectively, in the period is
studied (Fig. 4 – top). There are no regular outbreaks, and the
laboratory-confirmed cases tend to reflect the broad temporal pat-
terns. Moreover, the time series in both these countries show large
spikes in fever–rash cases; therefore, laboratory confirmation is
important in evaluating whether spikes in syndromic cases are
really due to measles or rubella. It is important to note that, at
present, we respond to the former with vaccination, and not to
the latter.

Monthly measles cases are estimated to account on average for
only a small fraction of the total number of monthly fever–rash
cases, from ∼30% in Ethiopia to ∼10% in Zimbabwe, except dur-
ing the months with peak number of cases where this ratio can
rise significantly in all three countries (Fig. 4 – middle row).
The confirmation rate is not constant over time and can be fairly
different in alternative settings, so assuming a fixed value of fever–
rash cases as measles may lead to inappropriate inference.
Moreover, the shift in confirmation rate is more drastic in lower
endemicity countries.

Cross-validation and minimum number of individuals tested

Assuming conservatively that 50% of the individuals were not
tested, and allowing a 5% error in the estimation of true measles

cases across all age bins (D1 equivalence), the TOST P-value is
<10−16 in all three countries. This indicates that testing half of
the individuals is enough to obtain ‘equivalent’ age distributions
under our first definition of equivalence.

The minimum proportion of cases that need to be tested,
Ptested, to achieve equivalent age distributions is below 10% in
all three countries. If we instead use a more programmatic defin-
ition of equivalence, focused on characterizing core ages of mea-
sles incidence, the 80th percentile (D2 equivalence), then the
Ptested is 15% or less in all three countries (Table 2). When a simi-
lar approach is taken with an age-independent confirmation rate,
the minimum number of individuals that need to be tested can be

Fig. 4. Time-series analysis for all three countries. Top row shows the time series for all fever–rash cases (black), estimated measles (green) and rubella (blue)
cases. Middle row is the time series for the monthly serological confirmation for measles (green) and rubella (blue). Bottom row is the spectral density plots
(x-axis is the period); we illustrate the symptomatic cases (black), tested positive as dotted lines (green for measles, blue for rubella) and solid green/blue
lines for measles/rubella for the estimated number of cases.

Table 2. Summary of minimum number of individuals tested, Ptested, for both
definitions of equivalence, D1 and D2, in our age-dependent model and an
age-independent model

Country

Age-specific model Age-independent model

D1(%) D2(%) D1(%) D2(%)

Ethiopia 3.9 6.1 51 35

Kenya 1.5 10 26 68

Zimbabwe 10 15 60 37
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as high as 84% (Kenya). This suggests that the age-specific model
needs around an order 10 less data to correctly characterise mea-
sles infection in the population.

Discussion

Here, we explored the power of limited age-specific serological
confirmation to shed light on true patterns of incidence over
age in syndromic fever–rash surveillance. In all three countries
investigated, the proportion of suspected measles and rubella
cases confirmed as IgM-positive is strongly age-dependent.
While the general pattern of age-specific confirmation for measles
and rubella is similar across countries – lowest confirmation rates
for measles and highest for rubella between 3 and 15 years – the
absolute rates are country-specific. Thus, inference about the age
distribution of measles cases based solely on clinical cases could
lead to significant biases. Specifically, our analysis shows that
symptomatic surveillance alone can lead to spurious inference
about the mean age of infection, with serologically confirmed
cases and estimated number of cases showing the trends that we
would expect. However, encouragingly, we find that relatively
low levels of serological testing, below 15%, are needed to
correctly estimate the age distribution of cases.

Across strikingly different patterns of measles age incidence,
our analysis shows both the relative power of syndromic surveil-
lance alone, but also how these differences can be leveraged to
improve interpretation of surveillance results in settings where
not every sample can be tested. The correction we propose can
be used to both refine estimates on disease burden in a popula-
tion; but also provides an insight into the returns on investments
in surveillance effort, and particularly efforts put towards sero-
logical testing, for broadly differing epidemiological contexts.

As an example, to understand return on surveillance efforts in
a particular setting, one valuable variable used is the number of
measles cases found per fever–rash case. Our approach strength-
ens the inference around this variable. Across the different set-
tings that we evaluated, we found that in endemic countries
(Ethiopia), about one-third of the fever–rash cases were due to
measles. By contrast, in countries with higher routine coverage,
this ratio was much lower, due to the general absence of measles.
However, in these measles non-endemic countries, the serological
confirmation of measles increases dramatically during the periods
with high incidence of fever–rash cases, which suggests a positive
correlation (i.e. Fig. 4 – Kenya). Conversely, countries with high
coverage of measles vaccine have higher rates of fever–rash
cases caused by rubella, although in general we estimate around
half of the monthly fever–rash cases as non-measles/rubella.
This also highlights the fact that, even in countries with high mea-
sles vaccination coverage, an increase in fever–rash cases can be
driven by an increase in measles or rubella incidence (Fig. 4 –
Zimbabwe first and second peaks in fever–rash cases,
respectively).

