ON THE GAUSS-GREEN THEOREM

B. D. CRAVEN

(Received 26 October 1966; revised 25 April 1967)

1. Introduction

In a previous paper [1], Green's theorem for line integrals in the plane was proved, for Riemann integration, assuming the integrability of $Q_x - P_y$, where P(x, y) and Q(x, y) are the functions involved, but *not* the integrability of the individual partial derivatives Q_x and P_y . In the present paper, this result is extended to a proof of the Gauss-Green theorem for *p*-space $(p \ge 2)$, for Lebesgue integration, under analogous hypotheses. The theorem is proved in the form

(1)
$$\int_{\Omega} \operatorname{div} g(x) d\mu_{\nu}(x) = \int_{\partial \Omega} g(x) \cdot \nu(x) d\Phi(x)$$

where Ω is a bounded open set in \mathbb{R}^p (*p*-space), with boundary $\partial\Omega$; $g(x) = (g(x_1), \dots, g(x_p))$ is a *p*-vector valued function of $x = (x_1, \dots, x_p)$, continuous in the closure of Ω ;

div
$$g(x) = \sum_{i=1}^{p} \frac{\partial g_i(x)}{\partial x_i}$$
;

 $\mu_{\nu}(x)$ is *p*-dimensional Lebesgue measure; $\nu(x) = (\nu_1(x), \dots, \nu_p(x))$ and $\Phi(x)$ are suitably defined unit exterior normal and surface area on the 'surface' $\partial \Omega$; and $g(x) \cdot \nu(x)$ denotes inner product of *p*-vectors.

In analogy with the plane case, div g(x) is assumed finite, except on a suitably restricted 'exceptional set', and Lebesgue integrable on Ω but the individual partial derivatives $\partial g_i(x)/\partial x_i$ need not be integrable; and $\partial \Omega$ is assumed to have finite Hausdorff (p-1)-measure, and to satisfy a weak continuity condition. The hypothesis on Hausdorff measure, which is analogous to the requirement in [1] that the plane curve is rectifiable, is equivalent to a hypothesis on covering $\partial \Omega$ by cubes, analogous to Potts' Lemma [2] on covering a rectifiable plane curve by squares.

Other authors have assumed that the individual partial derivatives are integrable. Notably, Federer [3], [4], [5] proves the theorem, for suitable scalar f(x), in the form

(2)
$$\int_{\Omega} \frac{\partial f(x)}{\partial x_i} d\mu_{\nu}(x) = \int_{\partial \Omega} f(x) \nu_i(x) d\Phi(x),$$
385

and Michael [6] proves (2) with a multiplicity factor inserted. Both assume, however, that $\partial f / \partial x_i$ is integrable over Ω .

The proof of (1) depends, not on the detailed definitions of v(x) and $\Phi(x)$, but on the following properties assumed for those functions:

(I) v(x) is a Borel-measurable function of x, which reduces to the geometric exterior normal to Ω whenever $\partial \Omega$ is differentiable at x; v(x) = 0 by convention wherever a normal is undefined.

(II) If v(x) and $v^*(x)$ denote the unit exterior normals to Ω and its complement at the point $x \in \partial \Omega$, then $v^*(x) = -v(x)$.

(III) $\Phi(S)$ is a Carathéodory outer measure ([7] § 235) for subsets S of $\partial\Omega$, which equals geometric (p-1)-dimensional area in the neighbourhood of any point where the surface $\partial\Omega$ is differentiable. [$\Phi(x)$ denotes $\Phi(S)$ for $S = \{y : y_i \leq x_i, i = 1, 2, \dots, p\}$.]

(IV) If $\partial\Omega$ denotes the entire boundary of any bounded open set Ω , for which $\Phi(\partial\Omega) < \infty$, then

(3)
$$\int_{\partial\Omega} v_i(x) d\Phi(x) = 0 \qquad (i = 1, 2, \cdots, p).$$

Federer ([3] and [4]) defines a normal $\nu(x)$, which restricts Ω merely to be a bounded open set, and shows that this $\nu(x)$, together with $\Phi(S)$ defined as Hausdorff (p-1)-measure on $\partial\Omega$, satisfy (I), (II), (III), and (2). If C is any constant vector, then

(4)
$$\int_{\partial\Omega} C \cdot \nu(x) d\Phi(x) = \sum_{i=1}^{p} C_i \int_{\partial\Omega} \nu_i(x) d\Phi(x) = 0 \quad \text{from (2)},$$

so that (IV) also holds. It is not obvious whether any other extensions of normal and area exist, satisfying (I) to (IV), but if they do, then Theorems 1, 2, 3 of this paper remain valid for them.

