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1. Introduction

In a previous paper [1], Green's theorem for line integrals in the plane
was proved, for Riemann integration, assuming the integrability of Qx—Pv,
where P(x, y) and Q(x, y) are the functions involved, but not the integra-
bility of the individual partial derivatives Qx and Py. In the present paper,
this result is extended to a proof of the Gauss-Green theorem for p-spa.ce
(p ^ 2), for Lebesgue integration, under analogous hypotheses. The
theorem is proved in the form

(1) jadivg(x)d^(x) = jtog(x) • v(x)d0(x)

where Q is a bounded open set in Rp (/>-space), with boundary dQ;
g(x) = {g{xi)> " " '»g(xi>)) is a ^-vector valued function of x = (xx, • • •, xv),
continuous in the closure of Q;

fip(x) is />-dimensional Lebesgue measure; v(x) = {vx{x), • • •, vv{x)) and
0(x) are suitably defined unit exterior normal and surface area on the
'surface' dQ; a.ndg(x) • v(x) denotes inner product of ^-vectors.

In analogy with the plane case, div g(x) is assumed finite, except on
a suitably restricted 'exceptional set', and Lebesgue integrable on Q —
but the individual partial derivatives Bgi(x)l8xi need not be integrable;
and dQ is assumed to have finite Hausdorff (p—l)-measure, and to satisfy
a weak continuity condition. The hypothesis on Hausdorff measure, which
is analogous to the requirement in [1] that the plane curve is rectifiable,
is equivalent to a hypothesis on covering dQ by cubes, analogous to Potts'
Lemma [2] on covering a rectifiable plane curve by squares.

Other authors have assumed that the individual partial derivatives
are integrable. Notably, Federer [3], [4], [5] proves the theorem, for
suitable scalar f(x), in the form

(2) f dJp. dp,(x) = f f{x)Vi{x)d0{x),
Jo vxi Jan
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386 B. D. Craven [2]

and Michael [6] proves (2) with a multiplicity factor inserted. Both assume,
however, that df/dXf is integrable over Q.

The proof of (1) depends, not on the detailed definitions of v(x) and
0(x), but on the following properties assumed for those functions:

(I) v(x) is a Borel-measurable function of x, which reduces to the
geometric exterior normal to Q whenever dQ is differentiate at x; v(x) = 0
by convention wherever a normal is undefined.

(II) If v(x) and v*(x) denote the unit exterior normals to Q and its
complement at the point x e dQ, then v*(x) = —v(x).

(III) 0(S) is a Carathe'odory outer measure ([7] § 235) for subsets S
of dQ, which equals geometric (j>—l)-dimensional area in the neighbourhood
of any point where the surface dQ is differentiate. [0(x) denotes 0(S) for
S = {y:yi^xi,i=l,2,--;P}.]

(IV) If dQ denotes the entire boundary of any bounded open set Q,
for which 0(dQ) < oo, then

(3) jtovl(x)d0(x)=O (i= 1,2, ••-,£).

Federer ([3] and [4]) defines a normal v(x), which restricts Q merely
to be a bounded open set, and shows that this v(x), together with 0(S)
defined as Hausdorff (p—1)-measure on dQ, satisfy (I), (II), (III), and (2).
If C is any constant vector, then

f C • v(x)d0(x) = £ C< f vt(x)d0(x)
. . . Jaa «=i Jaa
(4)

= 0 from (2),
so that (IV) also holds. It is not obvious whether any other extensions of
normal and area exist, satisfying (I) to (IV), but if they do, then Theorems
1, 2, 3 of this paper remain valid for them.

2. Boundary surface

If C is a rectifiable plane curve, of length L, then Lemma 2 of Potts [2]
states that there is a covering Ms of L by at most 4(Z./<5) + 4 closed squares,
each of side d, with disjoint interiors and sides parallel to the axes. Hence,
if K = 8L, a constant depending only on C, Ms consists of at most Kjd
squares of side 5, whose total area Kd -> 0 as 6 -> 0, and whose total peri-
meter is less than 4K, a bound independent of d. This fact suggests the
following generalization to Rp. Let 'cube' denote '^-dimensional hypercube
with edges parallel to the axes'. A 'surface' E ((/>—1)-dimensional manifold)
in Rv will be said to satisfy the 'Potts condition' if, for a sequence of values
of d I 0, E can be covered by a finite collection Ms of closed cubes Ai with
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disjoint interiors, such that the edge 8{ of At is less than 8, for each i, and
X ^ ? 1 < K, a. constant independent of 8. Denote by M* the union of the
cubes of Ms. It follows that the total ^-dimensional volume of M* is less
than K8, so ->- 0 with 8, and the total (p—l)-dimensional surface area of
the cubes of Ms is less than 2pK, for all 6. The 'Potts condition' is further
characterized by the following two Lemmas.