On the other hand, the high number of symptomatic cases in
the younger age groups means that the absence of serological
information can result in an underestimate of the mean age of
infection (Fig. 3), exaggerating the total number of cases, while
under-representing older age groups. This could lead to inad-
equate assessment of the current control strategies’ impact, as
well as improper implementation of newer ones. Conversely,
assessing disease burden purely with serology, particularly when
not all cases can be tested, could potentially translate into missing
the temporal signal, as we showed in the spectral density plot for

Ethiopia (Fig. 4). The state-space models currently used to esti-
mate global burden of measles mortality rely on the number of
reported syndromic cases [23]; our analysis suggests that the
resulting estimates of reporting rate are inherently confounded
with the specificity of the case definition, which may vary
among countries. Thus, one could first correct syndromic surveil-
lance via the estimated age-specific confirmation rate prior to the
use of state-space models (a hierarchical model framework could
be used to account for uncertainty in the corrected time series of
confirmed cases).

A ‘hybrid’ approach that combines syndromic surveillance and
laboratory confirmation for a subset of cases may be possible for
many pathogens in many different settings [24]. Using only
laboratory-confirmed cases means that large amounts of data
might be discarded (i.e. in our data, in Ethiopia, only ∼55% of
the cases where serologically tested); furthermore, for measles,
outbreaks may not be adequately captured, because, following
WHO guidelines [10], serological tests are not performed during
large outbreaks. On the other hand, using only syndromic cases
(here, epidemiologically linked fever–rash cases) is likely to result
in confounding effects with other diseases. For example, in our
analysis, rubella shapes much of the fever–rash incidence in
Kenya and Zimbabwe. In general, syndromic surveillance for
symptoms that can be caused by many agents (e.g. for diarrhoeal
disease, fever–rash, etc.) may be of limited utility alone. To be of
public health relevance, one must understand how this syndromic
incidence relates to a particular aetiological agent – e.g. under-
standing the impact of rotavirus vaccination will require some
insight into the link to diarrhoeal disease. The methods we sug-
gest here provide one avenue to recovering core epidemiological
patterns such as disease burden, or patterns of incidence over
age, while minimizing the confounding effects of other diseases.

In relevant public health settings, testing every suspected case
is likely to be logistically infeasible. Here, we focused on the test-
ing required to achieve a minimum accuracy level; however, defin-
ing this minimum accuracy level is subjective. We proposed two
different definitions of equivalent age distributions: estimating
the burden in the population (with a 5% error) and estimating
the burden in the core ages in which 80% of cases occur (with
a 10% error), which we believe is a more useful definition from
a programmatic point of view. Our cross-validation results indi-
cate that testing only half of the syndromic cases yields strong
inference into the total number of cases (TOST P-value <10−16

in all three countries). This arises first because the random walk
framing allows estimates for age bins with small numbers of indi-
viduals and thus potentially high uncertainty to be informed by
neighbouring bins; and second, because the age distribution is a
very good predictor of seropositivity, given its role in infection
risk. Our model also improves the estimation of age distribution
when compared with a simpler approach with age-independent
confirmation rate, which requires testing at least twice as many
syndromic cases (Table 2).

One surprising result of our analysis is that even in countries
where measles is not endemic, we find in high incidence measles
months, a high number of non-measles fever–rash cases also
registered. While this could be due in part to the uncertainty in
the testing itself (i.e. false negatives) that are taken as non-measles,
our estimates of ‘true’ cases formally accounts for the potential for
false negatives; and furthermore, the sensitivity of the test itself is
quite high. Both these lines of evidence suggest that other diseases
are causing the symptoms seen in these data. Rubella is a clear
candidate as an alternative cause for the fever–rash symptoms,
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since it has a similar route of transmission and affects children of
a similar age. However, data from the rubella serological testing
suggest that rubella is not the whole story, thus intriguingly sug-
gesting the presence of another pathogen whose incidence is
increased with measles incidence. Alternatively, it could be a sam-
pling bias, where more syndromic cases are captured in the system
when a disease outbreak is ongoing.

To conclude, we developed a simple model to leverage the
age-specific confirmation proportion, here based on IgM sero-
logical tests, to infer true measles and rubella cases from sus-
pected, syndromic cases. Our results have general relevance for
an array of syndromic surveillance systems: we have shown that,
taking advantage of the age-specific confirmation proportion,
we can inform policy and surveillance measures by testing only
a small proportion of individuals.

Acknowledgements. This work was funded by the Bill and Melinda Gates
Foundation (OPP1094793). C. J. E. M. is also supported by a Wellcome
Trust Sustaining Health Grant (106866/Z/15/Z).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818002054.