2. Boundary surface

If C is a rectifiable plane curve, of length L, then Lemma 2 of Potts [2] states that there is a covering M_{δ} of L by at most $4(L/\delta) + 4$ closed squares, each of side δ , with disjoint interiors and sides parallel to the axes. Hence, if K = 8L, a constant depending only on C, M_{δ} consists of at most K/δ squares of side δ , whose total area $K\delta \to 0$ as $\delta \to 0$, and whose total perimeter is less than 4K, a bound independent of δ . This fact suggests the following generalization to R^p . Let 'cube' denote 'p-dimensional hypercube with edges parallel to the axes'. A 'surface' E((p-1)-dimensional manifold) in R^p will be said to satisfy the 'Potts condition' if, for a sequence of values of $\delta \downarrow 0$, E can be covered by a finite collection M_{δ} of closed cubes A_i with

disjoint interiors, such that the edge δ_i of A_i is less than δ , for each *i*, and $\sum_i \delta_i^{p-1} < K$, a constant independent of δ . Denote by M_{δ}^* the union of the cubes of M_{δ} . It follows that the total *p*-dimensional volume of M_{δ}^* is less than $K\delta$, so $\to 0$ with δ , and the total (p-1)-dimensional surface area of the cubes of M_{δ} is less than 2pK, for all δ . The 'Potts condition' is further characterized by the following two Lemmas.

LEMMA 1. The boundary E of a bounded open set in \mathbb{R}^p satisfies the Potts condition if and only if its Hausdorff (p-1)-measure, $\Phi(E)$, is finite.

PROOF. Hausdorff measure is defined [5] as

(5)
$$\Phi(E) = 2^{-p+1} \alpha_{p-1} \lim_{r \to 0+} \left[\inf \left\{ \sum_{j=1}^{\infty} (\operatorname{diam} B_j)^{p-1} : E \subset \bigcup_{j=1}^{\infty} B_j; \operatorname{diam} B_j < r, j = 1, 2, \cdots \right\} \right]$$

where $\alpha_{p-1} =$ volume of (p-1)-dimensional unit sphere. Let *E* satisfy the Potts condition. For any r > 0, there is a covering M_{δ} of *E* by cubes A_i of edge $< \delta$, and therefore of diameter $< \delta p^{\frac{1}{2}} < r$, by choice of δ , such that

$$\sum_{i} (\text{diam } A_{i})^{p-1} = (p^{\frac{1}{2}})^{p-1} \sum_{i} \delta_{i}^{p-1} < K(p^{\frac{1}{2}})^{p-1},$$

a constant independent of r, consequently, from (5), $\Phi(E) < \infty$.

The converse is Theorem 4.1 of Michael [8], noting that E is compact.

LEMMA 2. Let C be a plane closed Jordan curve. Then C satisfies the Potts condition if and only if C is rectifiable.

PROOF. If C is rectifiable, then C satisfies the Potts condition, by Potts' Lemma. Conversely, let C satisfy the Potts condition. Then C is bounded. Choose any *n* distinct points P_0, P_1, \dots, P_{n-1} on C, taken in order around C; denote $P_n = P_0$. Cover each P_i by a square K_i , whose edge < 1/n. Let C_i denote that part of the arc $P_{i-1}P_i$ which lies outside Int $(K_{i-1} \cup K_i)$. Since the C_i are disjoint compact, there is a Potts covering M of C, such that each C_i is covered by a union M_i of squares of M, and the M_i are disjoint. There are points $Q'_{i-1} \in K_{i-1} \cap \partial M_i$ and $Q''_i \in K_i \cap \partial M_i$, where ∂M_i denotes the boundary of M_i . There is an arc, of length b_i say, joining Q'_{i-1} to Q''_i , consisting of parts of edges of squares of M_i . Then, if d denotes distance, and K is the constant of the Potts hypothesis,

$$\sum_{i=1}^{n} d(P_{i-1}, P_i) \leq \sum_{i=1}^{n} \{ d(P_{i-1}, Q'_r) + b_i + d(Q''_i, P_i) \}$$
$$\leq n \cdot \frac{\sqrt{2}}{n} + 4K + \frac{n\sqrt{2}}{n} = 2\sqrt{2} + 4K,$$

a bound independent of the P_i . So C is rectifiable.