LEMMA 1. The boundary E of a bounded open set in R" satisfies the Potts
condition if and only if its Hausdorff {p—l)-measure, <&(E), is finite.

PROOF. Hausdorff measure is defined [5] as

®(E)
(5)

= 2-*'+1(xJ)_1 lim Tinf ( f (diam
r-»0+ L U=l

£CjJ B,; diam B, < r, j = 1, 2, • • -jj

where aJ)_1 = volume of (p—l)-dimensional unit sphere. Let E satisfy the
Potts condition. For any r > 0, there is a covering Ms of E by cubes Af

of edge < 8, and therefore of diameter < dpi < r, by choice of 8, such that

2 (diam Atf^ = (pi)*-1 £ flf1 < K(pi)*-\
i i

a constant independent of r, consequently, from (5), 0(E) < oo.
The converse is Theorem 4.1 of Michael [8], noting that E is compact.

LEMMA 2. Let C be a plane closed Jordan curve. Then C satisfies the
Potts condition if and only if C is rectifiable.

PROOF. If C is rectifiable, then C satisfies the Potts condition, by Potts'
Lemma. Conversely, let C satisfy the Potts condition. Then C is bounded.
Choose any n distinct points Po, P l f • • •, Pn_i on C, taken in order around
C; denote Pn = Po. Cover each Pt by a square Kit whose edge < \\n.
Let Ci denote that part of the arc P^yPi which lies outside Int (Ki_1 u Kt).
Since the Ct are disjoint compact, there is a Potts covering M of C, such that
each C{ is covered by a union M{ of squares of M, and the Mt are disjoint.
There are points Q'^ e K{_t n 8M( and Q't' eKt n 8Mf, where dMi denotes
the boundary of Mi. There is an arc, of length b{ say, joining Q^ to Q",
consisting of parts of edges of squares of Mt. Then, if d denotes distance,
and K is the constant of the Potts hypothesis,

t_i, Pt) sS

+n n

a bound independent of the Pt. So C is rectifiable.
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3. Admissible domains

Let Q be a bounded open subset of Rv, whose boundary dQ is a
countable union of disjoint continuous images Ek of S'^1, the (p—1)-
dimensional unit sphere. Let V = u Vk, where the Vk are countably many
disjoint copies of S""1 in Rp. Now Ek = fk{Vk), where each fk is continuous,
so that dQ = /(F), where /|Ffc = fk, and / is continuous. (The set V may be
taken instead as a countable union of disjoint closed intervals in R.)

If dQ is topologised as a subspace of Rv, then the sets

A = dQ n {x : Xi < a.} and i? = 3.Q n {a; : a;,, > a}

are open in dQ, so their inverse images f~xA and / - 1 B are open in V, and
therefore consist of at most countably many disjoint arcwise-connected
components. Consequently, if K is any open cube in Rp, dQ n K consists
of at most countably many components.

LetL^a) = dQ n {x : x{ 5S a}. Since 0 is monotone,^(o^) = 0(L1(<x.1))
is a nondecreasing function of a1; so there is a countable dense set Dt of
ocx on which ^ is continuous. Likewise, for each xxe Dt,

Wfa, a2) = 0{L1{«.1) n L2(oc2))

is a nondecreasing function of a2, so there is a countable dense set D2 of
oc2 such that !f2 is continuous for a.leD1, a2 e D2; and so on. The planes
â  = af e Z?j (i = 1, 2, • • •, p) will be called admissible planes. Since they
form a dense family, the cubes used in Potts coverings can be replaced by
cuboids bounded by admissible planes, with arbitrarily little change in the
bounds previously obtained; this will be assumed henceforth. If W is any
open cuboid bounded by admissible planes, then any component of W n dQ
will be called an admissible domain in dQ.

LEMMA 3. / / At (i = 1, 2, • • •) are disjoint admissible domains in dQ,
then

(i) 0(Ai) = 0(Ai), where A{ = closure of At in dQ;

(ii) 0(A1-\-A2) = 0(A1)+0(A2), where A^A^ now denotes the inte-

rior of A±KJ A2', denote also 4 1 +^4 2 + • • • +An-\- • • • = Interior of \J™Ai;

(iii) if AQ = A^A^ • • • -{-An-\- • • • is also admissible, then

(iv) At is 0-measurable;

(v) if f(x) is bounded B or el-measurable, then

f fd®=\ fd0+ f fd0.
JA1+A1' JA1' JAS'
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PROOF, (i) If W is an open cuboid bounded by admissible planes, then
the continuity of 0 on admissible planes implies that there is a larger cuboid
We, obtained by displacing outward each boundary plane of W, such that
WCWE, and &(WE n dQ) < &{W n dQ)+e. So if A is an admissible
domain, there is an admissible domain AeD A with 0{AS) <&{A)-\-E;

which implies (i).
(ii) Define distance d on dQ as the restriction to dQ of distance in Rp.