References

1. World Health Organization (2017) Measles fact sheet. http://www.who.
int/news-room/fact-sheets/detail/measles

2. World Health Organization (2015) African Health Monitor – Special
issue: Immunization in the African Region. http://www.sdgfund.org/spe-
cial-issue-immunization-african-region

3. Anderson RM and May RM (1991) Infectious Diseases of Humans.
Oxford, OX2 6PD: Oxford University Press.

4. Ferrari M, Grenfell B and Strebel P (2013) Think globally, act locally: the
role of local demographics and vaccination coverage in the dynamic
response of measles infection to control. Philosophical Transactions of
the Royal Society 368, 2012014.

5. Dietz V et al. (2004) Assessing and monitoring vaccination coverage
levels: lessons from the Americas. Revista Panamericana de Salud
Publica 16, 432–442.

6. Hutchins SS et al. (2004) Evaluation of the measles clinical case defin-
ition. Journal Infectious Diseases 189(suppl. 1), S153–S159.

7. World Health Organization, WHO/UNICEF estimates of national
immunization coverage. http://apps.who.int/immunization_monitoring/
globalsummary/timeseries/tswucoveragedtp3.html

8. Chimhuya S et al. (2015) Trends of rubella incidence during a 5-year per-
iod of case based surveillance in Zimbabwe. BMC Public Health 15, 294.

9. Wesolowski A et al. (2015) Quantifying seasonal population fluxes driv-
ing rubella transmission dynamics using mobile phone data. Proceedings
of the Natural Academy of Science 112, 11114–11119.

10. World Health Organization (2012) Global measles and rubella strategic
plan 2012–2020. http://apps.who.int/iris/bitstream/handle/10665/44855/
9789241503396_eng.pdf

11. Wolfson LJ et al. (2009) Estimates of measles case fatality ratios: a com-
prehensive review of community-based studies. International Journal of
Epidemiology 38, 192–205.

12. R Core Team (2018) R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.

13. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical
models using Gibbs sampling, in Proceedings of the 3rd International
Workshop on Distributed Statistical Computing, Technische Universität
Wien, Vienna, Austria, ISSN 1609-395X.

14. Denwood MJ (2016) Runjags: an R package providing interface utilities,
model templates, parallel computing methods and additional distributions
for MCMC models in JAGS. Journal of Statistical Software 71, 1–25.

15. Gelman A and Rubin DB (1992) Inference from iterative simulation
using multiple sequences. Statistical Science 7, 457–472 11.

16. Tipples GA et al. (2003) Assessment of immunoglobulin M enzyme
immunoassays for diagnosis of measles. Journal of Clinical Microbiology
41, 4790–4792.

17. Tipples GA et al. (2004) Evaluation of rubella IgM enzyme immunoas-
says. Journal of Clinical Virology 30, 233–238.

18. Metcalf CJE et al. (2011) The epidemiology of rubella in Mexico: season-
ality, stochasticity and regional variation. Epidemiology and Infection 139,
1029–1038.

19. Walker E and Nowacki AS (2011) Understanding equivalence and non-
inferiority testing. Journal of General Internal Medicine 26, 192–196.

20. Schuirmann DJ (1987) A comparison of the two one-sided tests proced-
ure and the power approach for assessing the equivalence of average
bioavailability. Journal of Pharmacokinetics and Pharmacodynamics 15,
657–680.

21. Rogers JL, Howard KI and Vessey JT (1993) Using significance tests to
evaluate equivalence between two experimental groups. Psychological
Bulletin 113, 553.

22. Hastie T, Tibshirani R and Friedman J (2001) The Elements of Statistical
Learning. Springer Series in Statistics, New York, NY, USA: Springer
New York Inc.

23. Simons E et al. (2012) Assessment of the 2010 global measles mortality
reduction goal: results from a model of surveillance data. The Lancet
379, 2173–2178.

24. Simonsen L et al. (2016) Infectious disease surveillance in the big data era:
towards faster and locally relevant systems. The Journal of Infectious
Diseases 214(suppl. 4) S380–S385.

1706 Joaquin M. Prada et al.

https://doi.org/10.1017/S0950268818002054 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268818002054
https://doi.org/10.1017/S0950268818002054
http://www.who.int/news-room/fact-sheets/detail/measles
http://www.who.int/news-room/fact-sheets/detail/measles
http://www.sdgfund.org/special-issue-immunization-african-region
http://www.sdgfund.org/special-issue-immunization-african-region
http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragedtp3.html
http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragedtp3.html
http://apps.who.int/iris/bitstream/handle/10665/44855/9789241503396_eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/44855/9789241503396_eng.pdf
https://www.R-project.org/
https://doi.org/10.1017/S0950268818002054

	Improving measles incidence inference using age-structured serological data
	Introduction
	Materials and methods
	Data sources
	Model description and validation
	Age-specific confirmation rate
	Estimation for untested individuals
	Reconstructing patterns of incidence
	Model cross-validation
	Minimum estimated number of serological tests


	Results
	Reconstructing inferred patterns
	Cross-validation and minimum number of individuals tested

	Discussion
	Acknowledgements
	References