B. D. Craven

3. Admissible domains

Let Ω be a bounded open subset of \mathbb{R}^p , whose boundary $\partial\Omega$ is a countable union of disjoint continuous images E_k of S^{p-1} , the (p-1)-dimensional unit sphere. Let $V = \bigcup V_k$, where the V_k are countably many disjoint copies of S^{p-1} in \mathbb{R}^p . Now $E_k = f_k(V_k)$, where each f_k is continuous, so that $\partial\Omega = f(V)$, where $f|V_k = f_k$, and f is continuous. (The set V may be taken instead as a countable union of disjoint closed intervals in \mathbb{R} .)

If $\partial \Omega$ is topologised as a subspace of \mathbb{R}^p , then the sets

$$A = \partial \Omega \cap \{x : x_i < \alpha\} \text{ and } B = \partial \Omega \cap \{x : x_i > \alpha\}$$

are open in $\partial\Omega$, so their inverse images $f^{-1}A$ and $f^{-1}B$ are open in V, and therefore consist of at most countably many disjoint arcwise-connected components. Consequently, if K is any open cube in \mathbb{R}^p , $\partial\Omega \cap K$ consists of at most countably many components.

Let $L_i(\alpha) = \partial \Omega \cap \{x : x_i \leq \alpha\}$. Since Φ is monotone, $\Psi_1(\alpha_1) = \Phi(L_1(\alpha_1))$ is a nondecreasing function of α_1 , so there is a countable dense set D_1 of α_1 on which Ψ_1 is continuous. Likewise, for each $\alpha_1 \in D_1$,

$$\Psi_2(\mathfrak{a}_1, \mathfrak{a}_2) = \varPhi(L_1(\mathfrak{a}_1) \cap L_2(\mathfrak{a}_2))$$

is a nondecreasing function of α_2 , so there is a countable dense set D_2 of α_2 such that Ψ_2 is continuous for $\alpha_1 \in D_1$, $\alpha_2 \in D_2$; and so on. The planes $x_i = \alpha_i \in D_i$ $(i = 1, 2, \dots, p)$ will be called *admissible planes*. Since they form a dense family, the cubes used in Potts coverings can be replaced by cuboids bounded by admissible planes, with arbitrarily little change in the bounds previously obtained; this will be assumed henceforth. If W is any open cuboid bounded by admissible planes, then any component of $W \cap \partial \Omega$ will be called an *admissible domain* in $\partial \Omega$.

LEMMA 3. If A_i $(i = 1, 2, \dots)$ are disjoint admissible domains in $\partial\Omega$, then

(i)
$$\Phi(\overline{A_i}) = \Phi(A_i)$$
, where $\overline{A_i} = \text{closure of } A_i \text{ in } \partial \Omega_i$

(ii) $\Phi(A_1+A_2) = \Phi(A_1) + \Phi(A_2)$, where A_1+A_2 now denotes the interior of $\overline{A_1} \cup \overline{A_2}$; denote also $A_1+A_2+\cdots+A_n+\cdots =$ Interior of $\bigcup_1^{\infty} \overline{A_i}$;

(iii) if $A_0 = A_1 + A_2 + \cdots + A_n + \cdots$ is also admissible, then

$$\Phi(A_0) = \sum_{1}^{\infty} \Phi(A_n);$$

(iv) A_i is Φ -measurable;

(v) if f(x) is bounded Borel-measurable, then

$$\int_{A_1+A_2} f d\Phi = \int_{A_1} f d\Phi + \int_{A_2} f d\Phi.$$

PROOF. (i) If W is an open cuboid bounded by admissible planes, then the continuity of Φ on admissible planes implies that there is a larger cuboid W_{ε} , obtained by displacing outward each boundary plane of W, such that $\overline{W} \subset W_{\varepsilon}$, and $\Phi(W_{\varepsilon} \cap \partial \Omega) < \Phi(W \cap \partial \Omega) + \varepsilon$. So if A is an admissible domain, there is an admissible domain $A_{\varepsilon} \supset \overline{A}$ with $\Phi(A_{\varepsilon}) < \Phi(A) + \varepsilon$; which implies (i).

(ii) Define distance d on $\partial\Omega$ as the restriction to $\partial\Omega$ of distance in \mathbb{R}^p . Since $A_1 \cap A_2 = \emptyset$, $C = \overline{A_1} \cap \overline{A_2}$ is contained in the frontiers (in $\partial\Omega$) of A_1 and A_2 . By the definition of admissible domain, these frontier points are boundary points of finitely many cuboids bounded by admissible planes. These planes may be covered by a finite union G of open cuboids, such that $\Phi(D) < \varepsilon$, where $C \subset D = G \cap \partial\Omega$. Then the sets $\overline{A_i} - D = A_i - D$ (i = 1, 2) are disjoint closed sets in $\partial\Omega$; therefore $d(A_1 - D, A_2 - D) > 0$. Since Φ is a Carathéodory outer measure, it is additive on $A_1 - D$ and $A_2 - D$, and the result follows.

