ON AXIOMS FOR SEMI-LATTICES

R. Padmanabhan

By a semi-lattice we mean a system <L, > where L is a set and . is a binary operation in L that is idempotent, commutative and associative. In a recent article [2] D.H. Potts considers the problem of reducing the number of axioms for a semi-lattice. His result was that the following two axioms viz. (1) xx = x, (2) (uv)((wx)(yz)) = ((uv)(xw))(zy) are sufficient to give a semi-lattice. But the second identity contains six elements instead of the original three. In the following we give a set of two simple identities with just three elements for a semi-lattice. This improves the above mentioned result.

THEOREM. A system <L, > is a semi-lattice if the following two identities hold in the system:

(1) xx = x

---(*)

(2') (xy)z = (yz)x

Proof. It is sufficient if we prove the commutative law.

We have	yz	=	(yz) (yz)	by (1)
		=	(z(yz))y	by (2')
		=	((yz)y)z	by (2')
		=	((zy)y)z	by (2')
		=	((yy)z)z	by (2')
		=	(yz)z	by (1)
		Ξ	(zz)y	by (2')
		=	zy	by (1) .

We cannot simplify the axiom system (*) further with axioms involving fewer elements because due to a result of McKinsey and Diamond [1] it is known that it is not possible to give a set of postulates for semi-lattices where each postulate is a universal sentence with only two variables.

REFERENCES

1. J. C. C. McKinsey and A. H. Diamond, Algebras and their

subalgebras, Bull. Amer. Math. Soc. 53 (1947).

 D.H. Potts, Axioms for semi-lattices, Canad. Math. Bull. 8 (1965) no. 4.

University of Madras, Madurai and University of Panjab, Chandigarh, India.