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of the vector function û(t) = u(·, t).
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1. Introduction. Let us consider a model problem consisting in a system of partial
differential equations, with the characteristic of being evolutive. This problem may
perhaps be studied with the aid of well-known theories such as the Hille–Yosida or
the Crandall–Liggett generation theorems [1–4]. In this case the system of partial
differential equations has to be written as an abstract Cauchy problem, abstract in the
sense that the unknown u(x, t) is turned into a function û(t) with values in a Banach
or Hilbert space of functions, and such that

û(t)(x) = u(x, t). (1)

To illustrate the readers, the heat equation

∂u
∂t

− �u = 0 in � × [0, T ], (2)

u(x, t) = 0 on ∂� × [0, T ], (3)

u(x, 0) = u0(x) in �, (4)

turns into the abstract Cauchy problem

dû
dt

+ Aû = 0, (5)

û(0) = u0, (6)

where Aû(t) = −�[û(t)] and the apparently missing boundary condition is hidden in
the domain of A; that is to say, A is defined on a set of functions all of which satisfy
the boundary condition (3) (see [2]).

It is true that, when using semigroup theory (linear or nonlinear) to study existence
of solution, the time derivative is not understood in the classical sense, and the
“semigroup” solution (mild solution; also C0-solution) does not need to be differ-
entiable. Thus, in general one does not have to be concerned with the time derivatives.
However, one could think that, when u is differentiable with respect to time, ∂u/∂t
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and dû/dt are the same object. What we try in this paper is to bring the reader’s
attention on the fact that the existence of ∂u/∂t, without further hypotheses, does not
imply the existence of dû/dt.

The author is aware that the results contained in this paper are known to some
experts working in PDEs; however, it is the author’s opinion that the paper is still
valuable, since there is no precise reference where they can be found.

2. Results. We prove the comparison theorems assuming that the Banach space
of functions is L1(�), since this work is inspired by [3]. Hence let us assume that

u : � × [0, T ] → � (7)

(where � is an open subset of �N) is such that

u(·, t) ∈ L1(�) ∀t ∈ [0, T ], (8)

and let us define, for t ∈ [0, T ],

û(t) = u(·, t). (9)

We use the notation “s-lim” to mean strong limit; to be precise, if ψn is a sequence
in L1(�),

s-lim
n→∞

ψn = ψ (10)

means, first, ψ ∈ L1(�), and, second,

lim
n→∞ ‖ψn − ψ‖L1(�) = 0. (11)

Analogously, differentiability of û means strong differentiability.
Whenever we mention derivatives at 0 or at T , it is implicitly assumed that we are

meaning “right” or “left” derivatives, respectively.

THEOREM 2.1. Let us suppose that

û : [0, T ] → L1(�) (12)

is differentiable on [0, T ], and that, for all t ∈ [0, T ] and for a.e. x ∈ �,

∂u
∂t

(x, t) exists and is in �. (13)

Then, for all t ∈ [0, T ],

dû
dt

(t) = ∂u
∂t

(·, t) in L1(�). (14)

Proof. Set t ∈ (0, T). Strong differentiability of û means that the strong limit

dû
dt

(t) = s-lim
h→0

û(t + h) − û(t)
h

(15)
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exists in L1(�). Let us define, for n ∈ � large enough,

ψn = n[û(t + 1/n) − û(t)]. (16)

Then ψn ∈ L1(�) and

s-lim
n→∞

ψn = dû
dt

(t), (17)

which implies, for a certain subsequence ψnk of ψn,

lim
k→∞

ψnk (x) =
[

dû
dt

(t)
]

(x) a.e. in �. (18)

On the other hand, according to the definition of ψnk and û,

lim
k→∞

ψnk (x) = ∂u
∂t

(x, t) for a.e. x in �, (19)

and now we conclude the result from (18) and (19) and the uniqueness of limit.
The proof for t = 0 and t = T can be performed analogously, taking into account

right or left derivatives. �
FIRST COUNTEREXAMPLE. We notice that it is possible to find a function

u : � × [0, T ] → �

such that
• u(·, t) ∈ L1(�) for all t ∈ [0, T ],
• ∂u/∂t(x, t) exists and is in � for all (x, t) ∈ � × [0, T ],

and such that û is not strongly differentiable at some t ∈ [0, T ]. For example, let us
consider

� = (0, 1) ⊂ �, [0, T ] = [0, 1], (20)

and

u(x, t) = ln (x + t). (21)

Then

∂u
∂t

(x, t) = 1
x + t

∀(x, t) ∈ (0, 1) × [0, 1], (22)

and

dû
dt

(0) (23)

does not exist in L1(0, 1), since in that case, according to Theorem 2.1,

dû
dt

(0)(x) = ∂u
∂t

(x, 0) = 1
x

, (24)

which does not belong to L1(0, 1).

https://doi.org/10.1017/S001708950200112X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950200112X
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THEOREM 2.2. Let us suppose that, for all t ∈ [0, T ] and for a.e. x ∈ �,

∂u
∂t

(x, t) exists and is in �, (25)

and that

sup
t∈(0,T)

∣∣∣∣∂u
∂t

(x, t)
∣∣∣∣ ≤ F(x) for a.e. x ∈ �, with F ∈ L1(�). (26)

