On the Kodaira Dimension of the Moduli Space of K3 Surfaces II

SHIGEYUKI KONDŌ ${ }^{\star}$
Graduate School of Polymathematics, Nagoya University, Nagoya, 464-01 Japan
e-mail: kondo@math.nagoya-u.ac.jp

(Received: 12 May 1997; accepted in final form: 21 October 1997)

Abstract

We show that the Kodaira dimension of the moduli space of polarized $K 3$ surfaces of degree $2 n$ is nonnegative if $n=42,43,51,53,55,57,59,61,66,67,69,74,83,85,105,119$ or 133. We use an automorphic form associated with the fake monster Lie algebra constructed by Borcherds.

Mathematics Subject Classifications (1991): 14J28, 11F55.
Key words: $K 3$ surface, automorphic forms, moduli.

1. Introduction

Let $\mathcal{K}_{2 n}$ be the coarse moduli space of $K 3$ surfaces with a primitive polarization of degree $2 n$. It follows from the Torelli theorem for $K 3$ surfaces that $\mathcal{K}_{2 n}$ is described as an arithmetic quotient $\mathcal{D}_{2 n} / \Gamma_{2 n}$ where $\mathcal{D}_{2 n}$ is a 19-dimensional bounded symmetric domain of type IV and $\Gamma_{2 n}$ is an arithmetic subgroup of $\mathrm{O}(2,19)_{\mathbf{Q}}$. Recently, Borcherds [2] constructed a remarkable automorphic form Φ of weight 12 on a 26 -dimensional bounded symmetric domain of type IV. By dividing Φ by a product of linear functions vanishing on $\mathcal{D}_{2 n}$ and by restricting it to $\mathcal{D}_{2 n}$, we have an automorphic form $\Phi_{2 n}$ on $\mathcal{D}_{2 n}$ with respect to $\Gamma_{2 n}$ (see Borcherds et al. [3]). The purpose of this note is to show the following theorem:

THEOREM. Assume that $n=42,43,51,53,55,57,59,61,66,67,69,74,83,85$, 105,119 or 133. Then $\Phi_{2 n}$ is a cusp form of weight 19 on $\mathcal{D}_{2 n}$ with respect to $\Gamma_{2 n}$.

An automorphic form of weight 19 on $\mathcal{D}_{2 n}$ gives a section of the canonical line bundle of the smooth locus of $\mathcal{D}_{2 n} / \Gamma_{2 n}$. Moreover, it is known that a cusp form of weight 19 gives a global section of the canonical line bundle of a smooth model of a compactification of $\mathcal{D}_{2 n} / \Gamma_{2 n}$ (Bauermann [1]). Thus we have the corollary:

COROLLARY 1.1. Assume that n is the same as above. Then the Kodaira dimension of $\mathcal{K}_{2 n}=\mathcal{D}_{2 n} / \Gamma_{2 n}$ is nonnegative.

[^0]If $m=n \cdot l^{2}$ for some natural number l, then $\Gamma_{2 n} \supset \Gamma_{2 m}$ and we have a dominant map from $\mathcal{D}_{2 m} / \Gamma_{2 m}$ to $\mathcal{D}_{2 n} / \Gamma_{2 n}$ (O'Grady [12], Kondō [6], Lemma 3.2). Hence, we have

COROLLARY 1.2. Assume that n is the same as above and $m=n \cdot l^{2}$ for some l. Then the Kodaira dimension of $\mathcal{K}_{2 m}$ is nonnegative.

We remark that if $1 \leqslant n \leqslant 11,17$ or 19 , then $\mathcal{K}_{2 n}$ is unirational and, in particular, its Kodaira dimension is $-\infty$. For $n \leqslant 4$, this is classical and for other n 's, this was shown by Mukai [7], [8], [9]. On the other hand, in the paper [6], the author proved that if $n=p^{2}$ and p is a sufficiently large prime number, then $\mathcal{K}_{2 n}$ is of a general type, i.e. the Kodaira dimension of $\mathcal{K}_{2 n}$ is equal to $\operatorname{dim} \mathcal{K}_{2 n}(=19)$. However, the author did not have an effective estimate of p. Also, Gritsenko [5] proved that the Kodaira dimension of the double cover $\mathcal{D}_{2 n} / \bar{\Gamma}_{2 n}$ of $\mathcal{D}_{2 n} / \Gamma_{2 n}$ is nonnegative if n is not perfect square and positive if n is square free and $n>3$ by using the lifting of Jacobi forms, where $\bar{\Gamma}_{2 n}=\Gamma_{2 n} \cap \mathrm{SO}(2,19)_{\mathbf{Q}}$.