(iii) Since $A_1 + \cdots + A_n \subset \overline{A_0}$,

$$\sum_{1}^{n} \Phi(A_{i}) \leq \Phi(\overline{A_{0}}) = \Phi(A_{0}) \qquad \text{by (ii) and (i);}$$

since $\boldsymbol{\Phi}$ is subadditive,

$$\Phi(\overline{A_0}) \leq \sum_{1}^{\infty} \Phi(\overline{A_i}) = \sum_{1}^{\infty} \Phi(A_i) \quad \text{by (i)}.$$

(iv) Since A_i is open in $\partial\Omega$, and Φ is a Carathéodory outer measure on $\partial\Omega$, A_i is measurable (Carathéodory [7], § 238 and § 251).

(v) From (ii) and (iv), it readily follows that, for any Borel set B (i.e. any set obtained from admissible domains by countably many unions and intersections) $\Phi(B \cap (A_1+A_2)) = \Phi(B \cap A_1) + (B \cap A_2)$; and this leads readily to (v).

LEMMA 4. If f(x) is bounded Borel-measurable; A_1, A_2, \cdots are disjoint admissible domains; and $A = A_1 + A_2 + \cdots$ is an admissible domain, with $\Phi(A) < \infty$; then, independently of the order of summation,

(6)
$$\int_{A} f d\Phi = \sum_{i=1}^{\infty} \int_{A_i} f d\Phi.$$

PROOF. Since $\Phi(A) < \infty$, \int_A is finite, and by Lemma 3 (iii), so is each \int_{A_i} . Suppose that some sequence of partial sums of the series (6), summed in some order, converges to a limit λ , where $|\lambda - \int_A| = 3\delta > 0$. Then

$$\left|\sum_{i\in N_r}\int_{A_i}-\lambda\right|<\delta$$

B. D. Craven

for an expanding sequence of finite sets $N_r \uparrow N$, the set of all positive integers. If $F_r = A_1 + \cdots + A_r$ and $G_r = A - A_r$, then by Lemma 3 (iii)

$$\Phi(G_r) \leq \sum_{N-N_r} \Phi(\overline{A_r}) = \sum_{N-N_r} \Phi(A_i) < \delta |\sup||f|$$

by choice of r, since $\sum \Phi(A_i) < \infty$. Since F_r , G_r are disjoint measurable sets,

$$3\delta = \left| \int_{F_r} + \int_{G_r} -\lambda \right| = \left| \sum_{N_r} \int_{A_i} + \int_{G_r} -\lambda \right| \le \left| \sum_{N_r} \int_{A_i} -\lambda \right| + \sup |f| \Phi(G_r) \le \delta + \delta,$$

so that $\delta = 0$.

4. Gauss-Green theorem

THEOREM 1. Let Ω be a bounded open subset of \mathbb{R}^p , whose boundary $\partial \Omega$ (i) satisfies the Potts condition, and (ii) is a countable union of disjoint continuous images of S^{p-1} . Let $g: \overline{\Omega} \to R^p$ be continuous on $\overline{\Omega}$. Let div g be Lebesgue-integrable on Ω . For every cuboid $\Gamma \subset \Omega$, let the Gauss-Green theorem (1) hold, with Ω , $\partial\Omega$ replaced by Γ , $\partial\Omega$. Then (1) holds for Ω , $\partial\Omega$.

PROOF. Let M_{λ} be a Potts covering of $\partial \Omega_{\lambda}$ consisting of closed cuboids A_i . Denote the interior of A_i by A_i^0 . Let C_{δ} denote the union of those relatively open subsets of the boundary planes of the A_i which lie in $M_i^* \cap \Omega$. Then, by definition of Potts covering, $\mu_p(M^*_{\delta}) < K\delta$ and $\mu_{p-1}(C_{\delta}) < 2pK$. Let $h(x) = \operatorname{div} g(x)$ for $x \in \Omega$, h(x) = 0 for $x \notin \Omega$. Then

$$\int_{\Omega} \operatorname{div} g \, d\mu_{p} = \int_{R^{p}} h \, d\mu_{p}.$$

Since $h \in L(R^{p})$,
$$\left| \int_{M_{\delta}} h \, d\mu_{p} \right| < \varepsilon$$

if $\mu_{p}(M_{\delta}^{*}) < \Delta(\varepsilon)$. So, if $W = \Omega - M_{\delta}^{*}$ and $\delta < K^{-1} \Delta(\varepsilon)$,

