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Abstract. Magnetic flux tubes reaching from the solar convection zone
into the chromosphere have to pass through the relatively cool, and there-
fore highly non-ideal (Le. resistive) photospheric plasma. It is shown that
stationary MHD equilibria of magnetic flux tubes which pass through this
region require an inflow of plasma into the tube and a deviation from iso-
rotation along the tube axis. Although for characteristic parameters of
thick flux tubes the effect is negligible, a scaling law indicates its im-
portance for small-scale structures. The relevance of this inflow for the
expansion of flux tubes above the photosphere is discussed.

1. Introduction

The interaction of solar flux tubes with the surrounding plasma is usually treated
in the framework of ideal magnetohydrodynamics (MHD) , i.e, with resistivity
'TJ == O. While this approach appears to be well suited for both the convection zone
and the upper chromosphere, it becomes doubtful for the relatively cold and thus
almost neutral photosphere (see Fig. 1). The purpose of this work is to compute
the deviation from the behaviour known from ideal MHD in a self-consistent
manner. To this end, we assume a given variation of plasma temperature with
height and compute the resulting mass flows associated with an arch-shaped
tube that passes this region. To see how the coupling is affected by the non-
ideality, we keep the tube summit fixed and impose stationary vortexes at the
footpoints. For simplicity, we restrict ourselves to stationary solutions for only
one of the tube's two footpoints (thereby ignoring its loop-like global geometry)
and try to infer the overall tube properties from more qualitative reasoning.

2. Equations and Coordinates Used

The ensuing calculations will use cylindrical coordinates [r, 1>, z], with unit vec-
tors [er, e</>, ez ]. The (z == O)-plane is given by the photosphere's lower boun-
dary, while the z-axis coincides with the tube axis and is pointing away from
the Sun's core. The problem's axial symmetry is then incorporated via 8</> == O.
With 8t == 0, the set of MHD vector equations to be solved for the mass flow
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velocity v and the electromagnetic fields Band E =: -Vq> are as follows:
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0 -VP+jxB+pg (1)
1]j -Vq>+v x B (2)

JLj VxB (3)
0 V·B (4)
0 V· (p v) (5)

with p and 1] denoting the plasma's mass density and resistivity, respectively.
The inertia term p(v·V)v is omitted from (1) since its ratio to the induction term
is of order O[(V/VA)2], where VA := B / VJiP is the Alfven velocity. Observation
indicates (V/VA)2 ~ 0.03 « 1 inside a photospheric tube.

3. Resistive Inflow towards the Tube Axis

Denoting by vp and B p the poloidal components of v and B, and defining

ell := n, / IIBpl1 and e1-:= e(j> x ell (6)

one can use (2) to show that the component of v normal to the tube surface is

v.i := (vp . e.r) e.l = [1J(x) / J.tl [V{ln IIBp II) ·e.l - (V x ell) . etf>] e.l . (7)

Since for a flux tube IIBp II by definition decreases outwards, there will be an
inflow of matter into the tube throughout the entire region where "l =F 0 in the
case of a straight tube (where V x ell = 0), or, more general, in the generic
case (where the contribution from the (V x ell) term is small). It is evident
that Bp ---+- ±a Bp will leave v1- unchanged for any constant a. Taking R as
the tube's typical radius, we see that IIv1-11 ex l/R, which implies that the total
mass inflow if = J{r=R}(P V1-)· da ex ir: [p(z)1](z)/R] 21rR dz occurring
within the layer Z E [ZD' ZD + ~z] is scale-independent with respect to R, i.e,
tubes of various radii (but with the same B-profile) transport the same mass
rate, regardless of their strength. (With the data of section 4., we find a total
mass inflow rate of if ~ 2.7.106 kg/s.)
Since the inflowing plasma cannot leave the tube outside the non-ideal zone, we
are forced to conclude that either a) a steady increase of tube diameter occurs
(tube gets "inflated") or b) the tube is static, thereby enforcing downflow into
the convection zone. Although the present model does not allow for a definite
answer, recent observations (Watko & Klimchuk 1999) seem to favour the down-
flow alternative. More sophisticated explanations (involving, for instance, radial
ionisation gradients) are well conceivable but clearly beyond the scope of this
simple model.

4. Quantitative Evaluation of the Complete Flow

Specialising on tubes that are of cylindrical shape near the footpoints, one can
use eq. (1) and (4) to show that 8r P (r ,z) = 0 = 8rP(r ,z), B = B(r) and hence

j x B == 0 (8)
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Figure 1. Left: temperature variation with z and the embedded re-
sistive layer (shaded). Right: Contour plot of v</>(x,z). The footpoint
vortex profile is v</> (x, 0)/(80 m/s) ~ (R/100 km)-2 x/(l + x2).

for arbitrary equations of state P = P[p, T]. A cylindrical flux tube has to be
force-free if the temperature of the ambient medium is horizontally stratified.
Assuming for simplicity that we have the same vortex with the proper orientation
at both footpoints implies v = 0 at the summit (z = zsm). In this case we have

(9)

with x == r / R, known functions (31. ..4 and Bff satisfying (8), while the I 1,2(Z)
are defined as I1(z) := JzZsm "7(() d( and 12(z ) := JzZsm "7(() [p(()/p(z)] d(. In the
ensuing quantifications, we specialise to Bff = Bo[O, x/(l + x2), 1/(1 + x2)] as
a "flux tube prototype" and use the p(z) and T(z) data provided by the solar
atmosphere model "C" of Vernazza, Avrett, & Loeser (1981) (see Fig. 1) along
with Spitzer's formula and the Saha equation to derive the corresponding "7-
profile. A reasonable approximation is "7(z) = "70 exp[-(z - zm)2 / £2] with "70 =
0.1 0 m, Zm =440 km and L = 140 km. The scaling ofv is dominated by v</>,z, i.e.
Ilvll ex: R-2 . The toroidal flow depicted in Fig. 2 shows a striking deviation from
the flow expected for the case "7 = 0 (in which iso-rotation forces !l(x, z) :=
v</> (x, z)/(xR) to be constant along field lines, i.e. 8z0 == 0). Although for

observable tube sizes (R ~ 100 km) "vII is still too low to be distinguished from
the motions of the ambient plasma, further improvement in image resolution
might render observational verification feasible.
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