2. Preliminaries

A lattice L is a free \mathbf{Z}-module of finite rank endowed with an integral symmetric bilinear form \langle,$\rangle . If L_{1}$ and L_{2} are lattices, then $L_{1} \oplus L_{2}$ denotes the orthogonal direct sum of L_{1} and L_{2}. An isomorphism of lattices preserving the bilinear forms is called an isometry. A sublattice S of L is called primitive if L / S is torsion free.

A lattice L is even if $\langle x, x\rangle$ is even for each $x \in L$. A lattice L is nondegenerate if the discriminant $d(L)$ of its bilinear form is nonzero, and unimodular if $d(L)= \pm 1$. If L is a nondegenerate lattice, the signature of L is a pair $\left(t_{+}, t_{-}\right)$ where $t_{ \pm}$denotes the multiplicity of the eigenvalues ± 1 for the quadratic form on $L \otimes \mathbf{R}$.

Let L be a nondegenerate even lattice. The bilinear form of L determines a canonical embedding $L \subset L^{*}=\operatorname{Hom}(L, \mathbf{Z})$. The factor group L^{*} / L, which is denoted by A_{L}, is an Abelian group of order $|d(L)|$. We extend the bilinear form on L to the one on L^{*}, taking value in \mathbf{Q}, and define

$$
q_{L}: A_{L} \rightarrow \mathbf{Q} / 2 \mathbf{Z}, \quad q_{L}(x+L)=\langle x, x\rangle+2 \mathbf{Z}\left(x \in L^{*}\right)
$$

We call q_{L} the discriminant quadratic form of L.
We denote by H the hyperbolic lattice defined by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ which is an even unimodular lattice of signature $(1,1)$, and by A_{m}, D_{n} or E_{l} an even negative definite lattice associated with the Dynkin diagram of type A_{m}, D_{n} or $E_{l}(m \geqslant 1$, $n \geqslant 4, l=6,7,8$). A root of a lattice L is a vector r in L with $\langle r, r\rangle=-2$. For an even negative definite lattice L, we denote by $R(L)$ the sublattice of L generated by all roots in L which is called the root sublattice of L and isometric to a direct sum of some A_{m}, D_{n}, E_{l}.

Let X be a $K 3$ surface. Put $L=H^{2}(X, \mathbf{Z})$. Then L admits a canonical structure of a lattice induced from the cup product. It is an even unimodular lattice with signature $(3,19)$ and, hence, isometric to $H \oplus H \oplus H \oplus E_{8} \oplus E_{8}$ (e.g., Nikulin [11], Thm. 1.1.1). Let h be a primitive vector of L with $\langle h, h\rangle=2 n$. Then the orthogonal complement of h in L is isometric to $L_{2 n}=H \oplus H \oplus E_{8} \oplus E_{8} \oplus\langle-2 n\rangle$. Put $\Omega_{2 n}=\left\{[\omega] \in \mathbf{P}\left(L_{2 n} \otimes \mathbf{C}\right):\langle\omega, \omega\rangle=0,\langle\omega, \bar{\omega}\rangle>0\right\}$. Then $\Omega_{2 n}$ consists of two connected components. We denote by $\mathcal{D}_{2 n}$ either one connected component, which is a bounded symmetric domain of type IV and of dimension 19. Let $\Gamma_{2 n}$ be the group of isometries of L which fix h and preserve the component $\mathcal{D}_{2 n}$. Then $\Gamma_{2 n}$ acts on $\mathcal{D}_{2 n}$ properly discontinuously and, hence, by Cartan's theorem $\mathcal{D}_{2 n} / \Gamma_{2 n}$ has a canonical structure of normal analytic space. We call $\mathcal{D}_{2 n}$ the period space of $K 3$ surfaces with a primitive polarization of degree $2 n$. It follows from Torelli theorem for $K 3$ surfaces that $\mathcal{D}_{2 n} / \Gamma_{2 n}$ is a coarse moduli space of $K 3$ surface with a primitive polarization of degree $2 n$.