(7)
$$\left|\int_{\Omega} \operatorname{div} g \, d\mu_{p} - \int_{W} h \, d\mu_{p}\right| < \varepsilon.$$

The set $A_i \cap \Omega$ has boundary $\rho_i = \alpha_i \cup \sigma_i \cup \lambda_i$, where $\alpha_i = A_i^0 \cap \partial \Omega$ is the union of (at most) countably many admissible domains α_{ij} , the relatively open set $\sigma_i = \partial A_i \cap \Omega$ is the union of (at most) countably many components β_{ij} of $C_{\delta} - \partial W$ and γ_{ij} of ∂W , and $\lambda_i = \partial A_i \cap \partial \Omega$ satisfies $\Phi(\lambda_i) = 0$, since A_i is bounded by admissible planes. The frontiers of the open sets β_{ij} and γ_{ij} , in the relative topology of ∂A_i , are contained in λ_i . Consequently, the results of Lemmas 3 and 4 apply also to the β_{ij} and γ_{ii} ; these sets will also be called 'admissible domains'.

In terms of the set composition + of Lemma 3, ρ_i is the sum, over countably many indices j, of the α_{ij} , β_{ij} , γ_{ij} . The proof of Theorem 1 consists

if μ

On the Gauss-Green theorem

essentially in recombining the corresponding integrals in a different order; this process is validated by Lemma 4, which also shows that the frontier points (in the relative topology) of the admissible domains make no contribution.

Attach to each point $x \in \rho_i$ the unit exterior normal $\nu(x)$. For $x \in \beta_{ij}$, two normals are possible, oppositely directed, depending on which ρ_i is chosen; in the following summation, each β_{ij} contributes twice, once for each normal. With integrand $g \cdot \nu d\Phi$,

$$\int_{\partial\Omega} = \sum_{i,j} \int_{\alpha_{ij}} \text{by Lemma 4}$$

$$= \sum_{i,j} \int_{\alpha_{ij}} + \sum_{i,j} \int_{\beta_{ij}} + \sum_{i,j} \int_{\gamma_{ij}} - \sum_{i,j} \gamma_{ij} \text{ since } \sum_{i,j} \int_{\beta_{ij}} = 0$$

$$= \sum_{i} \sum_{j} \left(\int_{\alpha_{ij}} + \int_{\beta_{ij}} + \int_{\gamma_{ij}} \right) - \sum_{i,j} \int_{\gamma_{ij}} \text{by Lemma 4}$$

$$= \sum_{i,j} \int_{\rho_{ij}} + \int_{\partial W} \text{by Lemma 4}.$$

Since g is continuous on the compact set $\overline{\Omega}$, and $\mu_p(M_{\delta}) \to 0$ as $\delta \to 0$, there is δ such that the oscillation of g(x) in the closure of each $A_i \cap \Omega$ is less than ε . So, for δ sufficiently small, there corresponds to each ρ_i a constant vector c_i such that, for $x \in \rho_i$,

$$g(x) = c_i + \eta_i(x)$$
 where $|\eta_i(x)| < \varepsilon$.

(

$$\int_{\rho_{ij}} g \cdot \nu d\Phi = \int_{\rho_{ij}} c_i \cdot \nu d\Phi + \int_{\rho_{ij}} \eta_i \cdot \nu d\Phi$$
$$= \int_{\rho_{ij}} \eta_i \cdot \nu d\Phi \qquad \qquad \text{by (3)}$$

so that

1

(9)

$$\begin{aligned} \left| \sum_{ij} \int_{\rho_{ij}} g \cdot v \, d\Phi \right| &\leq \varepsilon \sum_{ij} \Phi(\rho_{ij}) \\ &\leq \varepsilon \left(2 \sum_{i} \Phi(\partial A_{i}) + \Phi(\partial \Omega) \right) \quad \text{by Lemma 3 (iii)} \\ &\leq \varepsilon (4\rho K + \Phi(\partial \Omega)) \end{aligned}$$

where K is the constant of the family of Potts coverings.

Now the Gauss-Green theorem applies, by hypothesis, to W, which is a finite union of cuboids $\subset \Omega$. Combining this with (7) and (9),

(10)
$$\left|\int_{\Omega} \operatorname{div} g d\mu_{p} - \int_{\partial\Omega} g \cdot v d\Phi\right| \leq B \cdot \varepsilon$$

for constant B; which proves the theorem.