Since At n A2 = 0, C = A± n A2 is contained in the frontiers (in dQ) of
Ax and A2- By the definition of admissible domain, these frontier points
are boundary points of finitely many cuboids bounded by admissible planes.
These planes may be covered by a finite union G of open cuboids, such that
<P(D) < e, where C C D = G n dQ. Then the sets Tt~D = At-D (i = 1, 2)
are disjoint closed sets in dQ; therefore d(A1—D, A2—D) > 0. Since 0
is a Caratheodory outer measure, it is additive on A1—D and A2—D,
and the result follows.

(iii) Since At+ • • • +An CA0,

£ 0(At) ^ 0(AO) = 0(AO) by (ii) and (i);
i

since 0 is subadditive,

(iv) Since At is open in dQ, and 0 is a Caratheodory outer measure on
dQ, A{ is measurable (Carath^odory [7], § 238 and § 251).

(v) From (ii) and (iv), it readily follows that, for any Borel set B
(i.e. any set obtained from admissible domains by countably many unions
and intersections) 0(B r\ [A-^+A^] ^= 0{B n A1)-\-(B n A2); and this
leads readily to (v).

LEMMA 4. If f(x) is bounded Bot•el-measurable; Ax, A2, • • • are disjoint
admissible domains; and A = Ax-\-A2-\- • • • is an admissible domain, with
0(A) < oo; then, independently of the order of summation,

fd0.r fd0 = j r
J A i=l J At

PROOF. Since &(A) < oo, J^ is finite, and by Lemma 3 (iii), so is each
lA(. Suppose that some sequence of partial sums of the series (6), summed
in some order, converges to a limit X, where \k—J^| = 3(5 > 0. Then

2/-;
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for an expanding sequence of finite sets Nr f N, the set of all positive
integers. If Fr = Ax-\- • • • -\-Ar and Gr = A—Ar, then by Lemma 3 (hi)

by choice of r, since

r) = 2 0(At) < <5/sup

°°- Since .Fr, Gr are disjoint measurable sets,

f +f -A = i f +f3«5 =

so that (5 = 0.

-A +sup|/|0(Gr) ^

4. Gauss-Green theorem

THEOREM 1. Let Q be a bounded open subset of R", whose boundary dQ
(i) satisfies the Potts condition, and (ii) is a countable union of disjoint
continuous images of Sp~1. Let g : Q —> Rp be continuous on Q. Let div g be
Lebesgue-integrable on Q. For every cuboid F C Q, let the Gauss-Green theorem
(1) hold, with Q, dQ replaced by F, dQ. Then (1) holds for Q, dQ.

PROOF. Let Ms be a Potts covering of dQ, consisting of closed cuboids
A(. Denote the interior of At by ^4". Let Cs denote the union of those
relatively open subsets of the boundary planes of the A {which lie in M* n Q.
Then, by definition of Potts covering, fip(Mf) < Kb and [iv-x{Cs) < 2pK.
Let h(x) = div g(x) for x e Q, h(x) = 0 for x $Q. Then

Since heL(R'),

<e

if fip{M*) < A(e). So, if W = Q-M* and 6 < K~

The set Ai n Q has boundary pi = a,- uffjU A,-, where at- = ylj n dQ
is the union of (at most) countably many admissible domains a.H, the
relatively open set at = d ^ n Q is the union of (at most) countably many
components /3i3 of Cs—dW and yi3- of dW, and ^ = dA{ n 8Q satisfies
<Z>(A,-) = 0, since ^44 is bounded by admissible planes. The frontiers of the
open sets /3,7 and yu, in the relative topology of 8Ait are contained in Xt.
Consequently, the results of Lemmas 3 and 4 apply also to the fi^ and
yti; these sets will also be called 'admissible domains'.

In terms of the set composition + of Lemma 3, pt is the sum, over
countably many indices /, of the <xo, /?jJ( yH. The proof of Theorem 1 consists
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essentially in recombining the corresponding integrals in a different order;
this process is validated by Lemma 4, which also shows that the frontier
points (in the relative topology) of the admissible domains make no
contribution.