A boundary component of $\mathcal{D}_{2 n}$ is a maximal connected complex analytic subset in $\overline{\mathcal{D}}_{2 n} \backslash \mathcal{D}_{2 n}$ where $\overline{\mathcal{D}}_{2 n}$ is the topological closure of $\mathcal{D}_{2 n}$ in $\{[\omega] \in$ $\left.\mathbf{P}\left(L_{2 n} \otimes \mathbf{C}\right):\langle\omega, \omega\rangle=0\right\}$. A boundary component is called rational if its stabilizer subgroup of $\mathrm{O}\left(L_{2 n} \otimes \mathbf{R}\right)$ is defined over \mathbf{Q}. It is known that the set of rational boundary components of $\mathcal{D}_{2 n}$ bijectively corresponds to the set of all primitive totally isotropic sublattices of $L_{2 n}$ (Scattone [13], (2.1.7)). If E is a totally isotropic sublattice, then the corresponding rational boundary component is defined by $\mathbf{P}(E \otimes \mathbf{C}) \cap \overline{\mathcal{D}}_{2 n}$. Since the signature of $L_{2 n}$ is $(2,19)$, the dimension of a rational boundary component is either 0 or 1 . For simplicity, we now assume that n is square-free. Let F be a rational boundary component and E the corresponding primitive totally isotropic sublattice. If $\operatorname{dim} F=0$, then F is unique modulo $\Gamma_{2 n}$ and if $\operatorname{dim} F=1$, then we have an orthogonal decomposition

$$
L_{2 n}=H \oplus H \oplus K
$$

where $H \oplus H$ contains E and $K \simeq E^{\perp} / E$ (Scattone [13], Thm. 4.0.1, Lemma 5.2.1). Let $\left\{e_{1}, \ldots, e_{21}\right\}$ be a base of $L_{2 n}$ such that

$$
\left(\left\langle e_{i}, e_{j}\right\rangle\right)_{1 \leqslant i, j \leqslant 21}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & Q & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where $\left\{e_{1}, e_{2}\right\}$ is a base of E and Q is the intersection matrix of K. In case $\operatorname{dim} F=0, F$ is unique modulo $\Gamma_{2 n}$ and, hence, we may assume that E is generated by e_{1}. Denote by q_{0} (resp. q_{1}) the symmetric bilinear form associated with the matrix $\left(\left\langle e_{i}, e_{j}\right\rangle\right)_{2 \leqslant i, j \leqslant 20}$ (resp. Q). Also denote by L_{0} the sublattice e_{1}^{\perp} / e_{1}
of $L_{2 n}$. Let $z=\Sigma z_{i} e_{i}$ be a homogeneous coordinate of $\mathbf{P}\left(L_{2 n} \otimes \mathbf{C}\right)$. Then we have the following unbounded realization of $\mathcal{D}_{2 n}$.
(1.1) In case $\operatorname{dim} F=0$:

$$
\mathcal{D}_{2 n} \simeq\left\{z=\left(z_{2}, \ldots, z_{20}\right) \in \mathbf{C}^{19}:\left(\operatorname{Im}\left(z_{i}\right)\right) \in C(F)\right\}
$$

where $C(F)=\left\{y=\left(y_{2}, \ldots, y_{20}\right) \in \mathbf{R}^{19}: q_{0}(y, y)>0, y_{2}>0\right\}$.
(1.2) In case $\operatorname{dim} F=1$:

$$
\begin{aligned}
\mathcal{D}_{2 n} \simeq\{ & (z, w, \tau)=\left(z_{2}, z_{3}, \ldots, z_{19}, z_{20}\right) \\
& \left.\in H^{+} \times \mathbf{C}^{17} \times H^{+}: \operatorname{Im}(z)-\operatorname{Re}\left(h_{\tau}(w, w)\right)>0\right\}
\end{aligned}
$$

where $h_{\tau}\left(w, w^{\prime}\right)=\left\{-q_{1}\left(w, \bar{w}^{\prime}\right)+q_{1}\left(w, w^{\prime}\right)\right\} / 4 \operatorname{Im}(\tau)$ (see Kondo [6], Sect. 2).
Let f be an automorphic form on $\mathcal{D}_{2 n}$ with respect to $\Gamma_{2 n}$. Then f has an expansion with respect to (1.1) which is called the Fourier expansion of f at F :