LEMMA 5. (Saks [9], page 198.) Let w be a real function of one variable, such that w'(x) exists p.p. in [a, b]; let F be a closed non-empty subset of [a, b]; let N be a finite constant such that

$$|w(x_2)-w(x_1)| \leq N|x_2-x_1|$$
 whenever $x_1 \in F$ and $x_2 \in [a, b]$.

Then

$$|w(b)-w(a)-\int_F w'(x)dx| \leq N(b-a-\mu_1(F)).$$

PROOF. (Saks) Let u(x) = w(x) on $F \cup \{a, b\}$, and linear on the complementary intervals. Then u(x) is Lipschitz, therefore absolutely continuous. Hence

$$w(b)-w(a) = u(b)-u(a) = \int_a^b u'(x)dx.$$

But u'(x) = w'(x) p.p. in F, and $|u'(x)| \leq N$ at each $x \in F$, which proves the result.

THEOREM 2. Let W be an open cuboid in \mathbb{R}^p ; let K be an open cuboid containing \overline{W} . Let g(x) be continuous on K; let div g(x) be finite for all $x \in K$ and Lebesgue integrable on W. Then the Gauss-Green theorem (1) holds for W, ∂W .

PROOF. A point $x \in \overline{W}$ will be called *admissible* if it has an open neighbourhood $N(x) \subset K$, such that for every cuboid $C \subset N(x)$, (1) holds for C, ∂C . Let F denote the complement, with respect to \overline{W} , of the set of admissible points. From its construction, F is closed. Suppose that F is not empty; this will lead to a contradiction.

For $n = 1, 2, \dots$, denote by F_n the set of points x for which

(11)
$$\max_{i=1,2,\cdots,p} |g(x_1,\cdots,x_{i-1},x_i+h,x_{i+1},\cdots,x_p) -g(x_1,\cdots,x_{i-1},x_i,x_{i+1},\cdots,x_p)| \le n|h| \text{ for } |h| < n^{-1}.$$

Since $\partial g_i(x)/\partial x_i$ is finite for all $x, \overline{W} \subset \bigcup_n F_n$. Then, according to Baire's category theorem ([9] page 55) there is an open cuboid I such that $F \cap F_N$ is dense in $F \cap I$ for some integer N. Since also F and F_N are closed, $\emptyset \neq I \cap F \subset \overline{I} \cap (F \cap F_N) \subset F_N$. Let $x_0 \in I \cap F$. Let Q be any closed cuboid of diameter $\leq N^{-1}$, where $x_0 \in Q \subset I$.

Given $\delta > 0$, there is a countable covering of $E = F \cap Q$ by open cuboids G, such that

$$\sum_{1}^{\infty} \mu_{p}(G_{j}) < \mu_{p}(F \cap Q) + \delta.$$

Since $F \cap Q$ is compact, a finite subset of the G_i covers $F \cap Q$. Since also $\mu_p(\bar{G}_i) = \mu_p(G_i)$, there is a finite covering of $F \cap Q$ by closed cuboids S_i

 $(j = 1, \dots, r)$ which may be assumed to have disjoint interiors, and to lie within Q, such that

(12)
$$\sum_{j=1}^{r} \mu_{p}(S_{j}) < \mu_{p}(F \cap Q) + \delta_{j}$$

Let S_j be the cuboid $a_j \leq x_j \leq b_j$ $(j = 1, \dots, p)$. Let the line specified by fixed values of $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_p$ intersect $F \cap S_j$ in the set $T_i = T_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_p)$, whose linear measure is $\mu_1(T_i)$. Then, from Lemma 5,

$$\begin{split} \psi(x_1, \cdots, x_{i-1}; x_{i+1}, \cdots, x_p) \\ &\equiv |g_i(x_1, \cdots, x_{i-1}, b_i, x_{i+1}, \cdots, x_p) - g_i(x_1, \cdots, x_{i-1}, a_i, x_{i+1}, \cdots, x_p) \\ &\quad - \int_{T_i} \frac{\partial g_i}{\partial x_i} \left(x_1, \cdots, x_{i-1}, x_i, x_{i+1}, \cdots, x_p \right) dx_i \right) | \\ &\leq N \cdot \left(b_i - a_i - \mu_1(T_i) \right). \end{split}$$