Attach to each point x ept the unit exterior normal v{x). For x e/Si3-,
two normals are possible, oppositely directed, depending on which pt is
chosen; in the following summation, each /30- contributes twice, once for
each normal. With integrand g • vd®,

- 2 Y« s i n c e

= 221 + + ) — 2

= 2f +f
i.iJpi, JSW

=0

by Lemma 4

by Lemma 4

by Lemma 4.

Since g is continuous on the compact set Q, and /uv(Ms) -> 0 as d -> 0,
there is d such that the oscillation of g(x) in the closure of each Air\Q
is less than e. So, for d sufficiently small, there corresponds to each pt a
constant vector ct such that, for x e pt,

g(x) = Cj+jy^a;) where l^^i

f g • ^^0 = f ct • vd®+ f
Jpi7 J Pit •* P

J Pu

< e.

<t • vd®

by (3)

vd®

Hence

so that

(9)

where K is the constant of the family of Potts coverings.
Now the Gauss-Green theorem applies, by hypothesis, to W, which

is a finite union of cuboids <ZD. Combining this with (7) and (9),

(10)

for constant B; which proves the theorem.

^ £ (2 2 *(^<)+^(2fi) j by Lemma 3 (hi)
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LEMMA 5. (Saks [9], page 198.) Let w be a real function of one variable,
such that w'(x) exists p.p. in [a, b~\; let F be a closed non-empty subset of
[a, b]; let N be a finite constant such that

\w(x2)—w(x1)\ ^ N\x2—x1\ whenever xt e F and x% e [a, b].
Then

\w(b)-w(a)~ jpw'{x)dx\

PROOF. (Saks) Let u(x) = w(x) on F u {a, b}, and linear on the
complementary intervals. Then u(x) is Lipschitz, therefore absolutely
continuous. Hence

w(b)—w(a) = u(b)—u(a) = \ u'(x)dx.
J a

But u'(x) = w'(x) p.p. in F, and |M'(X)| J£ N at each x e' F, which proves
the result.

THEOREM 2. Let W be an open cuboid in Rp; let K be an open cuboid
containing W. Let g(x) be continuous on K; let div g(x) be finite for all x eK
and Lebesgue integrable on W. Then the Gauss-Green theorem (1) holds for W,
dW.

PROOF. A point x e W will be called admissible if it has an open
neighbourhood N(x) CK, such that for every cuboid C CN(x), (1) holds
for C, 8C. Let F denote the complement, with respect to W, of the set of
admissible points. From its construction, F is closed. Suppose that F is not
empty; this will lead to a contradiction.

For n = 1, 2, • • •, denote by Fn the set of points x for which

max \g(x1, • • -, xt_x> Xf+h, xi+1, • • •, xp)
(11) i=l,2,---,P

-g(x1, • • •, x^, x(, xi+1, • • -, xv)\ ^ n\h\ for \h\ < n-\

Since Bg^/dXf is finite for all x, W C u n Fn. Then, according to Baire's
category theorem ([9] page 55) there is an open cuboid / such that F n FN
is dense in F n / for some integer N. Since also F and FN are closed,
0 9^/ n F Cl n (F n FN) C FN- Let xoeInF. Let Q be any closed
cuboid of diameter rg! N~x, where x0 e Q C / .

Given 6 > 0, there is a countable covering of E — F n Q by open
cuboids G, such that

Since F n Q is compact, a finite subset of the G3 covers F n Q. Since also
J"J>(^) = J"»(GV), there is a finite covering of F n Q hy closed cuboids S3-
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(j = l, • • •, r) which may be assumed to have disjoint interiors, and to lie
within Q, such that

(12) i/iJ^X^F^IH
l

Let Sj be the cuboid a3-^ xt fS 63- (/ = 1, • • •, p). Let the line specified
by fixed values of xx, • • •, £,_i, xi+1, • • •, xv intersect F r\ S} in the set
Tf = Ti(xl, • • •, xt_x, xi+1, • • •, xv), whose linear measure is /^(T^). Then,
from Lemma 5,

_ f f^f (x x x ... X )dx)
J T. OXf

So, integrating with respect to xt, • • •, x{_lt xi+1, • • -,xp over a, ̂  xt ^ bjt

f gt(x)vt(x)d0{x)- f
JdSj JSj

= \y(xi,- ••, xi-i; xi+1, • • •, xP)dx1 • • • dxt_xdxi+1 • • • dxp,

(13) since 53- is a cuboid

^ N\ (bi-ai~/x1{Ti))dx1 • • • dxt_Ydxi+1 • • • dxv

= N{fiv{Si)—fiv(Si n F)) by Fubini's theorem.