$$
f=\sum_{\rho \in \bar{C}(F) \cap L_{0}^{*}} c_{\rho} \exp \left(2 \pi \sqrt{-1} \cdot q_{0}(\rho, z)\right),
$$

where $\bar{C}(F)$ is the closure of $C(F)$. Also with respect to (1.2), f has an expansion which is called the Fourier-Jacobi expansion of f at F :

$$
f=\sum_{m \geqslant 0} \theta_{m}(\tau, w) \exp (2 \pi \sqrt{-1} m z) .
$$

We call f a cusp form if for any rational boundary components the initial term of the above expansion vanishes, i.e. $c_{0} \equiv 0$ if $\operatorname{dim} F=0$ and $\theta_{0}(\tau, w) \equiv 0$ if $\operatorname{dim} F=0$. Note that $\theta_{0}(\tau, w)$ does not depend on w. For more details, we refer the reader to Borcherds [2], Gritsenko [5], Kondo [6].

3. Automorphic Forms on the Period Domain of $K \mathbf{K}$ Surfaces

In the following, as in Borcherds et al. [3], we identify $L_{2 n}=H \oplus H \oplus E_{8} \oplus E_{8} \oplus$ $\langle-2 n\rangle$ with the sublattice $H \oplus H \oplus E_{8} \oplus E_{8} \oplus \mathbf{Z} v$ of $I I_{2,26}=H \oplus H \oplus E_{8} \oplus E_{8} \oplus E_{8}$, where v is a primitive vector in E_{8} with $\langle v, v\rangle=-2 n$. Let U be the orthogonal complement of v in E_{8}. Let \mathcal{D} be the 26 -dimensional bounded symmetric domain of type IV associated with $I I_{2,26}$. Under the above identification, $\mathcal{D}_{2 n} \subset \mathcal{D}$. In the paper [2], Example 2 of section 10, Borcherds constructed an automorphic form Φ of weight 12 on \mathcal{D} with respect to the group of isometries of $I I_{2,26}$ which preserve \mathcal{D}. The restriction of Φ on $\mathcal{D}_{2 n}$ is identically 0 whenever U contains a root. So first divide Φ by a product of linear functions vanishing on the divisors of each of these roots in U, and then restrict it on $\mathcal{D}_{2 n}$. Then we have an automorphic form $\Phi_{2 n}$ on $\mathcal{D}_{2 n}$ with respect to $\Gamma_{2 n}$ which has the following properties (Borcherds et al. [3], also see Borcherds [2], Thm. 13.1 and its proof):
(2.1) $\Phi_{2 n}$ vanishes on the hyperplanes of $\mathcal{D}_{2 n}$ each of which is orthogonal to a vector $r^{\prime} \in L_{2 n}^{*}$ with $-2 \leqslant\left\langle r^{\prime}, r^{\prime}\right\rangle<0$. Here r^{\prime} is the projection of a root r of $I I_{2,26}$.
(2.2) The weight of $\Phi_{2 n}$ is equal to the weight $(=12)$ of Φ plus half the number of roots of U.

Let $\left\{e_{i}\right\}_{1 \leqslant i \leqslant 8}$ be a set of simple roots of E_{8} which satisfies the following:

$$
\begin{aligned}
\left\langle e_{i}, e_{i}\right\rangle= & -2,\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{2}, e_{3}\right\rangle=\left\langle e_{3}, e_{4}\right\rangle \\
= & \left\langle e_{3}, e_{5}\right\rangle=\left\langle e_{5}, e_{6}\right\rangle=\left\langle e_{6}, e_{7}\right\rangle=\left\langle e_{7}, e_{8}\right\rangle=1 \quad \text { and } \\
& \left\langle e_{i}, e_{j}\right\rangle=0 \quad \text { for other } i, j
\end{aligned}
$$

Let R be a root lattice isometric to $A_{2} \oplus A_{2} \oplus A_{1}$ or $A_{3} \oplus A_{1}$. Note that the number of roots in R is 14 . In the case where $R=A_{2} \oplus A_{2} \oplus A_{1}$, we consider R as one of the following sublattices of E_{8} :
(a) $\left\langle e_{1}, e_{2}, e_{4}, e_{6}, e_{7}\right\rangle$,
(b) $\left\langle e_{1}, e_{2}, e_{5}, e_{6}, e_{8}\right\rangle$,
(c) $\left\langle e_{1}, e_{2}, e_{5}, e_{7}, e_{8}\right\rangle$,
(d) $\left\langle e_{1}, e_{3}, e_{4}, e_{6}, e_{7}\right\rangle$,
(e) $\left\langle e_{1}, e_{3}, e_{4}, e_{7}, e_{8}\right\rangle$.