So, integrating with respect to $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_p$ over $a_j \leq x_j \leq b_j$,

$$\begin{aligned} \left| \int_{\partial S_{j}} g_{i}(x) v_{i}(x) d\Phi(x) - \int_{S_{j} \cap F} \frac{\partial g_{i}(x)}{\partial x_{i}} d\mu_{p}(x) \right| \\ &= \int \psi(x_{1}, \cdots, x_{i-1}; x_{i+1}, \cdots, x_{p}) dx_{1} \cdots dx_{i-1} dx_{i+1} \cdots dx_{p}, \\ \text{ since } S_{j} \text{ is a cuboid} \\ &\leq N \int (b_{i} - a_{i} - \mu_{1}(T_{i})) dx_{1} \cdots dx_{i-1} dx_{i+1} \cdots dx_{p} \end{aligned}$$

$$\leq N \int (b_i - a_i - \mu_1(T_i)) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_p$$

$$= N(\mu_p(S_j) - \mu_p(S_j \cap F)) \qquad \text{by Fubini's theorem.}$$

Define the set function H(S) on closed cuboids S by

(14)
$$pH(S) = \int_{\partial S} g(x) \cdot v(x) d\Phi(x) - \int_{S} \operatorname{div} g(x) d\mu_{\nu}(x).$$

Then H(S) is additive on cuboids whose interiors are disjoint, and, from the definition of F,

(15)
$$H(S) = 0 \text{ if } F \cap S = \emptyset.$$

Now since H is additive,

$$|H(\bigcup_{1}^{r} S_{j})| \leq \sum_{1}^{r} |H(S_{j})|$$
(16)
$$\leq N \sum_{j=1}^{r} [\mu_{p}(S_{j}) - \mu_{p}(S_{j} \cap F) + \int_{S_{j} - F} |\operatorname{div} g(x)| d\mu_{p}(x)] \text{ by (13)}$$

$$\leq N \mu_{p}((\bigcup_{1}^{r} S_{j}) - F \cap Q) + N \int_{(\cup S_{j}) - (F \cap Q)} |\operatorname{div} g(x)| d\mu_{p}(x).$$

Since g is integrable over W, the integral in (16) can be made less than $\varepsilon/(2N)$ by choosing $\mu_p((\cup S_j) - (F \cap Q)) < \Delta(\varepsilon/2N)$, say. From (12)

(17)
$$\mu_{p}((\cup S_{j}) - (F \cap Q) < \min(\varepsilon/2N, \Delta(\varepsilon/2N))$$

if δ is chosen less than the quantity on the right of (17). Hence $|H(\cup S_j)| < \varepsilon$. Now

$$|H(Q)| = |H(Q - \cup S_j) + H(\cup S_j)|$$

$$\leq |H(Q - \cup S_j)| + |H(\cup S_j)|$$

$$< 0 + \varepsilon,$$

since $Q-S_j \subset Q-F$. Since ε is arbitrary, H(Q) = 0. Since this is true for every sufficiently small cuboid Q containing x_0 , the assumption $x_0 \in F$ is contradicted. Hence F is empty.

THEOREM 3. Let Ω be a bounded open subset of \mathbb{R}^p , whose boundary $\partial\Omega$ satisfies the Potts condition (or equivalently, by Lemma 1, has $\Phi(\partial\Omega) < \infty$), and is a countable union of disjoint continuous images of \mathbb{S}^{p-1} . Let E be a subset of Ω which satisfies the same hypotheses as $\partial\Omega$. Let the function $g: \overline{\Omega} \to \mathbb{R}^p$ be continuous; let div g exist (with finite value) at all points of $\Omega - E$, and be integrable on Ω . Then the Gauss-Green theorem (1) holds for $\Omega, \partial\Omega$.

REMARKS. The topological hypothesis on $\partial \Omega$ is an analog of the hypothesis, in Green's theorem for two dimensions, that the boundary is a closed Jordan curve.

The subset E may consist, e.g., of countably many points, or lines, etc., within Ω , on which one or more derivatives $\partial g_i/\partial x_i$ fail to exist; since $\mu_p(E) = 0$ (from the Potts condition), div g is defined a.e. on Ω .

The Looman-Menchoff theorem (Saks [9]) states that if f(z) = u + ivis a continuous function of complex z on domain Ω , and u and v have their first partial derivatives finite in Ω except on a countable set E, and satisfy the Cauchy-Riemann equations a.e. in Ω , then $\oint_C f(z)dz = 0$ for each closed rectangle C in Ω . Theorem 3 of this paper shows that this exceptional set E can be considerably enlarged.

PROOF. Let M be a closed Potts covering of E, with parameter δ . The hypotheses of Theorem 2, and consequently the Gauss-Green theorem, hold for each cuboid $K \subset \Omega - M$. Therefore, by Theorem 1, the Gauss-Green theorem holds also for $\Omega - M$ and its boundary.