Then, for all t ∈ [0, T ],

dû
dt

(t) exists and is in L1(�), (27)

and

dû
dt

(t) = ∂u
∂t

(·, t) in L1(�). (28)

Proof. Set t ∈ [0, T ], and define

ψh = û(t + h) − û(t)
h

(29)

for h small enough. It is clear that

lim
h→0

ψh(x) = ∂u
∂t

(x, t) a.e. in �. (30)

Now we must prove that

s-lim
h→0

ψh = ∂u
∂t

(·, t) (31)

to conclude the result. Notice that

ψh(x) = ∂u
∂t

(x, t�) (32)

for some t� strictly placed between t and t + h (thus t� is in the open interval (0, T)),
and consequently

|ψh(x)| =
∣∣∣∣∂u
∂t

(x, t�)

∣∣∣∣ ≤ sup
t∈(0,T)

∣∣∣∣∂u
∂t

(x, t)
∣∣∣∣ ≤ F(x) a.e. in �, (33)

which implies (31), in virtue of (30) and the dominated convergence theorem. �
REMARK 2.1. Theorem 2.2 implies that dû/dt(t) exists in L1(�) (and it is equal to

∂u/∂t(·, t)) provided that

� is bounded, and (34)
∂u
∂t

(exists in � and it) is bounded in � × [0, T ]. (35)
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A careful reading of the proof of Theorem 2.2 shows that the hypothesis (26)

[H1] α(x) = sup
t∈(0,T)

∣∣∣∣∂u
∂t

(x, t)
∣∣∣∣ ≤ F(x) for a.e. x ∈ �, with F ∈ L1(�),

can be replaced either by

[H2] For each t̄ ∈ [0, T ], there exist δ = δ(t̄) > 0 and Gt̄,δ ∈ L1(�) such that

βt̄,δ(x) = sup
t∈V (t̄,δ)

∣∣∣∣∂u
∂t

(x, t)
∣∣∣∣ ≤ Gt̄,δ(x) for a.e. x ∈ �,

where V (t̄, δ) = (t̄ − δ, t̄ + δ) ∩ (0, T),
or by

[H3] For each compact set K ⊂ [0, T ], there exists HK ∈ L1(�) such that

γK (x) = sup
t∈K

∣∣∣∣∂u
∂t

(x, t)
∣∣∣∣ ≤ HK (x) for a.e. x ∈ �,

Indeed, there seems to be some relationship between [H1] and the local hypotheses
[H2] and [H3]. The reader can prove the following proposition.

PROPOSITION 2.1. Let us suppose that, for all t ∈ [0, T ] and for a.e. x ∈ �,

∂u
∂t

(x, t) exists and is in �. (36)

Then [H1], [H2] and [H3] are equivalent.

SECOND COUNTEREXAMPLE. We notice that it is possible to find a function

u : � × [0, T ] → �

such that
• u(·, t) ∈ L1(�) for all t ∈ [0, T ],
• ∂u/∂t(x, t) exists and is in � for all (x, t) ∈ � × [0, T ],
• ∂u/∂t(·, t) ∈ L1(�) for all t ∈ [0, T ],

and such that û is not strongly differentiable at some t ∈ [0, T ]. For example, let us
consider

� = (0, 1) ⊂ �, [0, T ] = [0, 1], R = � × [0, T ], (37)

R1 = {(x, t) ∈ R : t ≥ 2x}, (38)

R2 = {(x, t) ∈ R : x/2 ≤ t ≤ 2x}, (39)

R3 = {(x, t) ∈ R : t ≤ x/2}, (40)

and

u(x, t) =




−4x
t

+ 15
4

if (x, t) ∈ R1,

t
x

− 1
4

if (x, t) ∈ R2,

t2

x2
if (x, t) ∈ R3.

(41)
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Then it is easily checked that u is differentiable with respect to t, and that

∂u
∂t

(x, t) =




4x
t2

if (x, t) ∈ R1,

1
x

if (x, t) ∈ R2,

2t
x2

if (x, t) ∈ R3.

(42)

The reader can verify that u(·, t) and ∂u/∂t(·, t) belong to L1(�) for all t ∈ [0, 1].
However, dû/dt(0) does not exist in L1(�), since (recall Theorem 2.1)

s-lim
h→0

û(h) − û(0)
h

�= ∂u
∂t

(·, 0) ≡ 0. (43)

In order to check (43), it suffices to see that

lim
n→∞

∫ 1

0
n
(∫ 1/n

0

∂u
∂t

(x, s) ds
)

dx �=
∫ 1

0

∂u
∂t

(x, 0) dx = 0. (44)

If we call An = {(x, t) ∈ R : 0 ≤ t ≤ 1/n}, we have for all n
∫ 1

0
n
( ∫ 1/n

0

∂u
∂t

(x, s) ds
)

dx = n
∫

An

∂u
∂t

(x, s) ds dx

≥ n
∫

An∩R2

∂u
∂t

(x, s) ds dx = n
∫

An∩R2

1
x

ds dx = ln 4, (45)

which implies (44).
Regarding this counterexample, we note that hypothesis (26) is not satisfied, and

consequently Theorem 2.2 cannot be applied.
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