In the case where $R=A_{3} \oplus A_{1}$, we consider R as one of the following sublattices of E_{8} :
(f) $\left\langle e_{1}, e_{2}, e_{3}, e_{6}\right\rangle$,
(g) $\left\langle e_{1}, e_{2}, e_{3}, e_{7}\right\rangle$,
(h) $\left\langle e_{1}, e_{2}, e_{3}, e_{8}\right\rangle$,
(i) $\left\langle e_{2}, e_{3}, e_{4}, e_{7}\right\rangle$,
(j) $\left\langle e_{2}, e_{3}, e_{5}, e_{7}\right\rangle$,
(k) $\left\langle e_{2}, e_{3}, e_{5}, e_{8}\right\rangle$,
(1) $\left\langle e_{3}, e_{4}, e_{5}, e_{7}\right\rangle$,
(m) $\left\langle e_{1}, e_{5}, e_{6}, e_{7}\right\rangle$,
(n) $\left\langle e_{4}, e_{5}, e_{6}, e_{7}\right\rangle$,
(o) $\left\langle e_{1}, e_{6}, e_{7}, e_{8}\right\rangle$,
(p) $\left\langle e_{2}, e_{6}, e_{7}, e_{8}\right\rangle$,
(q) $\left\langle e_{4}, e_{6}, e_{7}, e_{8}\right\rangle$.

If $R=\left\langle e_{\alpha}, e_{\beta}, e_{\gamma}, e_{\delta}, e_{\kappa}\right\rangle$ (resp. $R=\left\langle e_{\alpha}, e_{\beta}, e_{\gamma}, e_{\delta}\right\rangle$), then we take a vector v as a sum:

$$
v=e_{\lambda}^{*}+e_{\mu}^{*}+e_{\nu}^{*}\left(\operatorname{resp} . v=e_{\kappa}^{*}+e_{\lambda}^{*}+e_{\mu}^{*}+e_{\nu}^{*}\right)
$$

where $\{\alpha, \beta, \ldots, \nu\}=\{1,2, \ldots, 8\}$ and e_{α}^{*} is the dual of e_{α} (see Bourbaki [4], Planche VII). Since E_{8} is unimodular, $v \in E_{8}$. A direct calculation shows that the number $-\langle v, v\rangle / 2$ is equal to
(a) 61, (b) 55, (c) 67, (d) 43, (e) 66, (f) 57, (g) 69, (h) 83, (i) 59, (j) 42,
(k) 53, (l) 51, (m) 85, (n) 74, (o) 133, (p) 105, (q) 119.

Since $\langle v, v\rangle / 2$ is square free, v is primitive in E_{8}. Obviously any root in $U\left(=v^{\perp}\right.$ in E_{8}) is contained in R. Hence, the number of roots of U is 14 . Thus, we have an automorphic form $\Phi_{2 n}$ of weight $19(=12+14 / 2)$ by (2.2).

THEOREM. $\Phi_{2 n}$ is a cusp form of weight 19.
Proof. It suffices to see that $\Phi_{2 n}$ vanishes on the top dimensional (= 1-dim.) rational boundary components of $\mathcal{D}_{2 n}$. Since n is square free, the set of primitive totally isotropic sublattices of rank two corresponds to the set of isomorphy classes of even negative definite lattices K such that $L_{2 n} \simeq H \oplus H \oplus K$ (Scattone [13], Thm. 5.0.2). Here totally isotropic sublattice is contained in $H \oplus H$. Since $q_{K} \simeq q_{L_{2 n}} \simeq-q_{U}$, we have an even negative definite unimodular lattice N of rank 24 such that K and U are primitive sublattices of $N, K^{\perp} \simeq U$ and $U^{\perp} \simeq K$ (Nikulin [11], Cor. 1.6.2). Thus, each K is obtained as the orthogonal complement of a primitive sublattice U of some N. Let $U \subset N$ be a primitive embedding. Since U contains R, N also contains a root. Such lattices N are classified into 23 isomorphism classes which are characterized by its root sublattice $R(N)$ (Niemeier [10]). Since rank $R(N)=24$, there exists a root r of N whose projection r^{\prime} into K^{*} has a negative norm: $-2 \leqslant\left\langle r^{\prime}, r^{\prime}\right\rangle<0$. Note that the totally isotropic primitive sublattice of rank 2 corresponding to K is contained in the orthogonal complement of r^{\prime}. It follows from (2.1) that $\Phi_{2 n}$ vanishes the hyperplane orthogonal to r^{\prime}. Let