Since E satisfies the same hypotheses as $\partial \Omega$, the arguments which lead to (7) and (9) in the proof of Theorem 1 show also that, for sufficiently small δ ,

$$\begin{aligned} \left| \int_{\Omega} \operatorname{div} g \, d\mu_{p} - \int_{\Omega - M} \operatorname{div} g \, d\mu_{p} \right| < \varepsilon \\ \left| \int_{\partial \Omega} - \int_{\partial (\Omega - M)} g \cdot \nu \, d\Phi \right| < k \cdot \varepsilon \end{aligned}$$

where k is constant. Since ε is arbitrary, these results combine to prove the Gauss-Green theorem for Ω , $\partial\Omega$.

5. Examples

(I) Theorem 3, or even the two-dimensional Riemann-integral version in [1], is a non-trivial extension of the usual Gauss-Green theorem. An example in two dimensions is as follows.

Let Ω denote the interior of the unit circle $x_1^2 + x_2^2 = 1$. Let

$$g_1(x_1, x_2) = x_2 r^2 \sin \pi / r^4$$

$$g_2(x_1, x_2) = -x_1 r^2 \sin \pi / r^4$$

where $r^2 = x_1^2 + x_2^2$. Then g_1 and g_2 are continuous, and even differentiable, at all points in Ω , since for $r \neq 0$,

$$\frac{\partial g_1}{\partial x_1} = -2x_1x_2\sin\frac{\pi}{r^4} + \frac{4\pi x_1x_2}{r^4}\cos\frac{\pi}{r^4} = -\frac{\partial g_2}{\partial x_2},$$

and $|[g_1(x_1, x_2) - g_1(0, 0)]/r| < r$ (and similarly for g_2).

Thus div g(x) = 0 in Ω , so is integrable, and Green's theorem holds for these functions. But if $\partial g_1/\partial x_1$ were integrable on Ω , it would follow (since $2x_1x_2 \sin \pi/r^4$ is continuous) that

$$\int \int \left|\frac{x_1x_2}{r^4}\cos\frac{\pi}{r^4}\right|\,dx_1dx_2<\infty,$$

hence in polar coordinates,

$$\int_0^1 \left| \cos \frac{\pi}{r^4} \right| \frac{dr}{r} < \infty$$

or (with $r = S^{-\frac{1}{4}}$)

$$\int_0^1 |\cos \pi S| \, \frac{dS}{S} < \infty.$$

Since this integral diverges, $\partial g_1/\partial x_1$ is not integrable on Ω , consequently the usual forms of Green's theorem do not apply.

(II) Theorem 3 is untrue if the exceptional set E, on which div g fails to exist, is increased to an arbitrary null set (i.e. $\mu_p(E) = 0$). A counterexample for p = 2 is given by Ω = unit square ($0 \le x_1 \le 1, 0 \le x_2 \le 1$), $g_2(x) = 0, g_1(x) = \phi(x_1)\phi(x_2)$, where $\phi(x)$ is Cantor's monotonic function

[12]

for which $\phi'(x) = 0$ except on a null set N, but $\phi(1) - \phi(0) = 1$. Then div g = 0 except on the null set $E = N \times N$, so that

$$\int_{\Omega} \operatorname{div} g \, d\mu_2 = 0, \text{ but } \int_{\partial \Omega} g \cdot \nu \, d\Phi \neq 0.$$

Acknowledgement

I am much indebted to Dr. J. H. Michael for helpful discussion on the subject of this paper, and for valuable suggestions concerning the method of proof of Theorem 2. I am also indebted to the referee for pointing out a number of details which required amendment.

References

- [1] B. D. Craven, 'A note on Green's theorem', J. Austral. Math. Soc. 4 (1964), 289-292.
- [2] D. H. Potts, 'A note on Green's theorem', J. Lond. Math. Soc. 26 (1951), 302-304.
- [3] W. Federer, 'The Gauss-Green theorem', Trans. Amer. Math. Soc. 58 (1945), 44-76.
- [4] W. Federer, 'Coincidence functions and their integrals', Trans. Amer. Math. Soc. 59 (1946), 441-466.
- [5] W. Federer, 'Measure and area,' Bull. Amer. Math. Soc. 58 (1952), 306-378.
- [6] J. H. Michael, 'Integration over parametric surfaces', Proc. Lond. Math. Soc., Third Ser. 7 (1957), 616-640.
- [7] C. Carathéodory, Vorlesungen über Reelle Funktionen (Teubner, 1927).
- [8] J. H. Michael, 'An n-dimensional analogue of Cauchy's integral theorem', J. Austral. Math. Soc. 1 (1960), 171-202.
- [9] S. Saks, Theory of the integral (Second edition).

University of Melbourne.