Define the set function H(S) on closed cuboids S by

(14) pH(S) =

Then H(S) is additive on cuboids whose interiors are disjoint, and, from the
definition of F,

(15) H{S) = 0 if F nS = 0.

Now since ff is additive,

1 1

(16) ^ i b ^ - A i ^ n F J + f Idivg l̂̂ ^x)] by (13)
i=l J S/-F

S,)-F nQ)+N( \divg(x)\dMp(x).
1 JiuSJ-iFnQ)
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Since g is integrable over W, the integral in (16) can be made less than
e/(2iV) by choosing ^ ( ( u Sy) — (F n <?)) < J(e/2iV), say. From (12)

(17) ^ ( (u S,) - (F n Q) < min (e/2tf, Zl (*/2tf))

if (5 is chosen less than the quantity on the right of (17). Hence \H(u S,) | < e.
Now

= \H(Q-vSj)+H(vSt)\

since Q—Sj CQ—F. Since e is arbitrary, H(Q) = 0. Since this is true for
every sufficiently small cuboid Q containing x0, the assumption x0 e F is
contradicted. Hence F is empty.

THEOREM 3. Let Q be a bounded open subset of Rp, whose boundary dQ
satisfies the Potts condition {or equivalently, by Lemma 1, has &(dQ) < oo),
and is a countable union of disjoint continuous images of S"""1. Let E be
a subset of Q which satisfies the same hypotheses as dQ. Let the function
g • D ->• Rp be continuous; let div g exist (with finite value) at all points of
Q—E, and be integrable on Q. Then the Gauss-Green theorem (1) holds for
Q, dQ.

REMARKS. The topological hypothesis on dQ is an analog of the hypo-
thesis, in Green's theorem for two dimensions, that the boundary is a closed
Jordan curve.

The subset E may consist, e.g., of countably many points, or lines, etc.,
within Q, on which one or more derivatives dgJdXf fail to exist; since
jUj,(E) = 0 (from the Potts condition), div g is defined a.e. on Q.

The Looman-Menchoff theorem (Saks [9]) states that if f(z) = u-\-iv
is a continuous function of complex z on domain Q, and u and v have their
first partial derivatives finite in Q except on a countable set E, and satisfy
the Cauchy-Riemann equations a.e. in Q, then jcf(z)dz = 0 for each closed
rectangle C in Q. Theorem 3 of this paper shows that this exceptional set E
can be considerably enlarged.

PROOF. Let M be a closed Potts covering of E, with parameter d. The
hypotheses of Theorem 2, and consequently the Gauss-Green theorem, hold
for each cuboid K C Q—M. Therefore, by Theorem 1, the Gauss-Green
theorem holds also for Q—M and its boundary.

Since E satisfies the same hypotheses as dQ, the arguments which lead
to (7) and (9) in the proof of Theorem 1 show also that, for sufficiently
small d,
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< £

f — I < k • eI
d[Q-M)

where k is constant. Since e is arbitrary, these results combine to prove the
Gauss-Green theorem for Q, dQ.

5. Examples

(I) Theorem 3, or even the two-dimensional Riemann-integral version
in [1], is a non-trivial extension of the usual Gauss-Green theorem. An
example in two dimensions is as follows.

Let Q denote the interior of the unit circle a^+^2 = 1. Let

gi{xi~ xi) = —xir2 sin n/r*

where r2 = a;2+#2. Then gt and g2 are continuous, and even differentiate,
at all points in Q, since for r ^ 0,

and \[g1{x1, x2)—g1(0, 0)]/r| <r (and similarly for g2).
Thus div g(x) = 0 in Q, so is integrable, and Green's theorem holds

for these functions. But if Sg1l8x1 were integrable on Q, it would follow
(since 2x1x2 sin njr* is continuous) that

txx2 n
yi yi

dx1dxi <z 00,

hence in polar coordinates,

or (with r = S~i)
Jo

f
Jo

n
cos —

cos

dr
< 00

dS

-s<co-
Since this integral diverges, SgJ8xl is not integrable on Q, consequently
the usual forms of Green's theorem do not apply.

(II) Theorem 3 is untrue if the exceptional set E, on which div g fails
to exist, is increased to an arbitrary null set (i.e. fip(E) = 0). A counter-
example for p = 2 is given by Q = unit square (0 ^ xx ^ 1, 0 5S x2 ^ 1),
g2(x) = 0, gx(x) = cf>(x1)(l)(x2), where <£(z) is Cantor's monotonic function
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for which (f>'(x) = 0 except on a null set N, but <f>(l)—<f>(0) = 1. Then
divg = 0 except on the null set E = NxN, so that

I div gd/i% = 0, but I g • vd& ^ 0.
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