$$
\Phi_{2 n}=\Sigma \theta_{m}(\tau, w) \cdot \exp (2 \pi \sqrt{-1} m z)
$$

be the Fourier-Jacobi expansion of $\Phi_{2 n}$ at this boundary component. Since

$$
\theta_{0}(\tau, w)=\lim _{\operatorname{Im}(z) \rightarrow \infty} \Phi_{2 n}
$$

and $\theta_{0}(\tau, w)$ does not depend on w, the above implies that $\theta_{0}(\tau, w) \equiv 0$.
Remark. There are another embeddings of R into E_{8}. In the above, we take embeddings such that the number $\langle v, v\rangle / 2$ is square free. Also we can take v as a linear combination of $e_{\lambda}^{*}, e_{\mu}^{*}, e_{\nu}^{*}$ (resp. $e_{\kappa}^{*}, e_{\lambda}^{*}, e_{\mu}^{*}, e_{\nu}^{*}$) with positive coefficients. Then $\Phi_{2 n}$ is a cusp form of weight 19 whenever $\langle v, v\rangle / 2$ is square free and Corollaries 1, 2 hold for these n.

Acknowledgements

This paper was written during the author's stay at the Max-Planck-Institut für Mathematik in Bonn 1996-1997. He expresses his thanks to the Institute for giving him the opportunity to work in an stimulating working atmosphere.

References

1. Bauermann, J.: Lokale Tensorfelder auf arithmetischen Quotienten symmetrischer beschränkter Gebiete, J. reine angew. Math. 428 (1992), 111-138.
2. Borcherds, R. E.: Automorphic forms on $O_{s+2,2}(\mathbf{R})$ and infinite products, Invent. Math. 120 (1995), 161-213.
3. Borcherds, R. E., Katzarkov, L., Pantev, T. and Shepherd-Barron, N. I.: Families of $K 3$ surfaces, Preprint, alg-geom/9701013.
4. Bourbaki, N.: Groupes et algèbres de Lie, Chap. 4, 5 et 6, Hermann, Paris, 1968.
5. Gritsenko, V.: Modular forms and moduli spaces of abelian and K3 surfaces, St. Petersburg Math. J. 6 (1995), 1179-1208.
6. Kondō, S.: On the Kodaira dimension of the moduli space of $K 3$ surfaces, Compositio Math. 89 (1993), 251-299.
7. Mukai, S.: Curves, $K 3$ surfaces and Fano 3-folds of genus $\leqslant 10$, in Algebraic Geometry and Commutative Algebra in Honor of M. Nagata, Kinokuniya, 1987, pp. 357-377.
8. Mukai, S.: Polarized $K 3$ surfaces of genus 18 and 20, in Vector Bundles and Special Projective Embeddings, Bergen, 1989.
9. Mukai, S.: Curves and $K 3$ surfaces of genus eleven, in M. Maruyama (ed.), Moduli of Vector Bundles, Lecture Notes in Pure and Appl. Math. 179, Dekker, New York, 1996, pp. 189-197.
10. Niemeier, H. V.: Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory 5 (1973), 142-178.
11. Nikulin, V. V.: Integral symmetric bilinear forms and its applications, Math. USSR Izv. 14 (1980), 103-167.
12. O'Grady, K.: On the Kodaira dimension of moduli spaces of Abelian surfaces, Compositio Math. 72 (1989), 121-163.
13. Scattone, F.: On the compactification of moduli spaces for algebraic $K 3$ surfaces, Mem. Amer. Math. Soc. 374 (1987).

[^0]: * Supported by Max-Planck-Institut in Bonn.

